
iGesture: A Java Framework for the Development and
Deployment of Stroke-Based Online Gesture

Recognition Algorithms

Beat Signer
Institute for Information
Systems, ETH Zurich

8092 Zurich, Switzerland
signer@inf.ethz.ch

Moira C. Norrie
Institute for Information
Systems, ETH Zurich

8092 Zurich, Switzerland
norrie@inf.ethz.ch

Ueli Kurmann
Institute for Information
Systems, ETH Zurich

8092 Zurich, Switzerland
ueli@smartness.ch

ABSTRACT
Existing gesture recognition tools and frameworks tend to focus
on specific settings, gesture sets or algorithms. Further, they are
often designed to support the developers of either applications or
algorithms, but not both. Our goal was to develop a general and
extensible framework that provides an integrated platform for the
design and evaluation of algorithms, as well as for their deploy-
ment to a wide audience. The presented iGesture framework sup-
ports the definition and evaluation of new gesture sets. Further-
more, our gesture recognition framework enables an easy integra-
tion of new forms of input devices. We present the iGesture frame-
work, show how it has been used to support the development of
two new gesture recognition algorithms—an extension of Rubine
called E-Rubine and SiGrid—and finally provide an evaluation of
these algorithms.

General Terms
Algorithms, design, experimentation

Keywords
Gesture recognition algorithms, gesture recognition framework,
pen-based input

1. INTRODUCTION
Emerging technologies for mobile and ubiquitous computing have
led to increased interest in the use of gestures as a means of in-
teracting with applications. Thus, in addition to traditional uses
of gesture-based interaction in desktop environments, an increas-
ing number of applications are using pen-based gesture recognition
for not only PDAs and tablet PCs, but also interactive paper [13].
At the same time, the use of gestures is being widely investigated
in the fields of pervasive and wearable computing to interact with
applications based on either the movement of physical objects or
parts of the body.

As a result, there has been a lot of research not only on the devel-
opment of gesture recognition algorithms but also tools and frame-
works to support the development of applications based on these
algorithms. However, existing systems tend to either focus on spe-
cific settings—such as screen-based input—or on specific gesture
sets and/or algorithms. Our goal was to develop a general and ex-
tensible gesture recognition framework that would support both ap-
plication developers and the developers of new algorithms. The re-
sulting iGesture framework [9] provides a simple gesture recogni-
tion application programming interface (API) that allows iGesture

results to either be used directly or through an event manager that
executes commands based on recognised gestures.

To facilitate the development of new algorithms as well as the eval-
uation of existing algorithms, the Java-based iGesture framework
also supports the creation and management of gesture sets. A test
bench enables the manual testing of algorithms and special func-
tionality is provided to create the test data. We provide tools to
evaluate different gesture recognition algorithms and their config-
urations in batch mode and visualise the results. Note that these
evaluation tools can not only be used to analyse existing or new
gesture recognition algorithms but also for verifying new gesture
classes. For example, the result an evaluation will reveal if two
gesture classes look too similar and therefore cannot be classified
correctly by the recognition algorithm. This information helps de-
signers of new gesture sets to define unambiguous gesture sets re-
sulting in better gesture recognition performance.

In this paper, we present the iGesture framework and, as a demon-
stration of its effectiveness in supporting the development and eval-
uation of new gesture recognition algorithms, we describe two new
algorithms that were developed and tested using the framework.
The first one is an extension of the well-known Rubine algorithm,
called E-Rubine, to handle single-stroke as well as multi-stroke fea-
tures. The second algorithm is a simple grid-based signature algo-
rithm called SiGrid that our evaluations have shown to be simple
but effective in some application settings. We present these algo-
rithms and also report on comparative evaluations generated using
the iGesture test bench.

We start with an outline of related work and the requirements of
a general gesture recognition framework in Section 2. The archi-
tecture and some implementation details of our iGesture framework
are presented in Section 3. In Section 4 we then go on to present the
algorithms currently supported by the gesture recognition frame-
work, including our two new algorithms, and provide an initial
evaluation of these algorithms in Section 5. Concluding remarks
are given in Section 6.

2. BACKGROUND
A number of tools and frameworks for gesture recognition have
been developed and we review the main ones in this section in order
to highlight the benefits and requirements of a general, integrated
framework.

GRANDMA (Gesture Recognizers Automated in a Novel Direct
Manipulation Architecture) is an object-oriented toolkit for rapidly

adding gestures to direct manipulation interfaces that was proposed
by Rubine in 1991 [12]. It introduced a specific classification al-
gorithm, now commonly referred to as the Rubine algorithm, that
uses statistical single-stroke gesture recognition based on 13 dif-
ferent features. New gestures could be introduced by specifying a
set of sample gestures, thereby enabling application developers to
easily design their own gesture-based interfaces without having to
program the corresponding recognition algorithms.

Hong and Landay later developed SATIN [8], a toolkit for infor-
mal ink-based applications that uses the Rubine algorithm in its
recognition process. SATIN is a powerful toolkit targeted at pen-
based applications and a major part of the framework deals with the
interpretation and beautification of stroke data to build ink-based
graphical Java Swing applications. A feature of SATIN was the
introduction of pie menus to replace common pop-up menus.

SwingGestures [15] is another framework designed to support ges-
tures in Java Swing applications. In this case, eight basic gestures
(up, down, left, right and the four diagonals) are hard coded and
other gestures can only be constructed based on these eight ges-
tures. This severely limits the kinds of gestures that can be sup-
ported as it is nearly impossible to model curving gestures using
only these basic gestures. Furthermore, the framework was not de-
signed to support different recognition algorithms. While the tool
is useful for simple Swing-based applications, it does not seem to
scale well in terms of the number of supported gestures.

Microsoft also provides a gesture recognition tool in the form of
the Microsoft Tablet PC SDK [4] that distinguishes between system
and user application gestures. Microsoft provides a recommended
interpretation of their gestures that developers should follow to
avoid confusion. Unfortunately, the recogniser of the Microsoft
Tablet PC SDK is limited to a predefined set of gestures and new
gestures can only be integrated by implementing new recognition
algorithms. Further, the Microsoft Tablet PC SDK was designed
for screen-based applications and is implemented on the .NET plat-
form.

