
iGesture: A General Gesture Recognition Framework

Beat Signer, Ueli Kurmann, Moira C. Norrie
Institute for Information Systems, ETH Zurich

CH-8092 Zurich
{signer,norrie}@inf.ethz.ch

Abstract

With the emergence of digital pen and paper interfaces,
there is a need for gesture recognition tools for digital pen
input. While there exists a variety of gesture recognition
frameworks, none of them addresses the issues of support-
ing application developers as well as the designers of new
recognition algorithms and, at the same time, can be inte-
grated with new forms of input devices such as digital pens.
We introduce iGesture, a Java-based gesture recognition
framework focusing on extensibility and cross-application
reusability by providing an integrated solution that includes
tools for gesture recognition as well as the creation and
management of gesture sets for the evaluation and optimi-
sation of new or existing gesture recognition algorithms. In
addition to traditional screen-based interaction, iGesture
provides a digital pen and paper interface.

1. Introduction

Over the last few years, we have developed a platform
for interactive paper (iPaper) to integrate paper and digital
media [8]. While the iPaper platform supports both the cap-
ture and real-time processing of digital pen information, so
far there has been no support for gesture recognition. Since
none of the existing gesture recognition frameworks com-
pletely satisfied our requirements, we decided to develop a
general and extensible gesture recognition framework.

The resulting iGesture framework provides a simple ges-
ture recognition application programming interface (API).
An application can either handle iGesture results directly
or use an event manager that executes commands based on
recognised gestures. So far, we have implemented four dif-
ferent algorithms to be used in the gesture recognition pro-
cess.

With our new iGesture tool, gesture sets can be created
and managed. A test bench supports the manual testing
of algorithms and special functionality is provided to cre-
ate the test data. Last but not least, we provide tools to

evaluate different gesture recognition algorithms and their
configurations in batch mode and visualise the results. In
addition to traditional screen-based interaction, the iGesture
framework also provides a digital pen and paper interface
enabling the capture of gestures from paper documents.

We start in Section 2 with an overview of existing mouse
and pen-based gesture recognition frameworks and outline
their main features as well as some of their limitations. In
Section 3, we present the architecture of our iGesture frame-
work and highlight some of its core features. Section 4
then describes the different user interfaces for designers of
new gesture recognition algorithms as well as for applica-
tion developers. Some comments about evaluating different
gesture recognition algorithms and concluding remarks are
given in Section 5.

2 Existing Gesture Recognition Frameworks

Specifying Gestures by Example [9] was published by
Rubine in 1991. The paper describes GRANDMA, an
object-oriented toolkit for rapidly adding gestures to direct
manipulation interfaces and introduces a specific classifica-
tion algorithm using statistical single-stroke gesture recog-
nition based on 13 different features.

Hong and Landay developed SATIN [5], a Java-based
toolkit for informal ink-based applications based on the Ru-
bine algorithm. SATIN provides various components in-
cluding different recognisers as well as the concept of a
multi-interpreter supporting the creation of pen-based appli-
cations. The toolkit is targeted at screen-based applications
and therefore mainly deals with the interpretation and beau-
tification of stroke data to build ink-based graphical Swing
applications.

A problem of gesture-based user interfaces is often the
similarity of specific gestures which makes it difficult to
develop robust gesture recognisers. quill [7] is a gesture
design toolkit addressing this problem by providing active
feedback to gesture designers when there is an ambiguity
between different gestures and assisting them with textual
advice to create more reliable gesture sets.

Microsoft provides a gesture recognition tool in the form
of the Microsoft Tablet PC SDK [2] that distinguishes be-
tween system and user application gestures. Unfortunately,
the recogniser is limited to a predefined set of gestures and
new gestures can only be integrated by implementing new
recognition algorithms. Due to its restriction to a fixed set
of gestures, the tool cannot be used to investigate new ges-
tures for digital pen and paper based user interfaces.

Finally, Swing Gestures [12] is a framework aiming to
add simple gestures to Java Swing applications. Eight ba-
sic gestures (up, down, left, right and the four diagonals)
are hard-coded and other gestures can only be constructed
based on these eight gestures, thereby limiting the power of
the framework.

None of these frameworks meets all of the requirements
of a general gesture recognition framework that caters for
new forms of interaction such as paper-based interfaces as
well as existing ones. Such a framework should be easy
to use by application developers and, at the same time, be
extendible for upcoming requirements of new applications.
Furthermore, it should provide a platform for designers of
new gesture recognition algorithms to implement their al-
gorithms and make them available to a wide audience. The
development of new algorithms should be supported by pro-
viding benchmarking and parameter optimisation tools. The
framework should also provide tools to define new gestures
and to efficiently capture gesture samples for testing.

