A Model for Mapping between
Printed and Digital Document Instances

Nadir Weibel Moira C. Norrie Beat Signer
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
ETH Zurich ETH Zurich ETH Zurich
8092 Zurich, Switzerland 8092 Zurich, Switzerland 8092 Zurich, Switzerland
weibel@inf.ethz.ch norrie@inf.ethz.ch signer@inf.ethz.ch

ABSTRACT

The first steps towards bridging the paper-digital divide
have been achieved with the development of a range of tech-
nologies that allow printed documents to be linked to digital
content and services. However, the static nature of paper
and limited structural information encoded in classical pag-
inated formats make it difficult to map between parts of
a printed instance of a document and logical elements of a
digital instance of the same document, especially taking doc-
ument revisions into account. We present a solution to this
problem based on a model that combines metadata of the
digital and printed instances to enable a seamless mapping
between digital documents and their physical counterparts
on paper. We also describe how the model was used to de-
velop iDoc, a framework that supports the authoring and
publishing of interactive paper documents.

Categories and Subject Descriptors

H.1.2 [Information Systems]: Models and Principles -
User/Machine Systems; D.2.11 [Software Engineering]:
Software Architectures; H.4.1 [Information Systems Ap-
plications]: Office Automation

General Terms

Design, Algorithms, Experimentation, Human Factors

Keywords

Interactive paper, document integration, document model,
structured documents, page description languages

1. INTRODUCTION

Paper still plays an important role in the document life
cycle. While the digital revolution has had a tremendous
impact on how we author, publish, distribute and manage
documents, the actual reading and annotation of documents
still tends to happen on printed versions of these documents.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DocEng’07, August 28-31, 2007, Winnipeg, Manitoba, Canada.
Copyright 2007 ACM 978-1-59593-776-6/07/0008 ...$5.00.

Therefore, despite predictions of the paperless office, instead
of removing paper and printing from the document life cy-
cle, they are now mainly associated with stages that involve
reading and annotation. Several studies within the human
computer interaction (HCI) field have highlighted the affor-
dances of paper that may explain why it persists and remains
a preferred medium for note-taking as well as reading [28].

The first steps towards bridging the paper-digital divide
have already been taken and a range of technologies devel-
oped that allow printed documents to be linked to digital
content and services. The most advanced of these is Anoto
technology [3] that uses a digital pen with an integrated cam-
era to track the positions of the pen on paper through a spe-
cial tiny dot pattern printed on the paper to encode position
data. The technology was developed for the digital capture
of handwriting, but nowadays digital pens are available that
can deliver the position information in streaming mode, en-
abling paper to be turned into an interactive medium. Links
on paper can be defined in terms of active areas and when
the pen touches the paper within an active area, the link
is activated and a request sent to a server to activate the
target resource. In the case of a media file such as an im-
age, video or web page, the resource will be retrieved and
displayed. However, if the resource is some form of digital
service, a request will be forwarded to that service. Han-
dling interactions between paper and digital documents in
a dynamic and flexible way is complex and a general infras-
tructure for this is desirable. The iServer infrastructure [20]
together with its interactive paper plug-in (iPaper) [22] in-
troduce such an approach and have been shown to support
the rapid development of interactive paper documents and
paper-based interfaces for a wide-range of applications.

As outlined in [23], the publishing of interactive paper
documents can be a complex task including the authoring
of the source documents, followed by the definition of the
digital resources and services to be bound to the specific ac-
tive areas. The last step involves the mapping of the digital
document to its physical counterpart together with the gen-
eration of the link definitions that specify physical regions
on paper as active areas. But so far this tends to be a one-
way process used to generate printed instances of documents
that are interactive rather than a process that supports the
seamless transition between digital and printed instances of
the same document within the document life cycle.

The static nature of paper and limited structural informa-
tion encoded in classical paginated formats make it difficult
to map between parts of a printed document instance and
logical elements of a digital instance of the same document,

especially taking document revisions into account. In this
paper, we present a solution to this problem based on a
model that combines metadata of the digital and printed
instances to enable a seamless mapping between digital doc-
uments and their physical counterparts on paper. We also
describe how the model was used to develop iDoc, a frame-
work that supports the authoring and publishing of interac-
tive paper documents.

We begin in Section 2 with a more detailed discussion of
the issues and also related work. Section 3 examines ap-
proaches to structured documents, first looking at logical
models of structure and then physical representation based
on different Page Description Languages (PDL). Section 4
then presents our mixed physical and digital model which
stands as a bridge between logical and physical document
representations. A particular extension of the model inves-
tigating the structural interrelation of the objects compos-
ing it is presented in Section 5. Section 6 presents iDoc, the
framework enabling the publishing of interactive paper doc-
uments and outlines how our model supports the publishing
process of an interactive document in terms of a concrete ex-
ample. We discuss the advantages that our model brings in
publishing interactive paper documents in Section 7. Con-
cluding remarks are given in Section 8.

2. INTERACTIVE DOCUMENTS

There are many situations where it is necessary to map
from a printed instance of a document back to a digital in-
stance. For example, handwritten gestures such as circling
words or phrases can be used to select objects from the dig-
ital document. This feature could be used in applications
ranging from dictionary lookup or translation services to ac-
tual editing operations specified on paper. Another example
is the capture and possible integration of annotations. The
mapping back from physical positions on printed documents
to elements of the source digital documents is even more
problematic if the digital source is under revision.

There are three main categories of digital documents to
be made interactive: (a) documents generated with classical
authoring tools (e.g. Microsoft Office, OpenOffice, KTEX),
(b) documents automatically generated using data from a
database or content management system (CMS) and (c) ex-
isting documents in a paginated form, with no access to the
source document. These different kinds of digital documents
are stored in a wide range of formats and representations
which depend on how they have been produced. In any
case, the final step towards the physical representation of
the document is usually bound to a paginated format such
as PDF or Postscript.