A problem of developing gesture-based user interfaces is often the
similarity of specific gestures which makes it difficult to develop
robust gesture recognisers. quill [10] is a gesture design toolkit that
addresses this problem by providing active feedback to the gesture
designers when there is an ambiguity between different gestures. In
such cases, it also assists them with textual advice to enable them
to create more reliable gesture sets. A computational model based
on geometric gesture features is used to measure the similarity of
gestures.

From the above outline of existing systems, we can see that exist-
ing toolkits and frameworks tend to focus on specific settings and
tasks. None of them supports the entire process of designing new
gesture recognition algorithms, including deployment to a wide au-
dience. The development of new algorithms should be supported by
providing benchmarking and parameter optimisation tools. A ges-
ture recognition framework should also provide tools to define new
gestures and to efficiently capture gesture samples for testing. It
should also be possible to work with different input devices and to
easily integrate new devices to cater for emerging technologies and
new modes of interaction. Last, but not least, the framework should
offer an easy-to-use interface that enables application programmers
to fully exploit the potential of gesture-based interfaces and latest
developments in gesture recognition algorithms. Based on these

requirements, we have developed a Java-based gesture recognition
framework to support an integrated solution for the use and devel-
opment of gesture recognition algorithms with a focus on extensi-
bility and cross-application reusability.

3. IGESTURE FRAMEWORK
The iGesture framework is based on a set of modular components
and some common data structures as shown in Figure 1. We will
start with a description of the common data structures and then go
on to describe each of the components in turn, starting with the
recogniser and then going on to describe the management console
and evaluation tools.

Common Data Structures

Recogniser

Management
Console

Evaluation
Tools

Figure 1: Architecture overview

The representation of gestures within the iGesture framework was
a fundamental design decision since it had implications on all com-
ponents. One requirement for the data structure was that it should
be possible to represent single gestures as well as groups of ges-
tures. Furthermore, it was clear that different algorithms need dif-
ferent descriptions of a gesture. Therefore, it is important that the
model classes do not make any assumptions about a specific algo-
rithm or provide algorithm-specific data. The UML class diagram
of our general gesture data structure is shown in Figure 2.

+addGestureClass(GestureClass gc) : void
+delGestureClass(GestureClass gc) : void
+getGestureClass(int index) : GestureClass
+getGestureClasses() : List
+getName() : String
+size() : int

GestureSet

+addDescriptor(Descriptor d) : void
+removeDescriptor(Descriptor d) : void
+getDescriptors() : List
+getDescriptor(Class classname) : Descriptor
+getName() : String
+setName(String name) : void

GestureClass

+getType() : Class

«interface»
Descriptor

+addSample(GestureSample gs) : void
+removeSample(GestureSample gs) : void
+getSamples() : List

SampleDescriptor

+getText() : String

TextDescriptor

+getDigitalObject(int w,
int h) : BufferedImage

DigitalDescriptor

+getName() : String
+getNote() : Note

GestureSample

DefaultDescriptor

Figure 2: Gesture representation

The GestureClass class represents an abstract gesture charac-
terised by its name and a list of descriptors. For example, to cope
with circles as a specific gesture, we instantiate a new Gesture-
Class and set its name to ‘Circle’. Note that the class itself does
not contain any information about what the gesture looks like and
needs at least one descriptor specifying the circle as a graphical ob-
ject. A set of gesture classes is grouped in a GestureSet which
can then be used to initialise an algorithm. The Descriptor
interface has to be implemented by any gesture descriptor. For
example, we provide the SampleDescriptor class describing

gestures by samples which is used by training-based algorithms. A
single GestureSample is an instance of a gesture and contains
the note captured by an input device. In addition to the sample de-
scriptor, we provide a textual description of the directions between
characteristic points of a gesture as well as a digital descriptor de-
scribing the gesture in terms of a digital image. Note that the digital
descriptor is not used in the recognition process but rather acts as
a visualisation for a recognised gesture to be used, for example, in
graphical user interfaces.

In addition, we need a mechanism to persistently store any ges-
ture samples for later retrieval. Again, our goal was to be flexi-
ble and not to rely on a single mechanism for storing data objects.
The iGesture storage manager encapsulates any access to persis-
tent data objects and uses a specific implementation of a storage
engine interface to interact with the data source. We decided to use
db4objects [7], an open source object database for Java, as the pri-
mary storage container. However, we also implemented a second
storage engine that simply serialises the data objects into an XML
document based on the x-stream Java library [17].

An iGesture recogniser is a general component that can be con-
figured to use different recognition algorithms. To provide max-
imal flexibility in the design and use of algorithms, we decided
to provide a compact interface as highlighted in Figure 3. The
Algorithm interface provides methods for the initialisation, the
recognition process, the registration of an event manager and for
retrieving optional parameters and their default values.

+ getSamples(GestureClass gc) : List

SampleBasedAlgorithm

+init(Configuration c) : void
+recognise(Note note) : ResultSet
+addEventManagerListener(EventManager e) : void
+getConfigParameters() : Enum[]
+getDefaultParameter(String key) : String

«interface»
Algorithm+addGestureSet(GestureSet gs) : void

+getGestureSets() : List
+removeGestureSet(GestureSet gs) : void
+addAlgorithm(String algorithm) : void
+getAlgorithms() : List
+removeAlgorithm(Algorithm a) : void
+addParameter(String a, String key,

String val) : void
+getParameters(String key) : HashMap
+getParameter(Parameter p) : String
+getEventManager() : EventManager
+setEventManager(EventManager e) : void
+getMinAccuracy(): double
+getMinResultSetSize(): double

Configuration

+addEventManagerListener(EventManager e) : void
+fireEvent(ResultSet rs) : void
+getDefaultParameter(String key) : String

DefaultAlgorithm

Figure 3: Algorithm class diagram

An algorithm always has to be initialised with an instance of the
Configuration class containing gesture sets, an optional event
manager and algorithm-specific parameters which are managed in
a key/value collection. This configuration object can be created
using the Java API or by importing the data from an XML docu-
ment. The framework further offers an algorithm factory class [5]
to instantiate algorithms based on information handled by a config-
uration instance.

