
Noname manuscript No.
(will be inserted by the editor)

Towards End-User Development of Distributed User Interfaces

Audrey Sanctorum · Beat Signer

Received: date / Accepted: date

Abstract Over the last decade we have seen an in-

creasing number of solutions for distributed user inter-

faces (DUIs). This paper provides a detailed overview

of existing DUI approaches and classify the different

solutions based on the granularity of the distributed

UI components, the supported interaction space as well

as their support for the distribution of state. After the

analysis of existing solutions, we discuss a DUI sce-

nario and derive a number of requirements for end-user

DUI development. We propose an approach where users

can author their customised user interfaces based on a

hypermedia metamodel and the concept of active com-

ponents. We further discuss possibilities for the config-

uration and sharing of customised distributed user in-

terfaces by end users where the focus is on an authoring

rather than a programming approach.

Keywords distributed user interfaces · cross-device

interaction · end-user development

1 State of the Art in Distributed User

Interfaces (DUIs)

Over the last two decades, distributed user inter-

faces (DUIs) have gained a lot of attention [33]. Various

terms have been introduced in order to differentiate be-

tween different DUI systems, ranging from multi-device

and multi-display environments to interactive spaces

and cross-device interaction. Multi-device applications

started to emerge already in the late twentieth century

Web & Information Systems Engineering Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium
{asanctor,bsigner}@vub.be

when, for example, Robertson et al. [36] presented a sys-

tem that allowed users to interact with a television by

using a personal digital assistant (PDA) and a stylus. A

limitation of this early system was the one-directional

information flow from the PDA to the TV, which pre-

vented users from capturing and moving information

from the TV to their PDA. Just about a year later,

Rekimoto [35] introduced the pick-and-drop technique

allowing users to exchange information in both direc-

tions by picking up an object on one computer screen

and dropping it on another display via a stylus. Since

these early systems, research in cross-device interaction

has gone a long way and various interaction techniques,

frameworks and applications have been developed [13].

1.1 Interaction Techniques and Devices

In order to distribute information across devices, many

techniques and input devices with cameras or sen-

sors have been introduced. As described before, both

Rekimoto [35] and Robertson et al. [36] used a stylus for

allowing users to transfer information between devices.

A few years later, Han et al. [19] presented WebSplitter

which allows a web page to be distributed among mul-

tiple users and displays. Furthermore, WebSplitter can

also be used to split views of a web slideshow presen-

tation across devices. The presenter can, for example,

navigate through the slides via a wireless PDA, while

students can follow the presentation on their own de-

vices (PDA or laptop). An XML metadata policy file

containing all predefined access privileges is used to pro-

vide users a different view of a web page or presentation.

By using this policy file, WebSplitter somewhat limits

the user interaction. The file defines which XML tags

can be shared between which user groups and builds

signer
Typewritten Text
Universal Access in the Information Society (UAIS), 2019
The final publication is available at Springer via
https://doi.org/10.1007/s10209-017-0601-5

2 Audrey Sanctorum, Beat Signer

partial views on the users’ devices. These views can-

not be changed by the user once the system is set up.

Moreover, for each web page or presentation a separate

policy file needs to be created. Most recent DUI sys-

tems offer users more freedom for the distribution of

data and applications across devices. However, as dis-

cussed in the remainder of this section, there are still

some limitations in terms of what can be distributed,

where it can be distributed and how it is distributed.

An overview of the discussed interaction techniques to-

gether with the corresponding used systems and devices

is provided in Table 1.

A simple method to distribute data that has also

been widely used to forward people to a website are

QR codes. For example, Frosini et al. [15] make use of

QR codes to enrich a museum visit by allowing visitors

to distribute images, videos and texts between their

smartphones and larger displays. Users run an appli-

cation on their smartphone which is used to scan the

QR code on large public displays in the museum in or-

der to establish a connection and distribute selected

content to these displays. Di Geronimo et al. [16] used

QR codes for establishing a connection between devices

in aCrossETH, where users can upload, favourite and

like images. The most popular images are shown on a

slideshow screen, while all recently uploaded images are

displayed on one or multiple voting diplays. By scan-

ning a QR code on the slideshow and voting displays,

users can connect their mobile device in order to inter-

act with the voting displays. The first connected user

will control the browsing of images by swiping left and

right, while other connected users can see the selected

image in the role of a viewer. Users can vote for an

image by a hold tap gesture at the bottom of their

smartphone’s screen and a quick tilt down of the de-

vice. The aCrossETH application has been developed

based on the Cross-Tilt-and-Tap (CTAT) framework

which allows users to utilise the tilting of devices for

other interactions as well.

Another system making use of QR codes for con-

necting devices is Panelrama by Yang and Wigdor [50].

Panelrama is a web-based framework that divides a user

interface into panels and distributes these panels across

different devices depending on their characteristics. A

YouTube video could, for example, be automatically

distributed such that the video itself is shown on a large

screen, the comments section on a laptop and the video

controllers on a smartphone. Since for some users the

automatic distribution of the panels might be disrup-

tive, a toggle can be used to lock the panel to a certain

device. Furthermore, in their YouTube video applica-

tion the authors also demonstrate other functionality

such as the push and pull technique which can be used

to push a video to the global panel or copy the video

to the device by tapping the corresponding icons.

Instead of scanning a QR code, some systems use

a smartphone camera to take a picture of another

screen for initiating an information exchange. Based

on this technique, Chang et al. developed the Deep

Shot framework [7] which supports information shar-

ing between a smartphone and a computer screen. The

authors introduce the two new interaction techniques

of deep shooting and deep posting. Deep shooting is

used to pull documents and application states from

one device to another while deep posting pushes them

from one device to another. After taking a picture of a

screen with the smartphone, Deep Shot runs an image

matching algorithm in order to convey the data to the

right device. A similar setup has been introduced by

Leigh et al. [25], where a smartphone is used as magic

lens to offer near-surface interaction between the smart-

phone and a computer screen. The authors present a

system called THAW and explain various interaction

techniques. THAW allows the smartphone to be used

as a physical token for interacting with digital items

depending on their position on the screen. The smart-

phone can, for example, be used as a container to drag

and drop items on the screen or as a pass-through fil-

ter to translate data on the screen. It can also act as

a lens to control or augment objects on the screen via

a see-through filter or click/touch-trough. Furthermore,

the smartphone can be used as a secondary screen offer-

ing additional space for a clipboard or palette. In order

to accomplish these interactions, traditional touch ges-

tures such as drag and drop, tap to copy or pinch in

and pinch out to scale an item are used. Further, mo-

tion gestures are used to manipulate image properties,

including rotation to blur or sharpen the image and

shaking to add grain to the image.

By using a camera, spatial characteristics such as

the relative position of two devices can be taken into

account for specific interactions. THAW is not the only

system taking advantage of these characteristics and

many existing camera-based information sharing so-

lutions also consider the spatial location of devices.

Rädle et al. [34] introduced the HuddleLamp system

which uses a lamp with an integrated camera to track

hand movements as well as the position of any mo-

bile device that has been placed on the table the lamp

is standing on. With this setup, five interaction tech-

niques to explore and share data across devices have

been investigated. The first technique consists of mov-

ing a tablet on the surface of a table to explore a virtual

map while in the second interaction multiple tablets can

be combined to explore a larger map area at once. The

role of a device can be adapted by changing its orien-

Towards End-User Development of Distributed User Interfaces 3

Interaction Techniques System Devices

deep shooting, deep posting Deep Shot [7] Smartphone and computer

QR code scanning, tap, long press Frosini et al. [15] Large screens and smartphone

QR code scanning, push, pull Panelrama [50]
Microsoft Surface (Samsung SUR40) multi-touch table,

PC, TV, smartphone and tablets

QR code scanning, tap, double tap, hold tap,

jerk or continuous tilting: tilt left, tilt right, tilt down,...
CTAT [16] Laptop screens, tablets, smartphones and smartwatches

tilt-to-preview, face-to-mirror, portals, pinch-to-zoom GroupTogether [26]
2 overhead Kinect cameras, wall display SmartBoard and

8GHz band QSRCT radios

portals UbiTable [40] DiamondTouch multi-user interactive table [12], PC and laptops

portals MultiSpace [14]
2 projectors (to display content), 2 fixed surfaces: DiamondTouch

multi-user interactive table [12] and interactive wall

flicking, touch-and-flick, pick, drag and drop Huddlelamp [34]
Desk lamp with an integrated low-cost RGB-D camera,

smartphones and tablets

pick-and-drop Pick-and-Drop [35]
WACOM stylus, wall-sized displays (computers), desktop displays,

physical hand-held tablets and PDAs

lift-and-drop Airlift [1] Tablet PC, tabletop display, stereo camera and LED clusters