The use of paginated formats at publishing time allows
access to information about the layout of the printed ver-
sion of the document. This enables a correct mapping from
the paper document and specifically from the (x,y) posi-
tions of the individual active areas to the specified digital
service. However, this step breaks the correlation between
the digital source document and the printed version. Since
the authoring of the active areas is bound to the physical
representation of the document, the process of publishing an
interactive document is bound to the static concept of (x,y)
positions. Products based on Anoto technologies such as the
Forms Automation System [11] take the input of the user on
paper and map it to a digital service based on the (x,y) po-
sition extracted from the paginated version of the digital

document. More sophisticated projects like ProofRite [7]
track the exact position of annotations on paper and anchor
them to the words rendered at the same position within the
source authoring tool. Similarly, as done in [15] with digital
documents, paper annotations may be repositioned if the
layout changes by computing the (x,y) displacement of the
anchored word. These approaches do not take into account
the semantic information provided by the user at authoring
time. In other words, once a digital document is printed on
paper, it is no longer possible to directly access the “mean-
ing” of the augmented physical element in its digital coun-
terpart, nor is it possible to programmatically establish a
link between the printed elements and the original objects
within the source document. Moreover, if the digital docu-
ment changes, its mapping with the printed information is
not preserved, and the entire process must be repeated.
Our vision is to enhance the integration between the phys-
ical world of paper documents and their digital counterparts
by providing extended semantics at the physical level, trans-
forming a static paper sheet into an active and reactive ob-
ject tightly bound to its digital source. The provision of a
clear model for mapping between printed and digital docu-
ment instances is the key to support a seamless transition
between the paper and digital worlds within the document
life cycle. The interplay between paper and digital docu-
ment instances is achieved by defining a common compo-
nent where physical and digital information is exchanged
freely and where every physical object may always be paired
with its digital source. The core model stores a combina-
tion of physical and digital information needed to map paper
documents to the different kinds of possible digital sources,
thereby dealing with all three kinds of documents and ex-
isting authoring tools, but being general enough to support
other kinds of documents or authoring tools in the future.

3. STRUCTURED DOCUMENTS

The increasing popularity of Personal Computers (PCs)
for typesetting documents raised issues of document ex-
change between users at different sites. This created the
need to define common document interchange formats. As
defined by Kimura and Shaw [16], three representations of a
document may be identified: (a) the document expressed in
terms of its logical but abstract structure, (b) the document
defined by its concrete appearance on a page-based repre-
sentation and (c¢) the document as it may be viewed by the
user by means of a display (monitor or printer). The first
two representations are often referred to as the logical and
the physical structure of a document respectively.

In this section we describe some models for structured
documents in terms of both the logical and physical struc-
ture. We particularly focus on innovative tree-based ap-
proaches for modelling the logical structure of a document
and paginated representation of their physical structure.
The described approaches drove the development of our new
mixed physical and digital model, presented in Section 4. A
survey of other models and approaches as well as a review
of the literature can be found in [12].

3.1 Logical Structure

The logical structure of a document may be seen as a col-
lection of atomic and higher-level objects combined together
to define the highest level of abstraction: the document.
These atomic and composite elements may depend on the

document class currently instantiated. Examples of such
classes include books, technical papers, letters, newspapers
or conference proceedings.

Reid defined a document model with hierarchical nest-
ing that was used in the Scribe word processor [25]. Scribe
introduced named environments which had the role of con-
tainers (e.g. ordered lists, tables). Environments could be
nested and any kind of hierarchical structure can be defined
through relationships between environments. Exceptional
types of environments with constrained nesting behaviour
could also be defined. The appearance of the document’s
objects (e.g. font, size, colour) was defined at the level of
environments so that the style was completely independent
from the content, clearly separating structure from presen-
tation.

One of the most interesting models based on Reid’s ap-
proach is tnt [13] which uses a forest of ordered trees to
represent the different document parts. Atomic values are
defined in a heterogeneous way at a higher-level of gran-
ularity. Instead of storing single characters as leaves of a
tree, the atomic values might be represented as a whole text
string. By encapsulating non-tree structures into the leaves,
the primary logical structure remains relatively simple and
easy to manipulate, while the storage of other structures
might be addressed at another level in an easier way.

The approach of Dori et al. [9] is also based on a tree con-
cept, combining low-level elements into higher level ones.
Its innovation lies in the definition of a generic logical struc-
ture that can be applied to different document classes. In
this model, every object is defined as texton or graphon at
the highest level of granularity. Depending on the docu-
ment class instantiated and the current granularity level,
textons may be classified as paragraphs, sentences, words,
characters, etc. while graphons may be instantiated as line
drawings, images, charts, tables, etc.

Tree-like document models have been further developed
in a range of different formats. Most of them were inspired
by both Reid’s work and the Standard Generalised Markup
Language (SGML) [14] introduced by Goldfarb. Many lan-
guages for describing heterogeneous types of documents, for
example the Text Encoding Initiative (TEI) and DocBook,
have been defined. The strengths of such a document rep-
resentation were recognised and they eventually developed
into commonly used standards such as XHTML and XML.

The document models presented above were developed
mainly for markup-based document editors. Moving on to-
wards WYSIWYG editors and formatters such as Microsoft
Word or OpenOffice Writer, we witness great improvements
in terms of the user interface, but also limitations in the doc-
ument structure representations. WYSIWYG editors are
natural to use since they represent documents in a form
close to the physical representation, but their need of an
exact visual representation limits the possibility of describ-
ing complex structures. As a result, the document mod-
els behind modern document processors tend to be much
simpler. Nevertheless, in the last few years, the development
of document interchange formats based on XML demon-
strated how complex structural information may be defined
also within modern document processors. Recently, stan-
dards such as the Open Document Format for Office Ap-
plications (ODF) [24] and the Microsoft Open Office XML
(OOXML) [10] opened the way for the XML-based exchange
of documents between different office applications.

3.2 Physical Structure

The main objective of the physical representation of a doc-
ument is independence from the printing device: a document
should not differ when printed on different printers. Reid de-
fined two representations of physical documents [26]. The
first was based on a command-stream image description lan-
guage, where virtual printer commands defined within the
document are translated at printing time into actual printer
command streams. The second one is a procedural page de-
scription language (PDL), where data structures are defined
to capture the properties of the different document elements
(e.g. font, colour, size). While independence from the print-
ing device in terms of layout and content presentation is
important for document exchange, the risk is to throw away
the entire logical structure defined at authoring time.