While the algorithm interface is mainly used by the designer of
new recognition algorithms, the application developer has access
to the framework’s recogniser component—configured with one
or more recognition algorithms—based on a single Recogniser
class (facade pattern) shown in Figure 4.

Note that multiple algorithms may be specified in a single con-
figuration. The Recogniser class provides two methods with
different behaviours depending on whether a single or multiple al-
gorithms have been specified. The recognise(Note note)

+Recogniser(Configuration config)
+Recogniser(Configuration config, EventManager e)
+Recogniser(Configuration config, GestureSet gs)
+Recogniser(File configFile)
+Recogniser(File configFile, File setFile, EventManager e)
+recognise(Note note, boolean recogniseAll) : ResultSet
+recognise(Note note) : ResultSet

Recogniser

Figure 4: Recogniser API

method goes through the algorithms in sequential order and ter-
minates the recognition process as soon as an algorithm returns a
valid result whereas the recognise(Note note, boolean
all) method combines the results returned by all of the algo-
rithms. A Note represents our data structure for storing infor-
mation captured by an input device. Each Note contains one or
more strokes consisting of a list of timestamped positions. The
Recogniser always returns a result set which is either empty or
contains an ordered list of result objects. We decided to return a
set of potential result objects instead of a single one to enable spe-
cific applications to use any additional contextual information in
the selection process.

The iGesture framework’s management console has been imple-
mented as a Java Swing application providing support for test-
ing and defining gestures as well as creating test sets as repre-
sented by the Test Bench, Admin, Test Data and Batch
Processing tab components. The test bench tab, shown in Fig-
ure 5, provides functionality to acquire a single gesture from an
input device and execute the recogniser with the chosen gesture
set and algorithm. This enables a simple and quick manual test-
ing of specific gestures. The entire collection of gesture sets of the
currently opened persistent storage container are available and any
registered algorithm may be used. This manual testing of gestures
is relevant to get initial feedback about the quality of a specific al-
gorithm’s recognition rate.

Figure 5: iGesture test bench tab

The admin tab is used to manage gesture sets, gesture classes and
the corresponding descriptors as illustrated in Figure 6. New ges-
tures are captured with the aid of the input device and shown in the
Input Area. From there they can, for example, be added to the
sample descriptor of a given gesture class.

Figure 6: iGesture admin tab

Furthermore, the admin tab enables the creation, editing and dele-
tion of gesture classes as well as the manipulation of descriptors
and gesture sets. Additionally, functionality is provided to export
and import complete gesture sets together with the corresponding
gesture classes and their descriptors to/from a single XML docu-
ment. These XML files can later be used to initialise the recogniser
component independently of a specific storage manager.

The test data tab is used to create test sets for testing algorithms
and their configurations. Any test set can be exported to an XML
file which may then be used as a source for an automatic batch
process evaluation. Specific batch process parameters can be de-
fined in the batch processing tab. The goal of the batch processing
tool is to simplify the evaluation of new algorithms and enable the
comparison of different algorithms. It further supports the designer
of a new algorithm in adjusting and optimising different algorithm
parameters by means of running a single algorithm with different
settings. A batch process is configured with an XML file specify-
ing the configuration objects to be created. We provide a flexible
way to specify an algorithm’s parameters in terms of a combina-
tion of fixed values, sequences, ranges and power sets for specific
parameters as shown in the example of Figure 7.

<?xml version="1.0" encoding="UTF-8"?>
<iGestureBatch>
<algorithm name="org.igesture.alg.SiGridAlgorithm">

<parameter name="GRID_SIZE">
<for start="8" end="16" step="2" />

</parameter>
<parameter name="DISTANCE_FUNCTION">
<sequence>
<value>HammingDistance</value>
<value>LevenshteinDistance</value>

</sequence>
</parameter>
<parameter name="MIN_DISTANCE">
<for start="1" end="5" step="1" />

</parameter>
</algorithm>
</iGestureBatch>

Figure 7: XML batch configuration

Based on the XML configuration, all possible parameter permuta-
tions are generated and, for each configuration, the batch process
instantiates the algorithm and processes the given test gesture set.

The results of a batch process containing the key figures for each
run and gesture class, such as precision, recall and F-measure, as
well as the configuration of the parameters, are collected in a test
result data structure which is stored in an XML document. We also
provide some XSLT templates to render the results as an HTML
document and sort the data based on specific key figures. This al-
lows the designer of a new recognition algorithm to easily identify
the most promising parameter settings for a given algorithm and
test set.

The algorithm designer also has to provide a configuration stored in
a file which can be used by the application developer to instantiate
the recogniser with a given algorithm and parameter set. Note that
the settings stored in the configuration file may be a direct result of
previous batch process evaluations. The code snippet in Figure 8
shows how easy it is for the application programmer to use the
gesture recognition engine.

Recogniser recogniser = new Recogniser(
ConfigurationTool.importXML("config.xml"));

ResultSet result = recogniser.recognise(note);

if (!result.isEmpty() {
logger.log(result.getResult().getName());

}

Figure 8: Recogniser

In addition to the explicit handling of the results by the client ap-
plication, iGesture also provides an event manager where a client
can register actions to be triggered when a specific gesture class has
been recognised.

We mainly use the digital pen and paper technology provided by
the Swedish company Anoto [1] as an input device for the iGesture
framework. However, since the iGesture framework should not de-
pend on a specific hardware technology, all the components work
on an abstract input device interface. This makes it easy to integrate
new devices and use them for capturing new gesture sets as well as
controlling specific applications. So far we support different Anoto
digital pens as well as the standard computer mouse as a gesture
input device. Furthermore, we are currently integrating the Wintab
tablet API [16] to also acquire data from arbitrary graphics tablet
solutions.