Drag and drop of application windows via a GUI ARIS [5]

Wall-mounted plasma screens with touch-sensitive overlays,

video wall, audio system, IR beacons, badge detectors,

PDA and 2 graphics tablets

Room-control GUI to move info, superpointer
PointRight [24],

iRoom [23]

3 touch white-board displays, interactive mural,

table with display, various cameras, microphones and

other interactive devices (e.g. PDAs, laptops)

On the DynaWall: take and put, shuffle

passage-mechanism
i-LAND [46]

Interactive electronic wall, interactive table, 2 computer-enhanced

chairs and 2 bridges for the passage-mechanism

Speech, hand gestures: grip, grip release, press XDKinect [31] 2 displays and 1 Kinect

block, container, pass-through filter, parent,

force-field, see-through filter, click/touch-through,

pop-up, palette, clipboard

THAW [25] Smartphone and computer

Tap or touch corresponding option in context menu,

bonding of devices via duets
Conductor [18] Tablets and smartphones

device stitching Connichiwa [38] A Microsoft Surface Pro 2, tablets and smartphones

Table 1 Different interaction techniques with the corresponding systems and used devices grouped by similarities

tation. For example, in portrait mode a device might

be used to show some application menu. Finally, the

remaining interaction techniques in HuddleLamp fo-

cus on distributing data via specific gestures such as

flicking, touch-and-flick and the well-known pick, drag

and drop. Similarly, Bader et al. [1] proposed the track-

ing of hands and fingertip gestures via the Airlift de-

vice consisting of a stereo camera and LED clusters.

Users can move objects from a tablet to the table sur-

face using the lift-and-drop interaction technique, which

resembles the pick-and-drop technique [35] but offers

continuous feedback while performing the movement.

Cameras do not always have to be mounted on tables

in order to enable cross-device interaction as shown in

XDKinect [31], where a Kinect camera is placed next

to two displays in order to browse and copy pictures

between the displays. Speech commands and different

hand gestures such as the grip, grip release and press

gestures are used for interaction. In order to widen the

interaction space, multiple cameras can be placed in a

room as realised in the GroupTogether setup [26] con-

sisting of two overhead Kinect cameras, a wall display

SmartBoard and 8GHz band QSRCT radios to detect

a small group of people. GroupTogether allows users to

freely move in the room with their tablets and share in-

formation between tablets or between a tablet and the

wall display by using four main interaction techniques.

Content can be temporary copied from one tablet to an-

other by using the the tilt-to-preview and face-to-mirror

interaction techniques. A copy can be made permanent

by touching it on the receiving device. An alternative

way to transfer content is provided via the portals tech-

nique which enables the move of content between de-

vices by dragging an item towards the tinted edge of

the tablet and releasing it to move it to the tablet next

to it. Note that portals have already been introduced

4 Audrey Sanctorum, Beat Signer

earlier in the UbiTable [40] and MultiSpace [14] proto-

types for transfering content from a tabletop to other

devices and vice versa.

A similar technique is used for the PointRight [24]

system forming part of the iRoom project [23]. It al-

lows any device to become a so-called superpointer. By

using the spatial visibility of the room, the edges of the

screen of the device running PointRight are associated

with the edges of other surrounding displays. This al-

lows a user to move the cursor through the edges of one

screen to another and hence move control among the

displays in an interactive workspace. In order to move

an information object represented via a URL or a file

icon, the room control system—a GUI showing a map

of the room highlighting the displays, projectors and

lights—can be used. Users can drag information into a

region on the map in order to move the information to

the corresponding display. Moreover, all the lights and

projectors can also be controlled via the map. A similar

technique has later been introduced in ARIS [5], an in-

teractive space window manager showing an iconic map

of the workspace in order to relocate application win-

dows across devices in the room. Users can drag and

drop the window representation on the map to the des-

tination screen. Note that the use of a map for moving

content or applications across a room of devices makes

it difficult to add or remove devices to the interactive

space.

Systems that do not use a fixed map of the inter-

action space often allow users to add devices by us-

ing NFC technology, bumping the devices, connect-

ing to a URL, Bluetooth, installing an application or

by using QR codes as mentioned earlier. For exam-
ple, Conductor [18] enables users to add a new device

by using either a QR code, NFC, bumping or prox-

ies, where a physical QR code or NFC tag is placed

next to the device to connect to. Once the connection

has been established, users can share information be-

tween devices by broadcasting cues. When a user taps

on a cue containing geographical information, it can

be broadcast to all devices by choosing broadcast from

a context menu or the user can target a specific device

from the menu. Tapping the cue on the receiving device

and dragging it to a specific application such as Google

Maps, will directly show the address within the applica-

tion. Conductor further supports the bonding of devices

via duets which allow users to synchronise multiple de-

vices. For instance, after a contact has been tapped on

one device, a map showing the address of that contact

can be shown on another device. The Conductor task

manager provides an overview of the distributed space

in the form of up-to-date screenshots of each device and

can be used to clone the state of a device.

The synchronisation of devices is also provided in

Connichiwa [38] through the use of device stitching, a

synchronous gesture on two devices which resembles the

well-known pinch gesture. When performing such a syn-

chronous gesture, the relative position of the devices is

determined in order to adjust the displayed content ac-

cordingly. For example, a large image can be displayed

across multiple devices and panning on one device will

then be reflected on all stitched devices. In order to un-

stitch a device, it can just be picked up or moved from

its location.

1.2 Interaction Space

Distributed user interfaces can range from very re-

stricted interaction spaces such as around the table

interaction or interaction within a room to solutions

without any space restrictions. In our classification of

existing DUI solutions, the location where a solution

can be used is therefore used as one of the dimensions

as shown on the x-axis in Figure 1. We define four cat-

egories of space restrictions as introduced in [37]. The

first category consists of systems having a setup that

requires a camera and whose interactive space is lim-

ited to a table. In the second category we gather all

the systems which still use cameras and other input de-

vices but have a larger interactive space, normally cov-

ering an entire room. In the third category we group

systems that work without the need for static cameras

and sensors, but still rely on a connection with a cen-

tral server. Finally, the last category contains all the

solutions which neither rely on static cameras nor on

sensors or a central server to enable cross-device in-

teraction. Systems belonging to this last category can

work almost anywhere. In the following, we analyse the

interaction space of the DUI systems that have been

introduced in the previous section.

Robertson et al. [36] enabled the interaction be-

tween a PDA and a television via infrared technology,

limiting the interaction space to a few square meters. In

a subsequent system by Rekimoto [35], an early form of

WiFi was used to enable an information transfer across

PDAs and allowed any item to be picked up with the

stylus and dropped on any LAN-connected PDA in the

room. An item could also be dropped on a wall-sized

display (computer) or desktop display, which have to

be directly connected to the Ethernet. In comparison

to the solution by Robertson et al., Rekimoto’s setup

significantly broadened the interaction space. However,

the wired connection of the displays limits the system

to be used within the room where the displays are lo-

cated. The physical palm-sized tablets in Rekimoto’s

Towards End-User Development of Distributed User Interfaces 5

UI + data +
 UI elements

UI + data

Table /
Camera

Room
Network connection

to the server
Anywhere

HuddleLamp [34]

Airlift [1]

MultiSpace [14]

ReticularSpaces [3,4]

ARIS [5]

GroupTogether [26]

i-LAND [46]

iRoom [23]

Panelrama [50]

Conductor [18]

IMPROMPTU [6]

THAW [25]

Deep Shot [7]

Weave [8]

Connichiwa [38]

XDStudio [30]

WebSplitter [19]

(Melchior et al.) [29]

CAMELEON-RT [2]

Granularity of
distribution

Space

Pick-and-Drop [35]

(Robertson et al.) [36]

(Frosini et al.) [15]

MultiMasher [22]

XDKinect [31]

UbiTable [40]

CTAT [16]

Proxywork [49]

Fig. 1 Classification of DUIs based on location constraints (x-axis) and the supported granularity of distribution (y-axis).
Solutions supporting the distribution of state are further highlighted in bold and blue. An updated online version is available
at http://dui.wise.vub.ac.be/classification/.

approach have also been used in the PaperIcons pro-

totype where users can pick a paper object and drop

it on a computer display. The paper-digital interaction

has been realised by placing a paper with an ID mark

on a pen-sensitive tablet with a camera mounted above

it. Hence, the overall system provided by Rekimoto still

offers a limited interaction space since for some appli-

cations a fixed camera or wired connection is necessary.