The foundation for most of the paginated formats still in
use today lies in Warnock and Wyatt’s stencils and sources
model [32]. This model was first used by the PostScript
(PS) [1] language and describes how “ink” should be placed
on paper. Sources define the properties of the ink currently
in use and a set of stencils define the executable primitive
procedures to create the objects. Every object is mathe-
matically described using lines and curves, grouped into tra-
jectories defined as a path. Alphabetic characters (glyphs)
are also defined as trajectories and therefore fonts are rep-
resented by a collection of path elements. Dictionaries are
available for storing key/value pairs of properties. If path el-
ements have to be processed multiple times, the instructions
may be grouped into procedures stored in the document’s
preamble.

Many properties defined by this model were innovative in
the document engineering community. Its modularity and
adaptability, together with its compactness, transformed PS
into the de facto PDL standard during the 80’s and early
90’s, until it was supplanted by one of its descendants, the
Portable Document Format (PDF) [2]. The PDF document
model is based on a subset of PS, mainly required for the
generation of graphics and definition of the layout. The
main difference compared to PS is the removal of all flow
control commands. As a matter of fact, PDF was born as
a much simpler document format: in practice the graphic
commands generated by the PS program page after page
are collected, tokenised and transformed into a collection of
pages forming the PDF file. A PDF page is a sequence of
drawing instructions exactly defining a document’s content
and layout. Figure 1 shows an example of a Hello World
text defined with an 11pt Times new Roman font.

14 0 obj
stream /GS1 gs
BT
/TT2 1 Tf
10.98 0 0 10.98 72 759.8604 Tm
0.0003 Tc 0.0011 Tw
(Hello World)Tj
ET
endstream
endobj

Figure 1: Text encoded in PDF format

The PDF snippet shows how the (x,y) position of the text
relative to the page is encoded using the combination of the

transformation matrix (Tf), the word spacing (Tw) and the
character spacing (Tc) operators.

For a long time, no paginated format could compete with
the predominance of PDF but new formats have been pro-
posed in recent years. Scalable Vector Graphics (SVG) is an
XML-based markup language proposed by the WWW com-
munity to improve the rendering of graphics objects within
web browsers. The SVG model is similar to the one defined
by PDF and PS and combines complex graphical representa-
tions and non-paginated text visualisation, defining a strict
layout for them. The W3C consortium is working on an in-
novative SVG draft (SVG version 1.2) [31] which is trying to
migrate SVG towards a model based on multiple pages. The
SVG format allows different types of objects to be rendered
including text, vector graphics shapes and raster graphics
images which are normally defined as external resources ref-
erenced by the XML. Figure 2 shows the same “hello world”
example encoded in SVG. The viewBox attribute of the svg
tag represents the size of the page, while the x and y at-
tributes of the tspan element specify the position of the
string within the page.

<svg viewBox="0 0 2448 3168"
preserveAspectRatio="xMinYMin meet">
<style type="text/css"><![CDATA[
text.tl { font-family:’Times New Roman’,serif;
font-size:42px;£ill:#000000}]1] >
</style>
<text class="t1">
<tspan x="374,403,422,433,446,465,477,515,535,549,561"
y="308">Hello World</tspan>
</text>
</svg>

Figure 2: Text encoded in SVG format

The Microsoft XML Paper Specification (XPS) [18] is an
XML-based paginated representation of a document based
on the Microsoft Extensible Application Markup Language
(XAML), a declarative markup language that essentially de-
fines objects, their properties and relationships. XPS was
released with Microsoft Vista and Office 2007 and is tied to
Microsoft’s .NET Framework. The single XPS pages are en-
coded as separate XML files and bundled together with all
the necessary resources in a ZIP archive. Similar to PDF,
XPS pages contain shared resources such as fonts and im-
ages referenced from the individual pages. The XPS model
does not differ from the ones of PDF or PS. Content is de-
fined for every page in different XML files, which are ref-
erenced from the main XML document. An extract from
one <FixedPage/> element of an XPS document is shown in
Figure 3. To obtain the positional information, the OriginX
and OriginY attributes should be taken into consideration.

<FixedPage Width="816"Height="1056">
<Glyphs Fill="#££000000"
FontUri="/Documents/1/Resources/Fonts/EDA847AC5DD8.odttf"
FontRenderingEmSize="13.8106" StyleSimulations="None"
OriginX="124.8" OriginY="102.72"
Indices="43;72;79;79,29;82;3,24;58,93;82,51;85,34;79;71;3"
UnicodeString="Hello World"/>

< /FixedPage>

Figure 3: Text encoded in XPS format

On every page, two main types of objects may be de-
fined to represent graphics or text: <Glyphs/> for text and
<Path/> for graphics. Every element is self-describing in the
sense that its properties (e.g. position, colour, size) are de-
fined as attributes of the XML element. Similarly to SVG,
the main advantages of XPS over PDF may be seen in its
much more structured definition.

3.3 Annotating PDLs

As a result of the wide acceptance of PDF, nowadays doc-
uments are frequently exchanged using their physical, pag-
inated representation. However, none of them actually in-
cludes information about the logical structure of the source
documents and often metadata defined in the logical model
is almost completely lost. In many of the most frequently
used PDLs and also in evolving trends, we see a lot of po-
tential for integrating semantically rich information about
the logical structure of the source documents.

The extraction of logical structure from the physical rep-
resentation of documents is an important research topic [9].
Given the widespread use of PDF documents, many ap-
proaches have investigated how structural information may
be encoded within them. Most of the approaches assume
that no source document is available and offer a solution to
reconstruct the structure by analysing the content [8] or the
graphical layout of the different elements within the doc-
ument [6]. Other approaches define XML representations
of PDF files suitable for annotation (e.g. XCDF [5]) or use
XML-based standoff markup techniques to enhance digital
documents [30]. However, in many cases, the source doc-
ument is available and the paginated format is used only
as an intermediate format. Technologies such as the Adobe
Standard Structured Tagset (SST) [2] or approaches like the
Component Object Graphic (COG) are interesting exam-
ples of how it is possible to add structural information to
paginated formats starting from a source document. For in-
stance, making use of COG-enabled authoring tools, both
PDF and SVG documents have been successfully annotated
with structural information [4, 17].