To simplify the time-consuming process of capturing gesture sam-
ples from different users, we provide a component to generate in-
teractive gesture capture paper forms as shown in Figure 9. After
a set of gesture classes has been defined, the corresponding inter-
active paper forms can be generated automatically and printed out
with the position encoding pattern provided by Anoto.

Figure 9: Interactive paper capture form

Each row of the form contains a sample of the gesture to be cap-
tured and some empty fields that the user has to fill in with the
digital pen. The pen data is continuously streamed to the iGesture
application and stored in the corresponding gesture sample set. To
enable the exchange of gesture sets with other applications, we fur-
ther provide support for importing and exporting documents in Ink
Markup Language (InkML) [3] format.

4. ALGORITHMS
In this section, we introduce four different gesture recognition algo-
rithms that we have implemented so far for the iGesture framework.
These include two existing solutions—the Rubine algorithm for
specifying gestures by example [12] and the Simple Gesture Recog-
niser (SiGeR) algorithm developed by Swigart [14]. In addition we
have implemented two new algorithms which we also present in
this section. E-Rubine is an extended version of the Rubine algo-
rithm dealing with additional single and multi-stroke features while
SiGrid is a new signature-based algorithm that classifies gestures
based on distance functions. Note that the implementations of the
different gesture recognition algorithms presented in this section
conform to the Algorithm interface introduced earlier.

4.1 Rubine Algorihtm
The Rubine algorithm represents one of the first algorithms pub-
lished for the recognition of mouse and pen-based gestures. The
gestures are not described programmatically but instead learnt by
examples. With the appropriate tools, such as the iGesture manage-
ment console, it is easy to create new gestures and add them to the
gesture recognition engine. In our implementation of the Rubine
algorithm, we use the equations described in the original Rubine
paper [12]. We now present the main features of the algorithm and
show some of the equations involved in order that the reader can
obtain, not only an understanding of the algorithm, but also how it
is integrated into iGesture and how we extended it in E-Rubine.

Features are extracted from gestures which consist of timestamped
points and then used in the recognition process. In Rubine’s pa-
per 13 features are described to be used in the recognition process.
This includes the cosine and sine of the initial angle with respect
to the x-axis (f1 and f2), the length of the bounding box diagonal
(f3), the angle of the bounding box (f4), the distance between the
first and last point (f5), the cosine and sine of the angle between
the first and last point (f6 and f7), the total gesture length (f8), the
total traversed angle (f9, f10 and f11), the maximum speed squared
(f12) and the stroke duration (f13). For the implementation of the
standard Rubine algorithm evaluated later in this paper, we imple-
mented these 13 features.

The classification does not depend on specific features which al-
lows us to use it for different recognition tasks as long as the clas-
sifiable objects can be described by feature vectors. In a first step,
the feature vector fĉei is computed for each example gesture e for
0 ≤ i < F , where F is the number of selected features. These vec-
tors are then summarised in a mean vector for each gesture class ĉ,
where Eĉ represents the number of training examples for gesture
class c. The mean vector f̄ĉ is simply the average of the sample
feature vectors for a given gesture class as illustrated in Equation 1.

f̄ĉi =
1

Eĉ

Eĉ−1∑
e=0

fĉei (1)

Based on these feature vectors, the covariance matrix Mĉ shown in
Equation 2 is computed.

Mĉij =

Eĉ−1∑
e=0

(
fĉei − f̄ĉi

) (
fĉej − f̄ĉj

)
(2)

For each gesture class and the covariance matrices are averaged
to a single covariance matrix M as shown in Equation 3, with C
representing the number of gesture classes.

Mij =

∑C−1
c=0

Mĉij

Eĉ−1

−C +
∑C−1

c=0 Eĉ

(3)

The single covariance matrix allows us to estimate the weights ωĉj

of the vector components shown in Equation 4 and the initial weight
ωĉ0 for each gesture class as illustrated in Equation 5.

ωĉj =

F∑
i=1

(
M−1)

ij
f̄ĉi (4)

ωĉ0 = −1

2

F∑
i=1

ωĉif̄ĉi (5)

Note that all these steps can be accomplished in the algorithm’s ini-
tialisation phase and the weights computed for each gesture class
will not change during classifications. The classification itself is
realised with the linear function shown in Equation 6. For an input
gesture, the feature vector with the same features is computed and
each component of the vector is multiplied with the correspond-
ing gesture class weight. The classified gesture is denoted by the
gesture class yielding the maximal value.

υĉ = ωĉ0 +

F∑
i=1

ωĉifi (6)

This kind of classification has the drawback that a result will al-
ways be returned even if an input gesture does not have any sim-
ilarities with a trained example gesture. Therefore, Rubine pro-
posed a mechanism for rejecting gestures which are not similar to
the trained ones and also the ones which are ambiguous. In our
implementation a threshold can be set through an AMBIGUITY
parameter to reject gestures which are too close to multiple ges-
ture classes. Furthermore, to detect outliers the Mahalanobis dis-
tance [11] introduced in Equation 7 is used.

δ2 =

F∑
j=1

F∑
k=1

(
M−1)

jk

(
fj − f̄ij

) (
fk − f̄ik

)
(7)

In addition to the AMBIGUITY parameter introduced earlier, in our
implementation of the Rubine algorithm, other parameters can be
specified. The MIN_DISTANCE denotes the minimal distance be-
tween two succeeding points of a gesture. This enables us to auto-
matically filter points that are too close together and could have a
negative impact in the computation of specific features. A feature
of our Rubine implementation has to conform to the Feature in-
terface. The FEATURE_LIST parameter holds a list of comma-
separated fully qualified class names of feature objects that will be
instantiated in the algorithm’s initialisation phase using dynamic
class loading. Finally, the maximal distance for outliers can be de-
fined by the MAHALANOBIS_DISTANCE parameter. For further
details about Rubine’s algorithm and feature definitions please refer
to [12].