Similar to Rekimoto’s PaperIcons solution, other

systems use a camera to monitor a table surface, in-

cluding HuddleLamp [18], Airlift [1] and UbiTable [40],

which limits their interaction space to the table surface.

The use of multiple cameras might broaden the interac-

tion space to room level as seen in XDKinect [31] and

GroupTogether [26]. Solutions such as MultiSpace [14]

and i-Land [46] use multiple projectors to increase the

size of the interaction space while other systems such

as iRoom [23] use a combination of both.

Often, cameras and projectors are not sufficient

in order to cover the interaction space needed by

a system and therefore a number of approaches use

additional input devices to make a room more in-

teractive. For instance, iRoom [23] uses three touch

whiteboard displays, an interactive mural, a table

with a display, various cameras, microphones as well

as other interactive devices such as PDAs and lap-

tops to support cross-device interaction across the

workspace. By using an event heap, the interac-

tive room allows users to move data around, con-

trol any device or application from their location

and supports the coordination of applications. Based

on the same infrastructure, Streitz et al. [46] de-

veloped i-LAND, an interactive landscape consisting
of multiple computer-augmented objects such as two

computer-enhanced chairs (CommChairs), an interac-

tive electronic wall (DynaWall) and an interactive ta-

ble (InteracTable). Later, ConnecTables [47]—small ta-

bles with a pen-sensitive display—have been added to

the interaction space.

The previously described systems rely on cus-

tomised setups with multi-touch tables, projectors and

other input or output devices which limits their porta-

bility since they cannot just run in any lab or home en-

vironment. Furthermore, some of these solutions rely on

the accuracy of the input devices as well as on pattern

matching algorithms as seen in Deep Shot [7]. In con-

trast, Conductor [18] enables the distribution of infor-

mation across different tablets via broadcasting. How-

ever, while these systems easily transmit and recognise

transferred data, the distribution based on the spatial

location of the devices is not possible anymore. On the

other hand, the interactive space is no longer limited

6 Audrey Sanctorum, Beat Signer

to an interactive table [1,34] or room [5,14,23,26,46],

since in Conductor devices do not rely on any input

device and only need to be connected to a central server

for exchanging data. This kind of setup and client-

server architecture has also been used in many other

cross-device systems [6,7,19,18,22,30,50,49]. Although

these systems do not rely on static locations, they still

need a server to pass data around the different devices.

This implies that once the connection with the server is

lost, information can no longer be spread across devices.

This issue has been addressed in Weave [8], where the

server runs on one of the interacting devices. Whenever

this device should be disconnected, another device takes

over its place. Other solutions overcome this limita-

tion by using a peer-to-peer architecture [2–4,15,29,38].

Most of these systems enable the ad-hoc construction of

an interaction environment by dynamically setting up a

network between all peers. In order to set up a peer-to-

peer network, an application must first be deployed on

all interactive devices. For example, Bardam et al. [3,4],

deployed a copy of their Activity Manager on each con-

nected device to be able to create their ReticularSpaces

system.

1.3 Distribution Granularity and State

Apart from the space dimension, other criteria can

be used to highlight the differences between existing

DUI solutions. In a second dimension, we classify exist-

ing DUIs into two categories depending on their level

of granularity. The first category groups all the sys-

tems that allow images, documents or interfaces to be

distributed as a whole, while the second category in-

cludes DUI solutions that also support the distribution

of parts of images, documents or interfaces. An overview

of the classification of existing systems based on their

level of granularity is illustrated on the y-axis in Fig-

ure 1. Solutions supporting the distribution of state are

further highlighted in bold and blue. In the following,

we discuss the differences in the distribution granular-

ity of existing DUI solutions as well as their support for

state transfer during the distribution.

Some systems where application windows can be

moved across devices, such as in ARIS [5], only sup-

port the distribution of applications as a whole. Simi-

larly, in Rekimoto’s solution [35] only entire items can

be transferred across devices. Users cannot transfer only

parts of an image or document. The same applies for

XDKinect [31] and CTAT [16], where only entire pic-

tures can be distributed, as well as for Deep Shot [7]

where users can only capture the whole screen and not

a part of the information that is shown on the screen

(e.g. information about a restaurant shown on a map).

A number of solutions allow parts of an image to be

shown on multiple devices next to each other as illus-

trated in Figure 2. However, in these systems the im-

age is still distributed as a whole. Users can choose to

show a part of the image to another user when they

are in proximity, but they cannot distribute parts of an

image and get out of range again. This kind of interac-

tion is, for example, provided in HuddleLamp [34] and

GroupTogether [26] when two tablets are placed next

to each other.

Fig. 2 Distributed image shown on multiple tablets

Other solutions offer a higher level of granularity,

allowing parts of the data, such as paragraphs of a doc-

ument, some pixels of an image or parts of an applica-

tion, to be distributed. For instance, MultiMasher [22]

and Proxywork [49] support the distribution of parts

of a website, where arbitrary DOM-level elements of
a website (e.g. the search bar, navigation panel or an

image) can be distributed to different devices. Simi-

larly, the web-based Panelrama [50] framework divides

a user interface into different panels which are group-

ings of HTML user interface elements and enables their

distribution across multiple devices. Documents can

also be split into different parts to obtain a higher

level of distribution granularity. This has been done

in MultiSpace [14], which enables users to distribute

entire documents as well as parts of the documents,

such as sections of documents, images or text. Another

example can be found in the framework proposed by

Frosini et al. [15] for dynamic distribution of interac-

tive user interface components. In their museum appli-

cation text and images can be transferred to a separate

device. Enabling an even finer granularity, the frame-

work of Melchior et al. [29] supports the distribution of

application widgets and arbitrary pixels on a screen.

The capturing of pixels on a screen can also be

used to support easy state transfer. For example, if

Towards End-User Development of Distributed User Interfaces 7

an image is rotated on one device after distributing it,

it will also be rotated on the destination device. By

not only copying the raw pixels but also some meta-

data, one can not only transfer the content but also the

state of the distributed item or application as realised

in Deep Shot [7]. State transfer is often achieved by

other means. For example, when an application is re-

located in ARIS [5], the application is closed on the

source machine, invoked on the destination machine

and the runtime state is passed from one machine to

the other. State transfer can also be used to support

synchronised views of the shared data on multiple de-

vices. Panelrama [50], for example, keeps state infor-

mation inside panels in order to keep them synchro-

nised. A change in state information in one panel is

processed by an event listener and might change the

view of one or more panels on other distributed de-

vices. Synchronised content can also be found in some

example applications of Connichiwa [38], including a

document viewer where highlighted paragraphs are syn-

chronised between different devices. Frequently, such

UI distribution is accomplished via a message passing

mechanisms [1,3,4,18,23,26,30,38]. Moreover, certain

systems developed their own software infrastructure for

cross-device information sharing as seen with BEACH

and iROS in the i-LAND [46] and iRoom [23] projects.

1.4 Existing DUI Classifications

While we propose a classification of DUIs in terms of

interaction space, the supported granularity for dis-

tributed UI components and the distribution of state,

Demeure et al. [11] proposed a reference framework to

differentiate existing DUI approaches based on the four

dimensions of computation, communication, coordina-

tion and configuration. Some of these dimensions are

quite similar to ours whereas others are completely

different. The computation of a DUI represents the

elements that can be distributed. This might sound

similar to our second granularity dimension, however

Demeure et al. separate the elements in terms of UI lay-

ers rather than on granularity, including the presenta-

tion layer, logical presentation, control, functional code

and its adapter. The second dimension, the communi-

cation, takes the distribution time into account. Since

a distribution can be static or dynamic, systems can

be divided into two categories: the ones allowing distri-

bution at design time and the ones affording run-time

distribution. The third dimension is the coordination

which compares systems based on who is in charge of

performing the distribution. The distribution can be

user initiated, system initiated or mixed initiated. Fi-

nally, the last dimension, the configuration, takes into

account where and how a UI is distributed. Is the

same representation kept or adapted depending on the

new location? Apart from the dimension addressed by

Demeure et al., Elmqvist [13] briefly introduces some

other dimensions (input, output, platform, space and

time) based on his definition of the term distributed user

interface. The space dimension is similar to our first

dimension with a difference made between interfaces

which are restricted to the same physical/geographic

space and the ones that can be distributed to interac-

tive remote spaces.