In a similar way, it would be possible to annotate XPS
documents. Currently an XPS document can be created
through a virtual printer or using a special Microsoft plug-in.
Depending on the XPS creator used, it is possible to seman-
tically group objects. All lines belonging to the same para-
graph could be grouped together within a single <Canvas/>
element, inserting semantics directly into the paginated doc-
ument. Since XPS is an extensible XML file, it would even
be possible to define structural information by grouping
glyphs or path elements by means of specific tags such as
<Paragraph/> or <Section/>.

From the presented PDLs, we chose three of them, namely
PDF, SVG and XPS in order to show how these could be
extended with logical information and use them within our
platform. However, as we will see in Section 4, our model is
extensible and could support any other PDL or extensions
of existing ones.

4. MIXED PHYSICAL-DIGITAL MODEL

Both the logical and physical document representations
outlined in Section 3 have been successful in defining models
for presenting and exchanging documents among different
users. With the introduction and extensive use of XML tech-
nologies, document engineers began to realise how logical

documen

Documents

0,* 1,1
()W\ (.1

Digital
Documents

[T revisio [T oropert
Revisions Properties

element |

Atomic

cShape

ComplexShapes

pdl

(1.1 A \ (1,1 -
RepresentedBy Page Description
Languages | |

rectanale |

Rectangles

polvgon |

partition

iy
partition

Physical
Documents

1.1

Elements

(Uy]
Contains N . \
HasProperties
0,%)

element |

Composite
Elements

07

element |

HasPhysical
description

(1)

ComposedBy

Elements

P
partition

Polygons

[T wpaf [T svg |
PDF SVG
Snippets Snippets]

[XDS [T mmElemen [Trextelement] |
XPS Multimedia Text
Snippets Elements Elements L]

[_element
Graphical
Elements

circle |
1lip.
Ellipses

Circles

partition

[vaElemen [T aRresource
VectorGraphics Graphics
Elements Resources

Figure 4: Mixed physical and digital model

structure could also be an important factor in a paginated
version of a digital document. However, none of the exist-
ing technologies supports a full mapping between digital and
physical document representations taking into account their
structural objects. Our mixed physical and digital model
stands in between these two document representations in
order to enable this mapping. Our approach is to intercept
the flow of data during the publishing process of a pagi-
nated document which may then be printed. At this point,
we store all metadata needed in order to support the map-
ping back from the physical instance of the document to its
structure defined at the logical level.

As already discussed, the logical structure may be defined
at different levels of granularity (i.e. sections, paragraphs,
words). Since we want to be able to refer to the logical
representation of the objects at every level of granularity
(e.g. at character level), this raises issues in terms of data
storage. Should we store information about the position of
every single character of a text document? Obviously this
would be too much overhead even for a document with just
a couple of pages. Another problem to consider is the static
nature of a physical document. What happens if the source
document is updated after its publication? How can we refer
from paper to elements which have been moved to another
position in the digital representation or to objects that have
completely disappeared? In this section we show how our
model addresses these and other issues, supporting the use
of multiple physical and logical documents.

To describe our model, an extended entity-relationship
model called OM [19] is used. OM is an object-oriented
data model featuring powerful concepts such as object hier-
archies, collection hierarchies, binary associations, multiple
inheritance and multiple instantiation. It differs from com-
monly used object models such as UML in that it is designed
as an operational model for data management as well as for
conceptual modelling. OM therefore defines a full opera-
tional model over objects, collections and associations as
well as constructs for their definition. Collections are used
in OM for the classification of objects and multiple classifi-

cation may be exploited by assigning the same object to dif-
ferent collections. Associations represent bidirectional links
as a stand-alone concept and can be used to semantically
connect and navigate large collections of objects. While col-
lections are used to classify objects, types deal with their
implementation. Graphically, the shaded rectangles shown
in Figure 4 denote collections of objects and the shaded
ovals represent associations. The shaded part of the col-
lection box represents the member type of that collection.
Since the OM model is designed to support database devel-
opment from conceptual design through to implementation,
we use an OM data management framework, OMS, to im-
plement our model within the iDoc framework presented in
Section 6.

4.1 Mapping from Digital to Physical

Our mixed model is based on two distinct parts represent-
ing metadata coming from logical structures, referred to as
digital documents and represented in the upper-right part
of Figure 4, and paginated formats, referred to as physical
documents and represented in the lower-left part of Figure 4.

Every time a digital document is published, a new ob-
ject of type document is added to the Documents collection.
Documents are identified by a unique ID and information
about the creator of the document is also stored. Since digi-
tal documents may be updated, we define revision objects
bound to the source documents by an ordered association
HasRevisions. In this way, the same document may have
different revisions ordered by an increasing revision num-
ber, each of them defining different content. A revision may
be seen as a milestone which is defined every time a digital
document is printed. Through revisions, we actually keep a
static representation of the document at a specific time. In
Section 6, we will show what is involved in defining revisions.

Each revision of a document contains one or more element
objects as defined by the ContainsElements association.
Elements define a version attribute which, together with
the element ID, uniquely identifies a version of the same
element. The classification of elements is based on their

type. Our model distinguishes three possible types of el-
ements: text elements, graphical elements and multimedia
elements (e.g. flash animations, videos). Multimedia ele-
ments are normally rendered as graphics in the printed ver-
sion. For every type of element, a corresponding collection
is defined. The collections of different types of elements
are constrained by a partition constraint, which ensures
that these collections have no common members. Because
of the different structure of vector graphics elements and
graphical resources (such as jpeg, tiff and gif), graphical
elements are further divided into GraphicsResources and
VectorGraphicsElements. While element objects define
just basic fields which are applied to all kinds of elements, to
classify the different types of elements, we define four new
subtypes for the specific text, graphical or multimedia ele-
ments. These types extend the element type and contain
a combination of the inherited fields and all attributes of
the specific type, for example text content and encoding
for text elements. Similarly, as in many of the systems pre-
sented in Section 3, our model enables the definition of more
general attributes using key/value pairs stored in property
objects within the Properties collection.