4.2 E-Rubine Algorithm
For our extended version of the Rubine algorithm, we developed
new single-stroke and multi-stroke features. Our E-Rubine algo-
rithm uses the core of the Rubine implementation presented in the
previous section together with the new features presented in this
section. We first introduce the single stroke features (f14 to f19)
and then present an extension for multi-stroke gestures (f20 to f24).
Note that some of our new features contain references to the origi-
nal Rubine features (f1 to f13).

4.2.1 Single-Stroke Features
A single-stroke gesture S can be defined as a totally ordered set of
points pi = (xi, yi), where 1 ≤ i ≤ n.

S = {p1, . . . , pn} (8)

The x and y coordinates of any given point pi can be accessed by
the .x and .y operators. Furthermore, we define a function ϕ always
returning the last point of a given list of points.

If S = {p1, . . . , pn}, then ϕ(S) = pn (9)

The distance δ between two points pi and pj can then be defined as

δ(pi, pj) =

√
(pj .x− pi.x)2 + (pj .y − pi.y)2 (10)

Number of stop points
Our first new single stroke feature f14 is the number of so-called
stop points within a gesture. A stop point occurs when the draw-
ing speed falls below a specific lower bound threshold value. The
average speed for the entire gesture is computed and the lower
bound value is set to one third of the average speed. The speed
between two points is then always compared to this lower bound
value. Finally, the number of stop points is defined by the num-
ber of sequences having a speed below the specified lower bound.
Stop points typically occur on directional changes and at the end of
strokes. If StopPoints is the set of all stop points, then

f14 = |StopPoints| (11)

Distance from start to centre point in relation to the diagonal
This feature measures whether the first or second part of the gesture
is more winding. An integer division is used to access the centre
point S[n/2] in the computation of the distance d1 from the start
point to the centre point as shown in Figure 10.

S[1]

S[n]

(xmin,ymin)

(xmax,ymax)

S[n/2]=(xn/2,yn/2)
f3

d1

d2

f5

Figure 10: E-Rubine single stroke features

d1 = δ(S[1], S[n/2]) (12)

f15 =
d1

f3
(13)

Direction of the first half of the stroke
Feature f16 measures the general direction of the first part of the
stroke based on the sine of the angle between d1 and the x-axis.

f16 = sin α =
S[n/2].y − S[1].y

d1
(14)

Direction of the second half of the stroke
The cosine of the angle between the straight line d2 from the centre
point to the end point of the single-stroke gesture and the x-axis is
used to compute f17.

d2 = δ (S[n/2], S[n]) (15)

f17 = cos γ =
S[n].x− S[n/2].x

d2
(16)

Angle between the first and the second half of the stroke
The cosine between d1 and d2 is used to compute this feature de-
scribing the change of direction with respect to the gesture’s centre
point.

f18 = cos β =
d1

2 + d2
2 − f5

2

2d1d2
(17)

Distance from start to end point in relation to the diagonal
Our last single stroke feature f19 is a gesture size-independent re-
placement of Rubine’s original feature f5.

f19 =
f5

f3
(18)

4.2.2 Multi-Stroke Features
To improve the performance of the original Rubine algorithm for
new multi-stroke gestures, we designed and implemented five ad-
ditional multi-stroke features. Note that these features are used in
combination with the single stroke features. A multi-stroke gesture
is defined as a totally ordered set M of m strokes S1, . . . Sm

M = {S1, . . . , Sm} (19)

Each stroke Si is thereby defined as a totally ordered set of points
pj = (xj , yj), where 1 ≤ j ≤ |Si|.

Si = {p1, . . . , p|Si|} (20)

Number of strokes
This feature takes into account the number of strokes that a ges-
ture contains. Note that if most of the gestures to be recognised
contain the same number of strokes, feature f20 may not be a good
classifier.

f20 = |M | (21)

Straightness
The straightness of a multi-stroke gesture is represented by our new
feature f21 dividing the sum of each stroke’s distance from the start
to its end point (∆(Si)) by the sum of the stroke lengths (l(Si)).

∆(Si) = δ(Si[1], ϕ(Si)) (22)

l(Si) =

|Si|−1∑
j=1

δ (Si[j], Si[j + 1]) (23)

f21 =

∑|M|
i=1 l(Si)∑|M|

i=1 ∆(Si)
(24)

Total distance between strokes
Feature f22 sums up the distances between the strokes and thereby
provides information about their distribution. In order to make the
feature size-independent, the sum is divided by the diagonal of the
gesture’s bounding box.

f22 =
1

f3

|M|−1∑
i=1

δ (ϕ (Si) , Si+1[1]) (25)

Angle between strokes
Feature f23 sums up the angles between the different strokes. The
angle for each stroke, represented by the angle between the straight
line from its start point to its end point and the x-axis, is computed
and subtracted from the previous stroke’s angle.

f23 =

|M|−1∑
i=1

Angle between Stroke Si and Si+1 (26)

Stroke distances in relation to each other
Last but not least, feature f24 puts the stroke distances ∆(Si) in
relation to each other.

f24 = ∆(S1)

|M|∏
i=2

1

∆(Si)
(27)

Clearly, there was a lot of experimentation to test the effectiveness
of proposed new features and compare the performance of the ex-
tended algorithm to that of the original Rubine algorithm and also
other algorithms. The iGesture test bench gave us a lot of support
for these experiments and enabled us to quickly arrive at an exten-
sion that yields promising results as reported in Section 5.

4.3 SiGeR Algorithm
The third algorithm that we have implemented with the help of the
iGesture framework is the SiGeR algorithm that classifies gestures
based on regular expressions [14]. Gestures are described with
the eight cardinal points (N, NE, E, SE, S, SW, W and
NW) and some statistical information. Out of such a description,
a regular expression is created. These regular expressions are then
applied to input gestures and, in the case that a class description
matches the input string, the corresponding gesture class is returned
as a result. Therefore the classification is binary and it is not possi-
ble to rate different results.