However, in the classification that we present, the

space dimension subdivides systems into more cate-

gories, going from very local solutions to solutions that

can be used anywhere. Similarly to the computation

dimension of Demeure et al., we also focus on the ele-

ments a system can distribute, but we split the systems

based on the granularity of their distribution. Our last

dimension, the support for state transfer, is not used in

any of the previously described classifications. Never-

theless, it is interesting to see that many of the existing

DUI systems seem to support state transfer.

In order to make our classification more interactive,

we created an online version1 which shows the classifi-

cation grid together with a time slider. The slider can be

used to highlight the systems that have been developed

during a certain timespan. A search box can further be

used to find a particular research paper based on its

title and information about the paper is then shown in

an information panel next to the classification grid. By

selecting a paper in the grid, information about the se-

lected paper is shown in the same panel. While in this

paper we present an extensive overview and classifica-

tion of existing DUI approaches, we plan to add new as

well as potentially missing solutions to our interactive

online DUI classification over time. We further foresee

to add the functionality that authors can individually

add their papers to our online classification grid and

thereby hope to establish a valuable resource for the

DUI research community.

Based on the presented three dimensions, we defined

the goal for the system that is currently under develop-

ment. The aim is to be in the upper-right corner of the

grid, hence having a system with no restriction in terms

of interaction space and a fine granularity of distribu-

tion. We further aim to support state transfer during

the distribution. Note that there are already some sys-

tems in that corner of our classification. However, these

solutions do normally not support end-user DUI devel-

opment but focus on designers or developers. We aim

to enable the end-user development of DUIs as further

discussed in the remainder of this paper.

1 http://dui.wise.vub.ac.be/classification/

8 Audrey Sanctorum, Beat Signer

1.5 Development of DUIs

Some of the previously described systems focus on in-

teraction techniques [1,7,25,34,35] or the collabora-

tive aspect [3–6,14,26], others on the portability [38]

and a third category focusses on making it easier

for designers and developers to create DUI applica-

tions [2,8,15,29–31,38,50]. However, almost none of

the existing solutions deal with making the frameworks

available to end users without any programming skills.

Some systems such as Weave [8] provide “easy-to-use”

scripting languages in order to build DUIs or to ease the

distribution across different devices. WebSplitter [19]

provides users with an XML file specifying the dis-

tribution of UI elements across devices. Going a step

further, XDStudio [30] offers a web-based authoring

environment for designers with only basic web devel-

opment experience. Finally, Husmann et al. [22] pre-

sented MultiMasher, a tool for technical as well as non-

technical users. Nevertheless, MultiMasher is limited to

the distribution of website components and users can-

not distribute their own applications and data (e.g doc-

uments, pictures and files). While these systems make

a step into the right direction they often still represent

“closed solutions” where it is up to the developer or

designer to define how exactly an end user can interact

across devices.

1.6 Discussion

We have presented a rich body of work in the domain

of distributed user interfaces. While some projects fo-

cus on the interaction techniques used in performing

cross-device interactions, others focus on the elements

that can be distributed among devices. A third group

of solutions pay special attention to the environment in

which the distribution takes place.

Authors focussing on the cross-device interactions

all propose new interaction techniques to manipulate

and share data across devices. However, each applica-

tion provides their own set of interactions, often with-

out taking into account existing interactions introduced

by other systems. This results in inconsistent interac-

tions for similar actions across different cross-device ap-

plications. For example, in one system the sharing of a

UI component is achieved by tilting the device, while in

another solution the user has to swipe the UI compo-

nent to the target device. In addition, different modal-

ities such as speech or gestures are sometimes used to

transfer content. Further, in order to be able to share

data the devices need to be connected to each other,

entailing different kinds of interactions such as bump-

ing or stitching as well as other technologies including

QR codes, NFC tags, Bluetooth or WiFi.

A second group of research investigates the elements

that can be distributed across devices. In some cases,

different UI components can be distributed, while in

other approaches the UI can only be distributed as a

whole, restricting the granularity of the distribution.

The distribution of UI components is often limited to

specific devices. For example, in some of the presented

solutions, data can only be shared between Android

devices.

Finally, a number of the presented solutions only

work in a specific environment. These systems are re-

stricted in terms of space due to their fixed setup using

static cameras, projectors, infrared as well as other sen-

sors. Various approaches rely on a central server in or-

der to achieve cross-device distribution where users are

no longer bound to a fixed location. However, these so-

lutions still depend on a connection to a central server.

A last group of systems does neither need a fixed setup

nor a central server. These solutions often rely on peer-

to-peer connectivity and therefore are not limited in

terms of interaction space.

To conclude, in an ideal DUI solution users should

be able to distribute any UI element as well as an entire

user interface to any other UI-compatible device by us-

ing well-defined interactions and without the need for

a fixed setup. By all means such a system should also

be user friendly. The following section describes our ap-

proach towards a flexible solution for distributed user

interfaces addressing some of the discussed issues.

2 Proposed Approach

In order to overcome some of the shortcomings of ex-

isting distributed user interface approaches described

in the previous section, we aim at empowering end

users to create, modify and reconfigure DUIs. This al-

lows end users to combine multiple interfaces and build

their own customised distributed user interfaces in or-

der to better support their daily activities. A first ques-

tion that arises in this context is how to concretely en-

able end users to define their customised interactions

across electronic devices dealing with digital informa-

tion and services. Further questions are: “What will end

users be able to modify?”, “How much control will end

users have in terms of the granularity of the UI com-

ponents to be distributed?”, “Will end users be limited

by a specific location, space or office setting?”, “Will

end users be able to share their configuration of cus-

tomised UIs?” and “Can end users reuse parts of other

configurations?”.

Towards End-User Development of Distributed User Interfaces 9

In order to allow end users to customise existing

user interfaces as well as to define their own new dis-

tributed interfaces, there is a need for end-user author-

ing tools that enable the specification of cross-device

interactions. Note that the authoring should not rely

on a single method but offer different possibilities for

unifying the different devices forming part of the in-

teraction. We plan to develop a framework which en-

ables the rapid prototyping of innovative DUIs by de-

velopers but also allows end users to customise existing

interfaces as well as define their own distributed user

interfaces via a dedicated end-user authoring tool. In

order to develop such a rapid prototyping framework,

we are currently investigating a conceptual model with

the necessary abstractions for the end-user definition

of cross-device interactions. Thereby, we aim for a solu-

tion where digital interface components, tangible UI el-

ements as well as the triggered application services are

treated as modular components. Any programming ef-

forts for new cross-device user interfaces should further

be minimised by turning the development into an au-

thoring rather than a programming activity.

In the remainder of this section we discuss a

DUI scenario to highlight some of the issues to be ad-

dressed in a DUI framework for end users. We then

present our vision and some initial ideas for an end-user

DUI framework. Finally, we discuss some requirements

for end-user authoring tools.

2.1 Scrapbook Scenario

Consider Chloe, a young PhD student who just got back

from her holidays in Japan. During her trip, Chloe took

a lot of pictures with her digital camera as well as with

her smartphone. She even recorded some sound clips

with her smartphone in order to capture the Asian at-

mosphere. Now that she is back home, she wants to

transfer the pictures to her laptop. Since Chloe often

transfers information from her devices to her computer,

she defined a swipe gesture specifically for that pur-

pose. In order to be able to regroup the pictures on

her laptop, she swipes the folder containing the pic-

tures on her camera into the direction of her computer

screen and she does the same for the pictures on her

smartphone. After the pictures have been transferred,

Chloe starts sorting them on her laptop. A few minutes

later, she gets interrupted by a call from her parents,

asking her to come over for dinner. It is a long way

from Chloe’s flat to her parents’ house and she wants

to continue with the sorting of her pictures. Hence, she

quickly takes her tablet and performs a swipe gesture

from the corresponding folder on her computer screen

to move the holiday pictures to her tablet and contin-

ues with the deletion and renaming of pictures on the

bus ride to her parents. After dinner at Chloe’s par-

ents, her parents would already like to see some of her

holiday pictures. Therefore, Chloe swipes her pictures

from her tablet to her parents’ TV screen and opens the

remote controller application she created. As the par-

ents would also like to control the stream of pictures,

they ask Chloe to share her application on their smart-

phones. Chloe quickly explains how to use the remote

controller and during the instructions, her father repo-

sitions some interface components in order to make it

easier for him to use the remote controller application.