By analysing the digital source document at publishing
time, it is possible to create elements for every defined ob-
ject and place them into the Elements collection. Using
annotation techniques to enrich PDLs like the ones defined
in Section 3.3, it is possible to tag single elements of the dig-
ital document and retrieve their position by analysing their
physical description. Every element may be described by a
PDL snippet which defines its physical position, as shown
in the examples presented in Figures 1-3. This information
is stored as a pdl object in the PageDescriptionLanguages
collection and is bound to the corresponding logical elements
by the HasPhysicalDescription association. Even though
the physical representation of the elements is encoded ac-
cording to the PDL used, a shape defining the exact layout
and position within the page is calculated for every element.
Different shapes are defined and every PDL snippet is bound
to the specific shape by the RepresentedBy association. To
define different kinds of shapes, the shape type has several
subtypes such as rectangle, polygon and circle.

To encode the physical representation of the elements, we
selected three main types of PDL: PDF, SVG and XPS. Of
course the model is extensible and it is possible to add other
PDLs at any time. Depending on the PDL used, different
information is stored and different objects created. For ex-
ample, to store a PDF snippet, a pdf object must be created
and placed into the PDFSnippets collection. The three PDLs
define their own types extending the pdl object. To repre-
sent the fact that a pdl object must be encoded in one of
the three defined formats and cannot be placed in multiple
collections, we define a partition constraint over the PDL
subcollections.

4.2 Element Granularity

One major issue of the logical models outlined in Sec-
tion 3.1 was defining hierarchies of objects. Many of the
proposed approaches use the concept of a tree where a high-
level object may contain several lower-level objects. This
approach may be taken further, resulting in a recursive el-
ement hierarchy. We represent this behaviour in our model
through a composite design pattern. As illustrated in Fig-
ure 5, elements may belong either to the AtomicElements

collection, if they do not contain lower-level objects, or to
the CompositeElements collection in the case that they do.
To model the fact that elements may not belong to both
collections, we define a partition constraint over them. To
build the hierarchical structure, the ComposedBy association
is defined.

propert elenerti
Atomic
Properties Elements L

/\ clement | partition clement |
HasProperties ’/

Composite
Elements

ComposedBy

Figure 5: Elements

Elements

One of the key steps during the publishing process is the
identification of high-level objects through the analysis of
the source document. Based on the logical model of the
source document, it is relatively easy to discover paragraphs,
sections and even chapters of a document. Taking further
the approach of non-tree structures stored in the leaves of
the tree proposed in [13], we define elements at the highest
possible level of granularity and store them as atomic ele-
ments within the model. This dramatically reduces the num-
ber of objects that we initially have to store in our model.
However, we have already declared our intention to create
a mapping from physical objects at any level of granularity.
Because a low level of granularity, for example character
level, is often not required, the idea is to store elements
and their metadata at the highest possible level of granular-
ity and to dynamically define composite elements only when
needed. For example, if we want to access an element having
a lower level of granularity than that of the current element,
the physical description encoded in the PDL snippets lets us
dynamically split the element into subelements transform-
ing it into a composite element. This involves changing the
classification of the main element object which is moved
from the AtomicElements to the CompositeElements collec-
tion and defining a subelement hierarchy until the required
level of granularity is reached. This approach supports the
nesting behaviour described for example by Scribe [25] in a
much more dynamic and space-saving manner.

5. STRUCTURED HIERARCHIES

In our main model, we distinguish between different types
of elements (text, graphical and multimedia) and also be-
tween atomic and complex elements. However, within the
same type of elements, different granularity levels may be
defined. While the types introduced until now may be seen
at a level of collection or class, when we speak of differ-
ent granularity levels within the same type, we are actually
defining typing at an instance level. A text element may be
defined at different granularity levels such as a paragraph,
a word or a character, but it still remains an object of type
text. Similarly for vector graphics objects, a rectangle, a
line and a point are different levels of granularity within the
same type. This issue is addressed in our model by defin-
ing a special collection Types and an association HasType as

shown on the left-hand side of Figure 6. By defining spe-
cific objects within the ElementTypes collection and linking
them with the different element objects, we are able to as-
sign the right level of granularity to every element instance.
TextElements objects could be bound to section, paragraph,
word or character types, while for VectorGraphicsElements
there is the possibility to choose between rectangle, circle,
line, point, etc.

This approach supports document structures in a similar
manner as textons and graphons [9]. However, our solu-
tion supports any kind of dynamically generated hierarchy
and the corresponding types and may therefore be seen as a
generalisation of the textons and graphons approach.

element

Atomic
Elements

[T clemenc | Pariion [T ciement

Composite
Elements

Elements

ElementTypes

Figure 6: Structural rules

Once the element instances have been assigned to a type,
the nesting behaviour represented by the composite pattern
becomes more complex. The relationships between elements
at different granularity levels must be properly specified. In
other words, we must ensure that the nesting of elements
occurs in a sensible way. This was achieved in Scribe [25]
by defining constraints on how the different environments
could be nested. In pedtnt [13], a grammatical specifica-
tion of the object interrelationship was used. We also define
such a mechanism for our model by introducing structural
rules. Structural rules act on ElementTypes by means of the
PredefinedRules association. Rules define the valid con-
tainer and the valid content for specific element types. After
defining objects of type paragraph, word and character, we
can for instance specify a rule object allowing paragraphs
as possible containers and characters as possible content of
the element of type word. To model a greater flexibility in
terms of constraints, the userDefinedRules association per-
mits the specification of rules based on a specific instance of
an element rather than on its predefined granularity level.
Using user-defined rules, we could for example specify that
a special rectangle cannot contain circle elements.

6. PUBLISHING FRAMEWORK

The model presented in Section 4 and 5 supports efficient
storage of the document’s information required to map its
physical instance to the digital counterpart. To produce in-
teractive documents and get access from paper to the digital
objects, we provide the interactive paper publishing frame-
work shown in Figure 7. Our framework is implemented in
Java and is based on the storage of metadata about the phys-
ical and digital representation of the document by means
of the OMS object-oriented database suite, which fully ex-

ploits the OM model described before. In the past there
have been many proposals for handling the storage of struc-
tured documents within databases as described for example
in [27]. However, our approach is different since the goal is
not to store the whole document in the database, but just
its metadata and define references to the original document.
The usage of object-oriented concepts both in the program-
ming language and database system allows us to radically
decrease the impedance mismatch problems, thus reducing
the need to continuously map objects back and forth from
the application to the storage layer.