For example, the gesture shown in Figure 11 starting at the red
dot is described by the following character string: E, N, W, S.
Out of these characters, the regular expression (E)+(N)+(W)+
(S)+ can be created. Because hand drawn lines may not always be
straight, Swigart proposed a more general form of a regular expres-
sion which also accepts neighbouring distances. The extended reg-
ular expression for our example gesture would be (NE|E|SE)+
(NW|N|NE)+(SW|W|NW)+(SE|S|SW)+.

The input gesture is transformed into a character string and the dis-
tance between two points is described by the directions correspond-
ing to the cardinal points. Additionally, statistical information is

W

E

S N

Figure 11: Gesture example

extracted out of the input gesture. Therefore, each direction is
counted and information about the proportions of the directions
provided. The proximity of the start and end points and the number
of stop points is further counted to enable a more reliable descrip-
tion of gestures.

The description of gesture classes may impose constraints concern-
ing this statistical information. For example, for a circle, we can de-
fine the constraints that there has to be an equal number of straight
and diagonal elements and that the gesture’s start and end point
have to be close to each other.

Our implementation of the algorithm differs in some points from
the original SiGeR version. The most important change is the pos-
sibility to describe gesture classes in textual form using some key-
words to describe the directions and also to make use of the statis-
tical information. This allows us to use the existing text descriptor
for gesture classes. In our implementation of the SiGeR algorithm,
gestures are described using the language shown in Figure 12.

description = directions [";" constraints];
directions = direction ["," directions];
direction = "N" | "NE" | "E" | "SE" |

"S" | "SW" | "W" | "NW";
constraints = constraint ["AND"

constraints];
constraint = operand operator (operand |

real);
operator = "EQ" | "NEQ" | "GT" | "GTE" |

"LT" | "LTE";
operand = "N" | "NE" | "E" | "SE" |

"S" | "SW" | "W" | "NW" |
"DIAGONAL" | "STRAIGHT" |
"PROXIMITY" | "STOPPOINTS";

real = digit {digit} "." {digit};
digit = "0" | "1" | "2" | "3" | "4" |

"5" | "6" | "7" | "8" | "9";

Figure 12: SiGeR description language

Using our new description language, the rectangle presented ear-
lier would, for example, be described as E,N,W,S;STRAIGHT
GT 0.8 AND PROXIMITY LT 0.2. The part before the semi-
colon describes the form of the rectangle with the directions. The
two constraints define that at least 80% of the directions have to
be straight and that the distance between the start and end point
should be less than 20% of the gesture diagonal’s length. The
algorithm’s Configuration object supports the definition of

a MIN_DISTANCE parameter denoting the minimal distance be-
tween two succeeding points of a gesture.

4.4 SiGrid Algorithm
The SiGrid algorithm is a new algorithm that we developed that
approximates gestures with a grid-based signature. The signature
of a gesture class is computed based on sample gestures as done in
the Rubine algorithm. These signatures are then compared to input
gestures based on distance functions resulting in a classification of
the gestures. To create the signatures for our new SiGrid algorithm,
we use a grid consisting of equally sized squares. Each square has
its unique bit string identifier and the identifier of two neighbouring
squares always differs in exactly one bit.

During the preprocessing phase, the gestures are stretched to a uni-
form size and mapped to the grid. Each point of the gesture can now
be represented with the bit string of its related square as shown in
Figure 13. The full gesture signature consists of the concatenation
of these bit strings.

000000 000001 000101 000100 100100 100101 100001 100000

000010 000011 000111 000110 100110 100111 100011 100010

001010 001011 001111 001110 101110 101111 101011 101010

001000 001001 001101 001100 101100 101101 101001 101000

011000 011001 011101 011100 111100 111101 111001 111000

011010 011011 011111 011110 111110 111111 111011 111010

010010 010011 010111 010110 110110 110111 110011 110010

010000 010001 010101 010100 110100 110101 110001 110000

Figure 13: Example 8× 8 grid

Due to the limited resolution of the grid, the mapping of the gesture
points to positions in the grid deliberately introduces some fuzzi-
ness into the gesture representation. The fuzziness is increased fur-
ther by removing succeeding points that are mapped to the same
grid square. In this way, we can guarantee that only significant
points remain. In addition, our SiGrid algorithm applies a mech-
anism to remove points which do not change the signature signif-
icantly. A point is seen as irrelevant if the angle of the direction
remains within a defined range.

We implemented two distance functions, the Hamming Distance
and the Levenshtein Distance, for comparing different signatures
and these can be selected by a parameter. Additional functions can
be added by implementing the DistanceFunction interface.
The Hamming Distance counts the number of bits which have to
be flipped to make two signatures equal. The drawback of this
function is that a displacement may trigger a lot of after-effects
which may produce bad results. The Levenshtein distance is a gen-
eralisation of the Hamming distance. In addition to the flipping of
bits, this measure is also able to add or remove bits to achieve the
smallest possible distance between two bit strings. Based on this,
after-effects can be minimised. The drawback of this function is
that signatures might be changed drastically and so the result of the
recognition is falsified. For each example gesture, the signature is
created and an input gesture is compared with all the signatures.
The accuracy of the result denotes the number of coinciding bytes.

Different parameters can be specified using the SiGrid algorithm’s
Configuration object. The GRID_SIZE parameter defines
the number of cells within a single grid row. The RASTER_SIZE
parameter defines the width and height to which a gesture will be
stretched. The full qualified class name of a distance function im-
plementing the DistanceFunction interface may be specified
by the parameter DISTANCE_FUNCTION.

5. EVALUATION
We now provide initial results of the evaluation of the four algo-
rithms presented. The three algorithms based on sample descriptors
(i.e. Rubine, E-Rubine and SiGrid) and the textual descriptor-based
SiGeR have been tested with three different kinds of gesture sets:
the Palm Graffiti letters and numbers, the Microsoft Application
Gestures and a customised set of multi-stroke gestures. Note that
the preliminary experiments were used to evaluate the algorithms
as well as a to validate the iGesture framework’s batch processing
functionality.