The next morning, Chloe goes early to her work-

place. Having some free time, she wants to make a

scrapbook with the pictures that she sorted the day be-

fore. Chloe often creates a scrapbook from her holidays

and always looses some time transferring the pictures

and importing them in her scrapbooking software. Now

she decides to create an interface recognising a specific

gesture to copy the pictures to her desktop computer

and automatically import and open them in her scrap-

booking program. She defines that a double swipe ges-

ture should be used for this functionality. Using her

newly defined gesture, the transfer of the pictures to

her desktop computer, the opening of her scrapbooking

software as well as the import of the pictures is done

automatically. Finally, Chloe decides to add some au-

dio fragments to her scrapbook. Therefore, she takes

her smartphone, opens the audio file to select a small

fragment and uses a hold and tilt gesture to transfer

the fragment to her scrapbooking program.

In this scenario, we presented an example of how our
approach could be used by end users in their daily lives.

Since different end users do not always expect the same

behaviour from their smart devices and want similar

actions to be performed in slightly different ways [20],

we aim for enabling users to define their own interface,

gestures and the actions triggered by these gestures.

Chloe defined four interfaces, each of them recognising

a different gesture in the described scenario. The swipe

gesture is used to transfer folders, the double swipe to

transfer pictures and open them in the scrapbooking

software, the hold and tilt gesture transfers a specific

audio fragment to the currently opened software and

the tap gesture is used in the remote controller inter-

face to browse pictures on a secondary screen. In our

scenario, the latter has also been shared with other

users. These users might want to adapt the user in-

terface or change some of the interactions, as we illus-

trated with Chloe’s father. Furthermore, interfaces can

run on multiple devices. Note that Chloe’s swipe inter-

face to transfer pictures and folders is shared across all

10 Audrey Sanctorum, Beat Signer

her devices. In the described scenario Chloe used only

touch gestures to interact with her devices. However,

our approach is not limited to touch gesture interac-

tion but allows for alternative interaction styles such as

speech commands, gaze interaction or mid-air gestures.

Based on the described scenario and the envisioned

interactions, we derived the requirements R1–R5 for an

end-user DUI framework:

R1: A user must be able to add new functional-
ity Users should be able to add new user interface com-

ponents, gestures and actions through a simple plug-in

mechanism.

R2: The creation of a user interface must be
simple Users should be able to create their own user

interface based on a set of pre-defined user interface

components, gestures and actions.

R3: A user must be able to re-use and combine
different user interfaces Users should be able to

re-use and combine user interfaces, user interface com-

ponents, gestures and actions in order to create their

customised interfaces, gestures or actions.

R4: A user must be able to reconfigure existing
user interfaces Users should be able to use external

user interfaces and reconfigure them accordingly.

R5: A user must be able to share their user in-
terfaces Users should be able to share their user in-

terfaces with other users.

2.2 DUI Model

In order to facilitate the development of an end-user

authoring tool and the creation of DUI applications,

we are currently investigating a conceptual model by

basing ourselves on existing related work. A number

of authors presented models for cross-device interac-

tions. For example, Nebeling et al. [32] introduced a

model including the concepts of user, device, data, pri-

vate session and session. These concepts are tracked

by a multi-user/multi-device platform and the relation-

ships between concepts are timestamped while the ac-

tions that can be performed on the data are hold in

an action attribute. An action can be the adding, edit-

ing, copying, deleting, moving and logging of data. An-

other platform model which is more centred around

the concrete distribution of UIs has been introduced by

Melchior [28]. In his model, a platform can consist of

other platforms. For example, a laptop has three plat-

forms, the laptop itself, the screen and the keyboard.

Furthermore, a platform has the three main component

categories of connection, hardware and audio/video.

The connection represents the input and output con-

nections (e.g. Bluetooth, WiFi) available on the plat-

form. The hardware defines the hardware components

of the platforms, such as the battery, CPU and mem-

ory. Finally, the audio/video category holds the compo-

nents linked to the media (e.g. camera, speaker or mi-

crophone). Most existing models are designed for a spe-

cific platform or system introduced by the authors. The

models are neither made nor used to describe other sys-

tems. Therefore, Tesoriero [48] presented a metamodel

to describe the capabilities and states of DUI systems.

Two model editors are presented which can be used

to build and modify UI distribution models. Tesoriero

analysed five different user interfaces using the editors,

which showcased the distribution characteristics of each

UI and its components. All these models focus on the

distribution across devices. However, there is a lack of

concepts such as the re-usability of UI components, dif-

ferent classes of users as well as the sharing of DUI con-

figurations between users. We are currently developing

a user-centric cross-device interaction model addressing

some of these issues.

A promising approach that we are currently inves-

tigating for modelling loosely coupled interactions be-

tween user interface components and various actions is

based on the work of Signer and Norrie [42]. They in-

troduced the resource-selector-link (RSL) hypermedia

metamodel and the corresponding iServer [41,45] imple-

mentation for linking arbitrary digital and physical en-

tities via a resource plug-in mechanism. In our context,

resources can be seen as different user interfaces and

user interface components which can be linked together

based on the Link concept illustrated in Figure 3. We

often do not want to link an entire resource but only

specific parts of a resource, such as a part of an au-

dio file as shown in Chloe’s case in our scenario. The

concept of an RSL selector allows us to address parts

of a specific resource and enables a finer level of dis-

tribution granularity. Note that it is out of the scope

of this paper to describe all the RSL components but a

detailed description of the RSL hypermedia metamodel

can be found in [42]. An important RSL concept for re-

alising our goal of DUI state transfer and the execution

of third-party application logic (requirement R1) is the

concept of so-called active components [43,44]. An ac-

tive component is a special type of resource representing

a piece of program code that gets executed once a link

to an active component is triggered. This has the ad-

vantage that one can trigger some application logic by

simply linking the UI, or parts of the UI represented by

resources and selectors, to an active component. More

Towards End-User Development of Distributed User Interfaces 11

importantly, an active component does not have to im-

plement the application logic itself but can also act as a

proxy for functionality offered by any third-party appli-

cation as discussed in [43]. We foresee that the concept

of active components can enable the rapid prototyping

of cross-device applications by simply defining links be-

tween the necessary components (requirement R2) from

a growing set of active components.

Selector Resource

Entity

Link

source target

Layer

User

SERVERi

Property

UI

UIi

UIComponent

0..* 1

0..*

1..*

0..*

1..*

1 0..*

creator

1

0..*

1..*

0..*

Active
Component

Fig. 3 Approach based on the RSL hypermedia metamodel

Let us illustrate the idea of RSL-based DUI devel-

opment via a simple example from the previously in-

troduced scrapbook scenario. In the last part of the

scenario, Chloe wants her pictures to be copied to her

computer and automatically imported into her scrap-

booking software with a single gesture. She therefore

defined this functionality by linking multiple active

components (ACs) as illustrated in Figure 4. The idea

is to have a swipe area which can be linked to dif-

ferent active components. In our example, Chloe has

linked the Gesture active component to the swipe area.

The Gesture active component can recognise differ-
ent gestures such as a swipe, double swipe or tap.

Since Chloe wants to use the double swipe gesture to

copy her pictures, she links the Gesture active com-

ponent to the Data Transfer component. She fur-

ther specifies the type of gesture for which the Data

Transfer active component should be triggered via the

“double swipe” value of the ac:gesture link property.

In the Data Transfer active component she defines

her desktop computer as the receiving device. Conse-

quently, all interaction in the swipe area will be for-

warded to the Gesture active component which will

trigger the Data Transfer active component once a

double swipe gesture is recognised. Note that the cor-

responding parameter—in this case the type of the ges-

ture (double swipe)—is stored as a property of the

RSL link instance. In order to trigger the opening of

the scrapbooking software with the transferred data,

Chloe linked the Data Transfer active component to

the Application Launcher active component which

has been configured to open the corresponding appli-

cation. This simple example illustrates the flexibility

of the proposed active component-based approach. The

Gesture active component might be linked to multiple

active components in order to enable new functionality

(requirement R1). For example, by reusing the Gesture

active component, Chloe could define a new action that

saves and closes the scrapbooking software on her desk-

top computer when a tap gesture is performed in the

swipe area (requirement R3). In addition, multiple ac-

tive components might be defined as the target of an

RSL link in order to trigger multiple actions.