Our system is composed of a core component called iDoc
that enables the mapping between paper and digital docu-
ment instances. iDoc is tightly bound to the iPublish layer,
which enables the authoring of the different kinds of doc-
uments, and to the iServer/iPaper framework [29], which
supports interaction from paper documents.

CMS

OpenOfficeo 2.0 3 ‘::
@ & X [

T 2 PostSeript

|
iPUBLISH | I I N O
__retrieve _ | Database-dri i di Existing —displa:
element Authoring Plug-ins | | Authoring Plug-ins Documents

iDOC

_ | Semantic Mapper r,,,,@
__retrieve __| .| publish | | Document DB
element Content || L structure J |
Analysers and content |
———— |

i
i

|

| i
! [} ! —

| publish | moo———oo oo ! Printing DB
| positions
i

i

i

I

I

i

i

publish
print data

iSERVER e

Active Content
iPaper Plug-in
o) Link DB 3

,,,,,,,,,,

publishing———

---—interacting- — - - -

iPAPER

Figure 7: iDoc publishing framework

The iPublish layer consists of a series of plug-ins defined
for different kinds of documents. As outlined in Section 1,
we may classify documents in three categories. For every
document category and its related authoring tool, we define
an iPublish plug-in to track structured elements from within
the authoring tool or by analysing existing paginated doc-
uments. In previous work, we already defined an iPublish
plug-in for a database-driven publishing of interactive book-
lets for an arts festival [21] and a PDF-based text extractor
for scientific publications [23].

After being printed on paper, a document loses all con-
nections with the digital interface. The iServer and iPaper
frameworks form the basis for building the bridge between
the physical and digital world. As described in [22], iServer
enables cross-media linking between physical and digital re-
sources. The framework supports the definition of entities in
the form of general resources and selectors to address parts
of the resources as well as the definition of arbitrary links
between these entities. The specific iServer resource plug-in
for interactive paper documents is called iPaper [29]. The
iPaper framework allows the definition of links between spe-
cific active areas on different pages of paper documents and
digital functionality. The iPaper Client is responsible for
communicating with the hardware device physically inter-
acting with the paper sheet and transforming the captured

data into the neutral page and (x,y) format to be handled on
the server side. In the current implementation, the client is
connected over Bluetooth with a digital pen based on Anoto
functionality.

The iDoc framework deals with the interactive paper doc-
ument publishing process as well as the mapping of objects
back from paper documents to their digital counterpart. As
we will see in the example presented later in this section,
these two tasks are tightly coupled, since mapping back from
paper depends on the publishing and printing process. The
core element of the framework is the Document DB. This
database implements the functionality needed to support
the model defined in this paper. All the metadata about
the logical and physical representations of the printed doc-
uments are stored in it. The Printing DB is responsible
for storing information about the technology used to print
the instances of the document. For documents printed with
the Anoto technology, the specific pattern used and all re-
lated information are stored within this database. A Printer
Driver is provided in order to enable the printing on-demand
of the interactive documents. Depending on the technology
used to print the interactive document, the printer driver
generates the augmented version of the physical document.
The architecture of the printer driver is flexible and allows
the definition of interfaces for different augmenting technolo-
gies. The current implementation provides a driver for print-
ing Anoto-enabled documents on the fly, as shown in [22],
but could easily be tuned to print documents based on other
technologies. The last element of the iDoc framework is the
Semantic Mapper. The role of this component is to analyse
the structure identified by the iPublish plug-ins during the
publishing of the source document, to define the logical ele-
ments and store them within the document database and to
track the elements within the physical representation of the
document defined by its paginated version. The semantic
mapper also computes the position of the different elements
and their shape, publishes them within the iServer/iPaper
framework and defines the link with the logical elements
stored in the document database. Depending on the source
document, the iPublish plug-in used and the paginated for-
mat provided, different Content Analysers may be provided.
In [23], a specific analyser for scientific references within
PDF documents was presented.

To better explain the process of publishing an interactive
paper document and the mapping between its physical and
digital instances, we present a practical example where a
document is defined with the aid of a classic authoring tool
such as OpenOffice and published using our framework and
the XPS page description language. Document revisions are
supported at the level of the authoring tool.

We outline how our system enables the interaction from
an Anoto-enabled paper version of the document through
a digital pen. The single physical elements are accessed
from paper and the corresponding objects within the digital
document instance are retrieved.

The publishing process starts within OpenOffice where
the iPublish plug-in analyses the structure of the document
and identifies text elements at paragraph level and graph-
ics resources. It creates a paginated version of the doc-
ument using XPS and encodes structural information en-
closing the identified elements within two XML elements:
<Paragraph/> and <Graphics/>. Information about the
identity of the digital document (document ID, version, cre-

ator, etc.) is also stored within the XPS file. The paginated
file is then forwarded to the iDoc framework which sends a
copy of it to the printer driver and another copy to the XPS
content analyser.

The printer driver retrieves information about the avail-
able Anoto patterns from the printing database and prints
the Anoto-enabled version of the document. All informa-
tion about the used pattern along with metadata regarding
the source digital document are sent back to the printing
database. At the same time, the semantic mapper con-
tacts the document database and checks for the existence
of the current document on the basis of the document iden-
tity stored within the XPS file. If the document already
exists in the database, then a new revision is created. All
the elements contained within the old revision are also as-
sociated with the new one and no elements are replicated.
A new version of an element (that is a new object with the
same ID attribute and a higher version number) is created
for every element that was updated in the digital represen-
tation. In this case, the associations between the revision
and the old elements are removed and new associations with
the new elements are created. The semantic mapper then
parses the XPS file identifying the newly defined elements,
stores the corresponding XPS snippets within the document
database, creates the logical elements assigning the relative
type to them and creates the associations between the pag-
inated snippets and the logical elements. It also defines the
granularity level of the text elements as “paragraph”. Af-
ter that, the semantic mapper calculates the positions and
shapes of the elements by means of the XPS snippets and
publishes this information to the iServer/iPaper framework,
creating a link between the physical element’s position on
paper and the element instance stored within the document
database. An overview of the complete publishing process
is summarised in Figure 8.