5.1 Key Figures
An input can be classified in one of three different result categories
by an algorithm. First, the algorithm may correctly recognise an
input as the gesture it actually represents. We name this category
Correct. The Error category contains incorrectly recognised ges-
tures. In this case, the algorithm returns a wrong result which may
lead to unintentionally triggered actions. The third category con-
tains the rejected gestures Reject which have been returned as un-
classifiable by the algorithm. Note that the test sets that we used
for our experiments contained only classifiable gestures and there-
fore as few gestures as possible should be rejected. We evaluated
the algorithms using the notions of Precision and Recall which we
defined as follows.

Precision
The Precision shown in Equation 28 denotes the proportion of cor-
rect results versus all results. A value of 1 means that all recognised
gestures are identified correctly and the result contains no errors.

Precision =
|Correct|

|Correct|+ |Error| (28)

Recall
The Recall illustrated in Equation 29 provides information about
the fraction of gestures which can be classified out of all classifiable
gestures.

Recall =
|Correct|+ |Error|

|Correct|+ |Error|+ |Reject| (29)

F-Measure
The F-Measure shown in Equation 30 is the weighted harmonic
mean of the precision and the recall value. We decided to weight
precision and recall equally.

F-Measure =
2× Precision × Recall

Precision + Recall
(30)

5.2 Palm Graffiti
We ran five experiments using the 26 letters and 10 numbers of
the Palm Graffiti alphabet [6] as a gesture set. They cannot be
combined into a single gesture set because several gestures in the
number set are similar to letters. Overall, we collected training and
test data from four persons which provides for a more objective
estimation than with a single user.

5.2.1 Experiment 1: Graffiti Numbers
Experiment 1 used the Graffiti numbers as the gesture set trained
with 15 examples for each gesture class by one person. The test
set had a size of 150 valid samples and was collected by three dif-
ferent persons. To test the SiGeR algorithm, a textual description
of the numbers was constructed manually. Table 1 shows the re-
sults for the best configuration of each algorithm defined as the one
with the maximal F-Measure. This means that the configuration
should have a low error rate as well as a high number of correctly
recognised gestures.

E-Rubine Rubine SiGrid SiGeR
Correct 140 134 132 129
Error 9 15 15 8
Reject 1 1 3 13
Precision 0.940 0.899 0.898 0.942
Recall 0.993 0.993 0.980 0.913
F-Measure 0.966 0.944 0.937 0.927

Table 1: Graffiti numbers

Although the example-based algorithms were trained by only one
person, nearly all algorithms reached a Precision of at least 90%.
The result shows that the new features used in our extended ver-
sion of the Rubine algorithm significantly improve the recognition
quality. Even the simple SiGrid algorithm has almost the same pre-
cision as the original implementation of the Rubine algorithm. The
SiGeR algorithm also has good test results, but since the textual
description of the gesture classes were done on the basis of the test
set, it should be noted that they were optimised for this specific
experiment.

5.2.2 Experiment 2: Graffiti Numbers
The Graffiti numbers were again used as the gesture set but the
training data was collected from four different persons. We trained
each gesture class with 4 times 4 examples and the test set has a
size of 140 samples collected from a single person. We compared
only sample-based algorithms and so the SiGeR algorithm is not
taken into account. Again the test set contains only valid samples
which should all be recognised.

E-Rubine Rubine SiGrid
Correct 140 135 130
Error 0 4 10
Reject 0 1 0
Precision 1 0.971 0.929
Recall 1 0.993 1
F-Measure 1 0.982 0.963

Table 2: Graffiti numbers

The Rubine algorithm provides better key figures than in exper-
iment 1 as shown in Table 2. The extended Rubine algorithm
achieved a perfect result whereas the Signature algorithm has a

Down Left-Right Double-Line Arrow Right-Left Arrow Left-Right Cross Tic Tac Toe Star

Smiley Semi-Circles Dollar Mean Angle Interface Class

Figure 14: Multi-stroke gestures

higher error rate than the original Rubine algorithm. It can be as-
sumed that the Rubine algorithm works significantly better with a
broader variety of training data.

5.2.3 Experiment 3: Graffiti Letters
The 26 Graffiti letters were used as the gesture set and, as for Ex-
periment 1, the training data was collected from a single person and
the algorithms trained with 15 examples per gesture class. The test
set has a size of 390 samples collected from three different persons.
Again the test set contains only valid data.

E-Rubine Rubine SiGrid
Correct 335 280 274
Error 52 107 113
Reject 3 3 3
Precision 0.866 0.724 0.708
Recall 0.992 0.992 0.992
F-Measure 0.925 0.837 0.826

Table 3: Graffiti letters

The figures shown in Table 3 are significantly worse than those for
Experiment 1. The reason is the size of the gesture set which is 2.5
times larger while the size of the training data is the same. These
results highlight that the number of samples has to grow with the
size of the gesture set. We note that several letters had a very high
error rate whereas others were recognised perfectly. The reason for
this behaviour is that the training data was collected by a single
person. Better results would be expected using training data from
different users.

5.2.4 Experiment 4: Graffiti Letters
As in Experiment 2, each gesture class was trained with 4 times 4
examples from different users. The test set had a size of 363 sam-
ples and was produced by the same persons used for the training of
the algorithm. Again the test set contains only valid gestures.

E-Rubine Rubine SiGrid
Correct 343 305 297
Error 18 48 66
Reject 2 10 0
Precision 0.950 0.864 0.818
Recall 0.994 0.972 1
F-Measure 0.972 0.915 0.900

Table 4: Graffiti letters

Table 4 shows figures that are significantly higher than in Experi-
ment 3 where the algorithms were trained by just one person and
there are no longer several gesture classes which have poor recog-
nition.

5.3 MS Application Gestures
The next set of experiments used the Microsoft Application Ges-
tures [2] as the gesture set. Originally this set consisted of 42 ges-
tures but two of them which represent mouse- or pen-clicks cannot
be recognised with our feature-based algorithm because the gesture
consists of only one or two points and does not provide enough in-
put for computing the different features. Therefore the set used in
the evaluation has a size of 40 gestures.