Tablet

Computer

Runtime Environment

Runtime Environment

Data
Transfer AC

Application

Launcher AC

Gesture AC

<ac:gesture, double swipe>
Swipe Area

Cats Games

Family StuffParty

Japan

Japan

Fig. 4 Graphical representation of the proposed approach
for the Scrapbook scenario

We further plan to address a number of other issues

such as how to clearly separate cross-device interactions

from the underlying shared data and application state,

different forms of lightweight data exchange between

devices as well as the possibility for configuring inter-

actions in an ad-hoc manner.

2.3 End-User-Oriented DUI Framework

In addition to our model for cross-device interaction,

we are currently designing an architecture and imple-

mentation of a framework which provides the neces-

sary functionality to communicate between different

12 Audrey Sanctorum, Beat Signer

user interface components and the corresponding ap-

plication services. In order to facilitate replication and

to enable the synchronisation of UIs and UI compo-

nents on different devices, a distributed model-view-

controller (dMVC) pattern, which has proven to be

efficient by Bardam et al. [3,4], might be used. An-

other possibility is to follow the replication-based

model of Biehl et al. [6] which captures the applica-

tion window’s pixel data and reproduces it on other

devices. On the implementation level, we plan to

use an event-based system and a publish/subscribe

message passing mechanism as used by other sys-

tems [1,3,4,7,8,18,23,26,30,38]. Since we aim for a

portable solution that can be used at any location

without prior installation, we consider using JavaScript

and other web technologies to support the distri-

bution across devices as seen in other DUI sys-

tems [7,8,22,30,34,38]. Furthermore, the Web has great

potential for the development and use of future DUI

systems in daily life [39].

While the proposed cross-device interaction model

is based on some of the concepts introduced by the

RSL hypermedia metamodel, we also intend to de-

velop a framework providing the necessary function-

ality to communicate between different user inter-

face components as well as a mechanism to dis-

cover and manage existing user interface components

(e.g. resource/selector plug-ins and active components)

(requirement R4). The latter is encapsulated in the

Developer Registry component shown in the gen-

eral architecture overview in Figure 5. The Active

Components subcomponent stores all active compo-

nents that have been implemented by developers

while the Resource/Selector Plug-ins subcompo-

nent stores all the resource and selector plug-ins. In

addition, it is essential to have a user interface regis-

tration and discovery service where end users can up-

load their newly composed interfaces to share them

with other users (requirement R5). This functionality

is encapsulated in the End User Registry component.

The registry service is used to keep track of the differ-

ent UI components in a given setting by means of user

profiles. If a user created some new cross-device interac-

tions between different UI components, they might be

interested to make their new DUI configuration avail-

able to other users in a similar way as developers do

this in the first place. For this purpose, users can post

their cross-device configurations to the Configuration

Pool. Note that this has the advantage that the inter-

actions can be adapted and modified by different users

over time which might be seen as an evolutionary de-

velopment of the corresponding interactions (require-

ment R4). While in most cases users will adapt exist-

ing solutions based on their individual preferences, it

might also be interesting to see whether some general

interaction patterns will evolve over time.

U
se

r
In

te
ra

ct
io

n
s

U
I

In
te

ra
ct

io
n

s

Active

Components

Resource/Selector

Plug-ins

Developer RegistryCore

RSL

User Profile

End-User Registry

Configuration

Pool

User Developer

Fig. 5 Architecture for user-defined DUI interactions

We foresee a synergy between interactions that have

been predefined by a developer and are used as is, the

ones that are slightly adapted by end users, as well as

newly defined interactions by end users. Note that we

do not plan to delegate all the interaction definitions to

the end user. End users might still mainly rely on pre-

defined interactions but have the possibility to adapt

them or add new cross-device interactions if necessary.

By providing end users the freedom to adapt the in-

teractions, we address the issue that individual users

might have slightly different requirements for certain

tasks which makes it impossible to design interactions

that perfectly suit everyone. Furthermore, the accep-

tance of specific user interfaces might be increased if

end users have the chance to better integrate them with

their existing work practices.

A last point that should be addressed and is re-

lated to the idea that users can share their interaction

components, is how to control the granularity of the

shared components. Based on the proposed model, a

user could only share simple user interface components

which trigger a single action via an active component.

However, a user might often want to share more com-

plex interactions involving multiple devices which can

trigger different actions. We are therefore investigating

how the proposed model has to be extended in order to

group multiple components together and share them as

a whole. Since the RSL hypermedia metamodel offers

the concept of structural links for grouping multiple en-

tities, we plan to further investigate whether and how

Towards End-User Development of Distributed User Interfaces 13

structural links can be used for defining more complex

cross-device interactions (requirement R3).

2.4 End-User Authoring Tool

In order to enable end users to define their own cus-

tomisable interactions, there is a need for an end user

authoring tool. We focus on two user groups, end users

as well as non-expert developers. Therefore, the tool

needs to be straightforward, error-prone and easy to

use without any necessary programming skills (require-

ment R2). Furthermore, it must be extensible so that

new components and functionality can be added via

a plug-in mechanism over time (requirement R1). In

order to increase the learnability and usability of the

tool, the best metaphor for conveying information to

the user has to be examined. A number of different

metaphors for end-user authoring tools have been inves-

tigated. Recently, most of them have been applied in the

domain of smart home and Internet of Things. Danado

and Paternò’s Puzzle framework [10] uses jigsaw pieces

to provide end users the possibility to create, modify

and execute mobile applications as well as the support

for interaction with smart things, phone functionality

and web services. Jigsaw pieces have also been used by

Humble et al. [21] to allow users to reconfigure their

ubiquitous domestic environments via a tablet editor.

Some systems focus on a specific domain and provide a

graphical editor tool with widgets depending on this

domain. For example, the end user development en-

vironment of Ghiani et al. [17] enables users to cus-

tomise the functionality and user interface of a multi-

device museum guide. They provide a direct manipu-

lation visual environment for editing the main features

of the museum guide and for the creation of associ-

ated educational games. Likewise, the EUPHORIA sys-

tem [27] enables end users to construct direct manip-

ulation GUIs via a graphical tool palette. However in

EUPHORIA, users can draw their own widgets with al-

ternative representations. Nowadays, a popular visual

tool is the If This Then That (IFTTT)2 web applica-

tion that allows users to create conditional statements

to connect applications and Web Services to automate

certain actions. For example, if it is midnight turn all

the lights off. Such a rule-based authoring mode can

also be found in Atooma3, a free Android application,

which allows end users to define more complex rules

than in IFTTT. Zhang and Brügge [51] provide a rule-

based interface to build smart home applications and

introduce a second version of their tool based on the

2 https://ifttt.com
3 http://www.atooma.com

jigsaw metaphor. Another kind of end-user authoring

tools are based on pseudo natural language, such as

the SPOK system presented by Coutaz et al. [9] which

is used for smart home environments. End-user author-

ing tools can also be found in mashup tools allowing

Web Services to be linked to each other. Some of these

tools including Microsoft PopFly and Yahoo Pipes use

the workflow metaphor.

Further research will be necessary based on these

existing authoring tools in order to find a suitable

metaphor supporting the concepts introduced in our

model and framework to allow end users as well as non-

expert developers to create and share their customis-

able DUI applications. Moreover, we plan to investigate

new forms of authoring which go beyond the graphical

definition and composition of DUI interactions based

on programming-by-example.

3 Conclusions

A detailed analysis and classification of existing dis-

tributed user interface solutions has been presented.

The proposed classification helps comparing existing

DUI approaches in terms of the supported granular-

ity for distributed UI components, differences regarding

the supported interaction space as well as their support

for the distribution of state. Given that a major con-

tribution of this paper is the discussion and analysis of

existing DUI research, we designed an interactive on-

line version of the proposed DUI classification scheme

which will be continuously extended and updated as

new DUI solutions appear. We further proposed some

ideas for the end-user development of distributed user

interfaces based on a hypermedia approach. Thereby,

UI components can be linked to arbitrary application

logic at any level of granularity based on the concept

of active components. Finally, we have introduced an

architecture for the sharing of user-defined DUI com-

ponents, enabling an evolutionary crowd-based DUI de-

velopment and discussed some innovative ideas for the

authoring of distributed user interfaces.

Acknowledgements

The research of Audrey Sanctorum is funded by a PhD

grant of the Research Foundation Flanders (FWO).