(START) Authoring Plug-in

identify

. analyse . . tag identified create physical
| logical structure] gD s = objects document (PDL)
(e.g. paragraphs)
!
—(Digital Document ((Physical Document Printer Driver
| retrieve
Semantic Mapper | > available
patterns
v .
SIEEIL associate PDLs t
snippets for oy e '¢ - - create elements 4+ — 1 — daugmen!
tagged objects ! octmen
|k
|
I |
extract position classify elements I pint
! document
and layout P COITOEERES (e.g. text, graphical) |
|
| v
Physical Document Digital Document |
| store used
| pattern
iServer/iPaper | T
|
define links with the [® = ==
SEOSIERES logical element »(END

Figure 8: Publishing process

Once the interactive Anoto-enabled paper document has
been published, the user underlines a particular word on the
paper document with a digital pen. The iPaper Client re-
trieves the position of the specified element and forwards
it to iServer with its interactive paper plug-in which looks
it up in its internal link database. iServer forwards the
information about the document, the page and the position

pointed to by the user to the semantic mapper. The seman-
tic mapper analyses the metadata of the specified document,
contacts the printing database in order to identify the right
digital document and retrieves the information about the
document from the document database. Based on the infor-
mation stored in the document database at publishing time,
the framework identifies the corresponding paragraph ele-
ment within the document database. Since the user wants
to retrieve a word within the source authoring tool, the se-
mantic mapper splits the element into its subelements. It
analyses the XPS snippet bound to the object retrieved, ex-
tracts the single words contained within the paragraph and
calculates their positions and shapes. The element retrieved
is moved to the CompositeElements collections and a set
of atomic elements at word granularity is stored within the
database. For every word element, a new XPS represen-
tation is created, stored in the XPSSnippets collection and
associated with the new logical element. Once the docu-
ment database has been updated, the semantic mapper re-
trieves the correct word element based on the relative po-
sition within the selected paragraph element and calls the
OpenOffice iPublish plug-in responsible for the publishing of
that document. The OpenOffice digital document is opened
and the corresponding paragraph is found. Based on the
word selected by the semantic mapper, the iPublish plug-in
finally identifies the underlined word within the paragraph
and highlights it.

7. DISCUSSION

Over the last 30 years, we have witnessed the effective
exchange of documents between different people around the
world using a wide range of software and operating systems.
The exchange of documents was first supported by pagi-
nated document versions, but nowadays there is evidence
that standards are also converging in the world of logical
structures and models. Many of the models outlined in
this paper successfully define the logical and the physical
structure of a document and there is no reason to change
them. The introduction of interactive paper technologies
raises problems regarding the mapping between a physical
version of a document printed on paper and its digital in-
stance represented within the authoring tool. Even though
both the physical and logical representation models of a doc-
ument contain sufficient information about the two different
instances, better integration of these models would be de-
sirable.

The approach presented in this paper takes into consid-
eration the existing logical document representations and
describes how they could be integrated in order to bridge
the paper-digital divide. The composite elements approach
used in the tree-based models starting from Scribe has been
integrated into our model, which further supports the dy-
namic specification of the granularity level. The typing hier-
archy introduced by Dori et al. with textons and graphons
has also been taken into consideration, enabling the applica-
tion developer to define their own types at runtime, without
having to specify them a priori. The clear separation of the
content and style introduced by Reid in Scribe and further
supported in standards such as XHTML and XML has been
modelled in our approach by means of properties which may
be associated to either individual elements or a group of el-
ements depending on their granularity level. The regulation
of the nesting behaviour outlined by both Reid and Furuta

has been addressed by means of structural rules. Our ap-
proach acts on two levels—element instances and element
classes—leaving it to the developer to decide how restric-
tive the constraint on the nesting behaviour of the elements
at different granularity levels should be. The dynamic be-
haviour of digital documents has been addressed by means
of document revisions which map the dynamic updates in
digital documents to a static representation in paper doc-
uments. A solution for efficiently storing all of the meta-
data in a dynamic way has been proposed and implemented
within an object-oriented DBMS.

Many of the features introduced by the physical models
have also been taken into account and a flexible mechanism
supporting the combined usage of many of them has been in-
troduced. Emerging standards based on XML such as XPS
as well as established standards such as PDF have been stud-
ied and are supported by our framework. Existing annota-
tion techniques based on PDF and SVG and new approaches
taking XML documents into account have been presented as
a way to address the problem of mapping between a digital
document and its physical instance.

The introduction of a framework supporting interactive
paper documents from the authoring phase through to the
publishing phase, and enabling an extended interaction with
them, represents an important step towards a powerful in-
frastructure where users may freely move back and forth
between the physical and digital worlds. The mapping from
the physical to the digital world may finally be supported
at a semantic level, expanding the ordered structure of log-
ical documents also at physical level. The flexible archi-
tecture and plug-in mechanism of our framework enables
multiple technologies to be supported in terms of author-
ing tools, physical representation and interactive techniques.
The seamless transition from digital documents to interac-
tive paper documents and back supports end-users by hiding
all the unnecessary details about the underlying mappings.

We feel that our model and the related framework pro-
vide flexible, dynamic and complete support for documents
spanning over the digital and paper world. Our solution fur-
ther enriches interactive paper technologies, by supporting
a wide set of formats, models and authoring tools.

8. CONCLUSIONS

We have presented a model and related publishing frame-
work designed to support and enhance the mapping between
paper and digital instances of a document. We outlined how
a single model located between the logical and the physical
representation of the document helps in maintaining this
mapping. The framework allows a dynamic definition of
interactive paper documents based on a range of existing
and future authoring tools and document formats. It also
enables printing-on-demand of these documents supporting
their integration in a general link server dealing with their
interaction at a physical level. The paper outlines how our
solution is a step forward towards bridging the paper-digital
divide by supporting the publishing of interactive documents
in an extended way.

Based on the model and the framework defined in this
paper, we are currently working on a set of plug-ins for
different authoring tools (e.g. OpenOffice) which will sup-
port an enhanced authoring of interactive documents. We
are also investigating how to deal with new logical struc-
tures (e.g. ODF) and how to better support new paginated

formats (e.g. XPS). In terms of our document model, we
plan to integrate it with the general link concepts defined
by our cross-media platform, thus gaining greater flexibility
in the entire link management.

[5]

[6]

[9]

[13]

[14]

[15]

[16]

REFERENCES

Adobe Systems Inc. PostScript Language Reference
Manual.