5.3.1 Experiment 5: MS Application Gestures
The 40 gestures were trained with 15 examples for each gesture
class by one person and tested with 5 instances of each gesture class
provided by the same person. Again the test set contains only valid
gestures. Table 5 highlights that the extended Rubine algorithm had
good performance even though the amount of training data used
was relatively small compared to the size of the gesture set.

E-Rubine Rubine SiGrid
Correct 195 178 164
Error 4 19 34
Reject 1 3 2
Precision 0.980 0.904 0.828
Recall 0.995 0.985 0.990
F-Measure 0.987 0.943 0.902

Table 5: MS application gestures

Although this experiment was clearly not realistic because the train-
ing data and the test data were produced by the same person, it still
shows that with the extended Rubine algorithm good results can be
achieved even with a small amount of training data if the coverage
is good.

5.4 Multi-Stroke Gestures
We defined a set of 15 multi-stroke gestures shown in Figure 14.
Two of them consist of a single stroke only and are prefixes of
other multi-stroke gestures in the set. The set is quite small but it
should be a proof of concept that also multi-stroke gestures can be
recognised by the implemented algorithms.

5.4.1 Experiment 6: Multi-Stroke Gestures
The algorithms were trained with 15 examples collected from one
person and tested with 5 samples for each gesture class collected
from the same person. The results shown in Table 6 are good with
algorithms having a precision higher than 96%. However, again
good results were expected due to the algorithm being trained and
tested by the same person. Furthermore, the relatively high number
of training-examples for each gesture class has a positive effect.

E-Rubine Rubine SiGrid
Correct 75 72 73
Error 0 3 2
Reject 0 0 0
Precision 1 0.960 0.973
Recall 1 1 1
F-Measure 1 0.980 0.986

Table 6: Multi-stroke gestures

5.4.2 Experiment 7: Multi-Stroke Gestures
In this experiment the algorithms were trained with 20 examples
collected from one person and tested with 5 samples for each ges-
ture class collected from another person. As shown in Table 7, all
algorithms achieved nearly the same high level of results as in the
previous experiment. This is probably due to the high number of
training samples compared to the size of the gesture set and also the
kind of gestures we used since they were quite distinct from each
other.

E-Rubine Rubine SiGrid
Correct 74 73 75
Error 1 1 0
Reject 0 1 0
Precision 0.987 0.986 1
Recall 1 0.987 1
F-Measure 0.993 0.987 1

Table 7: Multi-stroke gestures

The experiments have shown the behaviour of the chosen algo-
rithms in different setups. These initial results show that only the
extended Rubine algorithm seems to be good enough for general
practical usage. However, the other algorithms may be useful in
particular settings. Simple geometric figures in a small gesture
set could also be recognised effectively with the SiGeR algorithm
without having to create a large amount of example data and this
in turn has the advantage of allowing gesture sets to be easily ex-
tended. The SiGrid algorithm also yielded good results when both
the gesture set and the example sets were relatively small. In this
setting, it may even be superior to the Rubine algorithm since it
needs several examples per gesture class to compute the weights.
If the number of gesture examples is too small, it is actually pos-
sible that the Rubine algorithm cannot be instantiated because the
determinant of the covariance matrix is zero and therefore the in-
verse cannot be computed. In the future we plan to conduct further
experiments with larger test sets.

6. CONCLUSION
We have presented a general and flexible framework for gesture
recognition and described how we implemented two existing ges-
ture recognition algorithms and also developed two new algorithms
using the framework. In addition to providing interfaces that made

it very simple to implement these algorithms and also use them
in various applications, the iGesture framework supported the ex-
perimentation and evaluation processes. The fact that batch tests
for different algorithms and parameter settings could easily be run
against the same captured test sets greatly simplified the task of
carrying out comparative evaluations and refinements of the al-
gorithms. We believe that the fact that we were able to develop
two new algorithms with very promising evaluation results within
a short period of time can largely be attributed to the availability of
the iGesture framework.

7. REFERENCES
[1] Anoto AB, http://www.anoto.com.
[2] MS Application Gestures, http://msdn2.microsoft.com.
[3] Y.-M. Chee, M. Froumentin, and S. M. Watt. Ink Markup

Language (InkML). Technical report, W3C, October 2006.
[4] M. Egger. Find New Meaning in Your Ink With Tablet PC

APIs in Windows Vista. Technical report, Microsoft
Corporation, May 2006.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[6] Palm Grafitti, http://www.palm.com.
[7] R. Grehan. The Database Behind the Brains. Technical

report, db4objects, Inc., March 2006.
[8] J. I. Hong and J. A. Landay. SATIN: A Toolkit for Informal

Ink-Based Applications. In Proceedings of UIST 2000, 13th
Annual ACM Symposium on User Interface Software and
Technology, pages 63–72, San Diego, USA, November 2000.

[9] iGesture, http://www.igesture.org.
[10] A. C. Long. quill: A Gesture Design Tool for Pen-Based

User Interfaces. PhD thesis, University of California at
Berkeley, 2001.

[11] P. C. Mahalanobis. On the Generalized Distance in Statistics.
Natl. Inst. Science, 12:49–55, 1936.

[12] D. Rubine. Specifying Gestures by Example. In Proceedings
of ACM SIGGRAPH ’93, 18th International Conference on
Computer Graphics and Interactive Techniques, pages
329–337, New York, USA, July 1991.

[13] B. Signer. Fundamental Concepts for Interactive Paper and
Cross-Media Information Spaces. PhD thesis, ETH Zurich,
Switzerland, 2006.

[14] S. Swigart. Easily Write Custom Gesture Recognizers for
Your Tablet PC Applications. Technical report, Microsoft
Corporation, November 2005.

[15] Swing Gestures, http://sourceforge.net.
[16] WinTab specification 1.1, http://www.wacomeng.com.
[17] XStream, http://xstream.codehaus.org.