References

1. Bader, T., Heck, A., Beyerer, J.: Lift-and-Drop: Crossing
Boundaries in a Multi-Display Environment by Airlift.
In: Proceedings of AVI 2010, International Conference
on Advanced Visual Interfaces, pp. 139–146. Rome, Italy
(2010). DOI 10.1145/1842993.1843019

14 Audrey Sanctorum, Beat Signer

2. Balme, L., Demeure, A., Barralon, N., Coutaz, J.,
Calvary, G.: CAMELEON-RT: A Software Architec-
ture Reference Model for Distributed, Migratable, and
Plastic User Interfaces. In: Proceedings of EUSAI
2004, Symposium on Ambient Intelligence, pp. 291–
302. Eindhoven, The Netherlands (2004). DOI 10.1007/
978-3-540-30473-9 28

3. Bardram, J., Gueddana, S., Houben, S., Nielsen, S.:
ReticularSpaces: Activity-based Computing Support for
Physically Distributed and Collaborative Smart Spaces.
In: Proceedings of CHI 2012, Conference on Human Fac-
tors in Computing Systems, pp. 2845–2854. Austin, USA
(2012). DOI 10.1145/2207676.2208689

4. Bardram, J., Houben, S., Nielsen, S., Gueddana, S.: The
Design and Architecture of ReticularSpaces: An Activity-
based Computing Framework for Distributed and Col-
laborative Smartspaces. In: Proceedings of EICS 2012,
Symposium on Engineering Interactive Computing Sys-
tems, pp. 269–274. Copenhagen, Denmark (2012). DOI
10.1145/2305484.2305529

5. Biehl, J.T., Bailey, B.P.: ARIS: An Interface for Applica-
tion Relocation in an Interactive Space. In: Proceedings
of GI 2004, Conference on Graphics Interface, pp. 107–
116. London, Canada (2004). DOI 10.20380/GI2004.14

6. Biehl, J.T., Baker, W.T., Bailey, B.P., Tan, D.S., Inkpen,
K.M., Czerwinski, M.: IMPROMPTU: A New Interac-
tion Framework for Supporting Collaboration in Multi-
ple Display Environments and Its Field Evaluation for
Co-located Software Development. In: Proceedings of
CHI 2008, Conference on Human Factors in Comput-
ing Systems, pp. 939–948. Florence, Italy (2008). DOI
10.1145/1357054.1357200

7. Chang, T., Li, Y.: Deep Shot: A Framework for Migrat-
ing Tasks Across Devices Using Mobile Phone Cameras.
In: Proceedings of CHI 2011, Conference on Human Fac-
tors in Computing Systems, pp. 2163–2172. Vancouver,
Canada (2011). DOI 10.1145/1978942.1979257

8. Chi, P.P., Li, Y.: Weave: Scripting Cross-Device Wearable
Interaction. In: Proceedings of CHI 2015, Conference on
Human Factors in Computing Systems, pp. 3923–3932.
Seoul, Republic of Korea (2015). DOI 10.1145/2702123.
2702451

9. Coutaz, J., Caffiau, S., Demeure, A., Crowley, J.L.: Early
Lessons From The Development of SPOK, an End-User
Development Environment for Smart Homes. In: Pro-
ceedings of UbiComp 2014, International Joint Confer-
ence on Pervasive and Ubiquitous Computing, pp. 895–
902. Seattle, USA (2014). DOI 10.1145/2638728.2641559

10. Danado, J., Paternò, F.: Puzzle: A Mobile Application
Development Environment Using a Jigsaw Metaphor.
Journal of Visual Languages and Computing 25(4), 297–
315 (2014). DOI 10.1016/j.jvlc.2014.03.005

11. Demeure, A., Sottet, J., Calvary, G., Coutaz, J., Gan-
neau, V., Vanderdonckt, J.: The 4C Reference Model for
Distributed User Interfaces. In: Proceedings of ICAS
2008, Conference on Autonomic and Autonomous Sys-
tems, pp. 61–69. Gosier, Guadeloupe (2008). DOI
10.1109/ICAS.2008.34

12. Dietz, P.H., Leigh, D.: DiamondTouch: A Multi-User
Touch Technology. In: Proceedings of UIST 2001, Sympo-
sium on User Interface Software and Technology, pp. 219–
226. Orlando, USA (2001). DOI 10.1145/502348.502389

13. Elmqvist, N.: Distributed User Interfaces: State of the
Art. In: Distributed User Interfaces: Designing Interfaces
for the Distributed Ecosystem, pp. 1–12 (2011). DOI
10.1007/978-1-4471-2271-5 1

14. Everitt, K., Shen, C., Ryall, K., Forlines, C.: Multi-
Space: Enabling Electronic Document Micro-Mobility in
Table-centric, Multi-Device Environments. In: Proceed-
ings of TableTop 2006, Workshop on Horizontal Inter-
active Human-Computer Systems, pp. 27–34. Adelaide,
Australia (2006). DOI 10.1109/TABLETOP.2006.23

15. Frosini, L., Manca, M., Paternò, F.: A Framework for the
Development of Distributed Interactive Applications. In:
Proceedings of EICS 2013, Symposium on Engineering
Interactive Computing Systems, pp. 249–254. London,
UK (2013). DOI 10.1145/2480296.2480328

16. Geronimo, L.D., Husmann, M., Patel, A., Tuerk, C., Nor-
rie, M.C.: CTAT: Tilt-and-Tap Across Devices. In: Pro-
ceedings of ICWE 2016, International Conference on Web
Engineering, pp. 96–113. Lugano, Switzerland (2016).
DOI 10.1007/978-3-319-38791-8 6

17. Ghiani, G., Paternò, F., Spano, L.D.: Cicero Designer: An
Environment for End-User Development of Multi-Device
Museum Guides. In: Proceedings of IS-EUD, Sympo-
sium on End-User Development, pp. 265–274. Siegen,
Germany (2009). DOI 10.1007/978-3-642-00427-8 15

18. Hamilton, P., Wigdor, D.J.: Conductor: Enabling and
Understanding Cross-Device Interaction. In: Proceed-
ings of CHI 2014, Conference on Human Factors in Com-
puting Systems, pp. 2773–2782. Toronto, Canada (2014).
DOI 10.1145/2556288.2557170

19. Han, R., Perret, V., Naghshineh, M.: WebSplitter: A
Unified XML Framework for Multi-Device Collabora-
tive Web Browsing. In: Proceedings of CSCW 2000,
Conference on Computer Supported Cooperative Work,
pp. 221–230. Philadelphia, USA (2000). DOI 10.1145/
358916.358993

20. Holloway, S., Julien, C.: The Case for End-User Program-
ming of Ubiquitous Computing Environments. In: Pro-
ceedings of FoSER 2010, Workshop on Future of Soft-
ware Engineering Research, pp. 167–172. Santa Fe, USA
(2010). DOI 10.1145/1882362.1882398

21. Humble, J., Crabtree, A., Hemmings, T., Åkesson, K.,
Koleva, B., Rodden, T., Hansson, P.: “Playing with the
Bits”: User-Configuration of Ubiquitous Domestic Envi-
ronments. In: Proceedings of UbiComp 2003, Conference
on Ubiquitous Computing, pp. 256–263. Seattle, USA
(2003). DOI 10.1007/978-3-540-39653-6 20

22. Husmann, M., Nebeling, M., Pongelli, S., Norrie, M.C.:
MultiMasher: Providing Architectural Support and Vi-
sual Tools for Multi-device Mashups. In: Proceedings
of WISE 2014, International Conference on Web Infor-
mation Systems Engineering, pp. 199–214. Thessaloniki,
Greece (2014). DOI 10.1007/978-3-319-11746-1 15

23. Johanson, B., Fox, A., Winograd, T.: The Interactive
Workspaces Project: Experiences with Ubiquitous Com-
puting Rooms. IEEE Pervasive Computing 1(2), 67–74
(2002). DOI 10.1109/MPRV.2002.1012339

24. Johanson, B., Hutchins, G., Winograd, T., Stone, M.C.:
PointRight: Experience with Flexible Input Redirection
in Interactive Workspaces. In: Proceedings of UIST 2002,
Symposium on User Interface Software and Technology,
pp. 227–234. Paris, France (2002). DOI 10.1145/571985.
572019