Adobe Systems Inc. PDF Reference, Adobe Portable
Document Format, February 2006. Version 1.6.

Anoto AB, http://www.anoto.com.

S. Bagley, D. Brailsford, and M. R. B. Hardy.
Creating Reusable Well-structured PDF as a Sequence
of Component Object Graphic (COG) Elements. In
Proc. of DocEng 2003, ACM Symposium on Document
Engineering, pages 5867, Grenoble, France,
November 2003.

J. Bloechle, M. Rigamonti, K. Hadjar, D. Lalanne,
and R. Ingold. XCDF: A Canonical and Structured
Document Format. In Proc. of DAS 2006, 7th IAPR
Workshop on Document Analysis Systems, pages
141-152; Nelson, New Zealand, February 2006.

H. Chao and J. Fan. Layout and Content Extraction
from PDF Documents. In Proc. of DAS 2004, 6th
TAPR Workshop on Document Analysis Systems,
pages 213-224, Florence, Italy, September 2006.

K. Conroy, D. Levin, and F. Guimbretiere. ProofRite:
A Paper-Augmented Word Processor. Technical
Report HCIL-2004-22, CS-TR-4652,
Human-Computer Interaction Lab, University of
Maryland, USA, May 2004.

H. Déjean and J. Meunier. Structuring Documents
According to Their Table of Contents. In Proc. of
DocEng 2005, ACM Symposium on Document
Engineering, pages 2-9, Bristol, UK, November 2005.
D. Dori, D. Doermann, C. Shin, R. Haralick,

I. Phillips, M. Buchman, and D. Ross. The
Representation of Document Structure: A Generic
Object-Process Analysis. In Handbook of Character
Recognition and Document Image Analysis, pages
421-456. World Scientific, 1997.

Ecma International. Standard ECMA-376, Office
Open XML File Formats, December 2006.

Forms Automation System (FAS),
http://www.fasgroup.net/.

R. Furuta. Important Papers in the History of
Document Preparation Systems: Basic Sources.
Electron. Publ. Origin. Dissem. Des., 5(1):19-44,
1992.

R. Furuta, V. Quint, and J. André. Interactively
Editing Structured Documents. Electron. Publ.
Origin. Dissem. Des., 1(1):19-44, 1989.

C. F. Goldfarb. A Generalized Approach to Document
Markup. In Proc. of the ACM SIGPLAN SIGOA
Symposium on Text Manipulation, pages 68-73,
Portland, USA, June 1981.

G. Golovchinsky and L. Denoue. Moving Markup:
Repositioning Freeform Annotations. In Proc.of UIST
2002, Symposium on User Interface Software and
Technology, pages 21-30, Paris, France, October 2002.
G. D. Kimura and A. C. Shaw. The Structure of
Abstract Document Objects. In Proc. of the

(17]

ACM-SIGOA Conference on Office Information
Systems, pages 161-169, Seattle, USA, June 1984.
SIGOA Newsletter, 5(1-2).

A. J. Macdonald, D. F. Brailsford, and S. R. Bagley.
Encapsulating and Manipulating Component Object
Graphics (COGs) using SVG. In Proc. of DocEng
2005, ACM Symposium on Document Engineering,
pages 61-63, Bristol, UK, November 2005.

Microsoft Corporation. XML Paper Specification, 1th
edition, October 2006.

M. C. Norrie. An Extended Entity-Relationship
Approach to Data Management in Object-Oriented
Systems. In Proc. of ER’93, International Conference
on the Entity-Relationship Approach, pages 390401,
Arlington, USA, December 1993.

M. C. Norrie and B. Signer. Information Server for
Highly-Connected Cross-Media Publishing.
Information Systems, pages 526-542, November 2005.
M. C. Norrie, B. Signer, M. Grossniklaus, R. Belotti,
C. Decurtins, and N. Weibel. Context-Aware Platform
for Mobile Data Management. ACM/Baltzer Journal
on Wireless Networks (WINET), 2007.

M. C. Norrie, B. Signer, and N. Weibel. General
Framework for the Rapid Development of Interactive
Paper Applications. In Proc. of CoPADD 2006, 1st
International Workshop on Collaborating over Paper
and Digital Documents, pages 9-12, Banff, Canada,
November 2006.

M. C. Norrie, B. Signer, and N. Weibel. Print-n-Link:
Weaving the Paper Web. In Proc. of DocEng 2006,
ACM Symposium on Document Engineering, pages
89-96, Amsterdam, The Netherlands, October 2006.
OASIS Consortium. Open Document Format for Office
Applications, February 2007. Version 1.1.

B. K. Reid. Scribe: A Document Specification
Language and its Compiler. PhD thesis,
Carnegie-Mellon University, Pittsburgh, USA, 1981.
B. K. Reid. Procedural Page Description Languages.
Text Processing and Document Manipulation, pages
214-233, April 1986.

R. Sacks-Davis, T. Arnold-Moore, and J. Zobel.
Database systems for structured documents. IFICE
Transactions on Information and Systems, pages
1335-1342, 1995.

A. J. Sellen and R. H. R. Harper. The Myth of the
Paperless Office. The MIT Press, November 2003.

B. Signer. Fundamental Concepts for Interactive
Paper and Cross-Media Information Management.
PhD thesis, ETH Zurich, Switzerland, 2006.

P. L. Thomas and D. F. Brailsford. Enhancing
Composite Digital Documents Using XML-based
Standoff Markup. In Proc. of DocEng 2005, ACM
Symposium on Document Engineering, pages 177-186,
Bristol, UK, November 2005.

W3C, World Wide Web Consortium. Scalable Vector
Graphics (SVG) 1.2, April 2005. W3C Working Draft.
J. Warnock and D. K. Wyatt. A Device Independent
Graphics Imaging Model for Use with Raster Devices.
In Proc. of SIGGRAPH ’82, International ACM
Conference on Computer Graphics, pages 313-319,
Boston, USA, July 1982.

	Introduction
	Interactive Documents
	Structured Documents
	Logical Structure
	Physical Structure
	Annotating PDLs

	Mixed Physical-Digital Model
	Mapping from Digital to Physical
	Element Granularity

	Structured Hierarchies
	Publishing Framework
	Discussion
	Conclusions
	References