25. Leigh, S., Schoessler, P., Heibeck, F., Maes, P., Ishii, H.:
THAW: Tangible Interaction with See-Through Augmen-
tation for Smartphones on Computer Screens. In: Pro-
ceedings of TEI 2015, International Conference on Tan-
gible, Embedded, and Embodied Interaction, pp. 89–96.
Stanford, USA (2015). DOI 10.1145/2677199.2680584

26. Marquardt, N., Hinckley, K., Greenberg, S.: Cross-Device
Interaction via Micro-mobility and F-formations. In: Pro-

Towards End-User Development of Distributed User Interfaces 15

ceedings of UIST 2012, Symposium on User Interface
Software and Technology, pp. 13–22. Cambridge, USA
(2012). DOI 10.1145/2380116.2380121

27. McCartney, P., Goldman, K.J., Saff, D.E.: EUPHO-
RIA: End-User Construction of Direct Manipulation
User Interfaces for Distributed Applications. Software-
Concepts and Tools 16(4), 147–159 (1995). DOI 10.7936/
K7PZ572S

28. Melchior, J.: Distributed User Interfaces in Space and
Time. In: Proceedings of EICS 2011, Symposium on
Engineering Interactive Computing System, pp. 311–314.
Pisa, Italy (2011). DOI 10.1145/1996461.1996544

29. Melchior, J., Grolaux, D., Vanderdonckt, J., Roy, P.V.:
A Toolkit for Peer-to-Peer Distributed User Interfaces:
Concepts, Implementation, and Applications. In: Pro-
ceedings of EICS 2009, Symposium on Engineering In-
teractive Computing System, pp. 69–78. Pittsburgh, USA
(2009). DOI 10.1145/1570433.1570449

30. Nebeling, M., Mintsi, T., Husmann, M., Norrie, M.C.:
Interactive Development of Cross-Device User Interfaces.
In: Proceedings of CHI 2014, Conference on Human Fac-
tors in Computing Systems, pp. 2793–2802. Toronto,
Canada (2014). DOI 10.1145/2556288.2556980

31. Nebeling, M., Teunissen, E., Husmann, M., Norrie, M.C.:
XDKinect: Development Framework for Cross-Device In-
teraction Using Kinect. In: Proceedings of EICS 2014,
Symposium on Engineering Interactive Computing Sys-
tems, pp. 65–74. Rome, Italy (2014). DOI 10.1145/
2607023.2607024

32. Nebeling, M., Zimmerli, C., Husmann, M., Simmen, D.E.,
Norrie, M.C.: Information Concepts for Cross-Device Ap-
plications. In: Proceedings of DUI 2013, Workshop on
Distributed User Interfaces: Models, Methods and Tools,
pp. 14–17. London, UK (2013)

33. Paternò, F., Santoro, C.: A Logical Framework for Multi-
Device User Interfaces. In: Proceedings of EICS 2012,
Symposium on Engineering Interactive Computing Sys-
tems, pp. 45–50. Copenhagen, Denmark (2012). DOI
10.1145/2305484.2305494

34. Rädle, R., Jetter, H., Marquardt, N., Reiterer, H.,
Rogers, Y.: HuddleLamp: Spatially-Aware Mobile Dis-
plays for Ad-hoc Around-the-Table Collaboration. In:
Proceedings of ITS 2014, International Conference on
Interactive Tabletops and Surfaces, pp. 45–54. Dresden,
Germany (2014). DOI 10.1145/2669485.2669500

35. Rekimoto, J.: Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments. In:
Proceedings of UIST 1997, Symposium on User Inter-
face Software and Technology, pp. 31–39. Banff, Canada
(1997). DOI 10.1145/263407.263505

36. Robertson, S.P., Wharton, C., Ashworth, C., Franzke,
M.: Dual Device User Interface Design: PDAs and In-
teractive Television. In: Proceedings of CHI 1996, Con-
ference on Human Factors in Computing Systems, pp.
79–86. Vancouver, Canada (1996). DOI 10.1145/238386.
238408

37. Sanctorum, A., Signer, B.: Towards User-Defined Cross-
Device Interaction. In: Proceedings of DUI 2016,
Workshop on Distributed User Interfaces, pp. 179–
187. Lugano, Switzerland (2016). DOI 10.1007/
978-3-319-46963-8 17

38. Schreiner, M., Rädle, R., Jetter, H., Reiterer, H.:
Connichiwa: A Framework for Cross-Device Web Appli-
cations. In: Extended Abstracts of CHI, Conference on
Human Factors in Computing Systems, pp. 2163–2168.
Seoul, Republic of Korea (2015). DOI 10.1145/2702613.
2732909

39. Schreiner, M., Rädle, R., O’Hara, K., Reiterer, H.: De-
ployable Cross-Device Experiences: Proposing Additional

Web Standards. In: Proceedings of Cross-Surface 2015,
Workshop on Interacting with Multi-Device Ecologies in
the Wild, pp. 17–20. Madeira, Portugal (2015). DOI
10.1145/2817721.2835067

40. Shen, C., Everitt, K., Ryall, K.: UbiTable: Impromptu
Face-to-Face Collaboration on Horizontal Interactive
Surfaces. In: Proceedings of UbiComp 2003, International
Conference on Ubiquitous Computing, pp. 281–288. Seat-
tle, USA (2003). DOI 10.1007/978-3-540-39653-6 22

41. Signer, B.: Fundamental Concepts for Interactive Paper
and Cross-Media Information Spaces. Books on Demand
GmbH (2008)

42. Signer, B., Norrie, M.C.: As We May Link: A Gen-
eral Metamodel for Hypermedia Systems. In: Proceed-
ings of ER 2007, International Conference on Concep-
tual Modeling. Auckland, New Zealand (2007). DOI
10.1007/978-3-540-75563-0 25

43. Signer, B., Norrie, M.C.: A Framework for Developing
Pervasive Cross-Media Applications Based on Physical
Hypermedia and Active Components. In: Proceedings
of ICPCA 2008, International Conference on Pervasive
Computing and Applications. Alexandria, Egypt (2008).
DOI 10.1109/ICPCA.2008.4783676

44. Signer, B., Norrie, M.C.: Active Components as a
Method for Coupling Data and Services: A Database-
driven Application Development Process. In: Proceed-
ings of ICOODB 2009, International Conference on Ob-
ject Databases. Zurich, Switzerland (2009). DOI 10.1007/
978-3-642-14681-7 4

45. Signer, B., Norrie, M.C.: A Model and Architecture for
Open Cross-Media Annotation and Link Services. Infor-
mation Systems 36(6), 538–550 (2011). DOI 10.1016/j.
is.2010.08.002

46. Streitz, N.A., Geißler, J., Holmer, T., Konomi, S., Müller-
Tomfelde, C., Reischl, W., Rexroth, P., Seitz, P., Stein-
metz, R.: i-LAND: An Interactive Landscape for Creativ-
ity and Innovation. In: Proceeding of the CHI 1999, Con-
ference on Human Factors in Computing Systems, pp.
120–127. Pittsburgh, USA (1999). DOI 10.1145/302979.
303010

47. Tandler, P., Prante, T., Müller-Tomfelde, C., Streitz,
N.A., Steinmetz, R.: Connectables: Dynamic Coupling of
Displays for the Flexible Creation of Shared Workspaces.
In: Proceedings of UIST 2001, Symposium on User Inter-
face Software and Technology. Orlando, Florida (2001).
DOI 10.1145/502348.502351

48. Tesoriero, R.: Distributing User Interfaces. In: Proceed-
ings of DUI 2014, Workshop on Distributed User Inter-
faces and Multimodal Interaction, pp. 1–10. Toulouse,
France (2014). DOI 10.1145/2677356.2677669

49. Villanueva, P.G., Tesoriero, R., Gallud, J.A.: Distributing
Web Components in a Display Ecosystem Using Proxy-
work. In: Proceedings of HCI 2013, Conference on Human
Computer Interaction, pp. 28:1–28:6. London, UK (2013)

50. Yang, J., Wigdor, D.: Panelrama: Enabling Easy Speci-
fication of Cross-Device Web Applications. In: Proceed-
ings of CHI 2014, Conference on Human Factors in Com-
puting Systems, pp. 2783–2792. Toronto, Canada (2014).
DOI 10.1145/2556288.2557199

51. Zhang, T., Brügge, B.: Empowering the User to Build
Smart Home Applications. In: Proceedings of ICOST
2004, International Conference on Smart Homes and
Health Telematic, pp. 170–176. Singapore, Republic of
Singapore (2004)