3 iGesture Architecture

The iGesture framework is based on three main
components—the recogniser, a management console and
evaluation tools for testing and optimising algorithms—as
shown in Figure 1. In addition, our framework provides
some common data structures and model classes that are
used by all three components. We describe the three main
components and highlight some of our architectural choices
to make the gesture recognition framework as flexible and
extensible as possible.

Common Data Structures

Recogniser

Management
Console

Evaluation
Tools

Figure 1. Architecture overview

One of the main goals of iGesture is to support different
gesture recognition algorithms. To provide maximal flex-
ibility in the design and use of algorithms, we decided to
provide a compact interface as highlighted in Figure 2. The

Algorithm interface provides methods for the initialisa-
tion, the recognition process, the registration of an event
manager and for retrieving optional parameters and their de-
fault values.

+ getSamples(GestureClass gc) : List

SampleBasedAlgorithm

+init(Configuration c) : void
+recognise(Note note) : ResultSet
+addEventManagerListener(EventManager e) : void
+getConfigParameters() : Enum[]
+getDefaultParameter(String key) : String

«interface»
Algorithm+addGestureSet(GestureSet gs) : void

+getGestureSets() : List
+removeGestureSet(GestureSet gs) : void
+addAlgorithm(String algorithm) : void
+getAlgorithms() : List
+removeAlgorithm(Algorithm a) : void
+addParameter(String a, String key,

String val) : void
+getParameters(String key) : HashMap
+getParameter(Parameter p) : String
+getEventManager() : EventManager
+setEventManager(EventManager e) : void
+getMinAccuracy(): double
+getMinResultSetSize(): double

Configuration

+addEventManagerListener(EventManager e) : void
+fireEvent(ResultSet rs) : void
+getDefaultParameter(String key) : String

DefaultAlgorithm

Figure 2. Algorithm class diagram

An algorithm always has to be initialised with an in-
stance of the Configuration class containing gesture
sets, an optional event manager and algorithm-specific pa-
rameters which are managed in a key/value collection. This
configuration object can be created using the Java API or
by importing the data from an XML document. The frame-
work further offers an algorithm factory class to instantiate
algorithms based on information handled by a configuration
instance.

While the algorithm interface is mainly used by the de-
signer of new recognition algorithms, the application devel-
oper has access to the framework’s recogniser component—
configured with one or more recognition algorithms—based
on a single Recogniser class (facade pattern) shown in
Figure 3.

+Recogniser(Configuration config)
+Recogniser(Configuration config, EventManager e)
+Recogniser(Configuration config, GestureSet gs)
+Recogniser(File configFile)
+Recogniser(File configFile, File setFile, EventManager e)
+recognise(Note note, boolean recogniseAll) : ResultSet
+recognise(Note note) : ResultSet

Recogniser

Figure 3. Recogniser API

In general, the Recogniser is initialised with a con-
figuration object that contains information about the algo-
rithms to be used and is loaded from an XML file. Note that
multiple algorithms may be specified in a single configu-
ration file. The Recogniser class provides two meth-
ods with different behaviours if multiple algorithms have
been defined: the recognise(Note note) method
goes through the algorithms in sequential order and termi-
nates the recognition process as soon as the first algorithm
returns a valid result whereas the recognise(Note
note, boolean recogniseAll) method combines
the results returned by all of the algorithms. The Note

represents our data structure for storing information cap-
tured by an input device. Each Note contains one or more
strokes consisting of a list of timestamped locations. The
Recogniser always returns a result set which is either
empty or contains an ordered list of result objects. We de-
cided to return a set of potential results instead of a single
one to enable potential applications to use any additional
contextual information in the selection process.

The representation of gestures within the iGesture frame-
work was a fundamental design decision since it had im-
plications on all the other system parts depending on the
gesture data structure. One requirement for the data struc-
ture was that it should be possible to represent single ges-
tures as well as groups of gestures. Furthermore, it was
clear that different algorithms need different descriptions of
a gesture. Therefore, it is important that the model classes
do not make any assumptions about a specific algorithm or
provide algorithm-specific data. The UML class diagram of
our general gesture data structure is shown in Figure 4.

+addGestureClass(GestureClass gc) : void
+delGestureClass(GestureClass gc) : void
+getGestureClass(int index) : GestureClass
+getGestureClasses() : List
+getName() : String
+size() : int

GestureSet

+addDescriptor(Descriptor d) : void
+removeDescriptor(Descriptor d) : void
+getDescriptors() : List
+getDescriptor(Class classname) : Descriptor
+getName() : String
+setName(String name) : void

GestureClass

+getType() : Class

«interface»
Descriptor

+addSample(GestureSample gs) : void
+removeSample(GestureSample gs) : void
+getSamples() : List

SampleDescriptor

+getText() : String

TextDescriptor

+getDigitalObject(int w,
int h) : BufferedImage

DigitalDescriptor

+getName() : String
+getNote() : Note

GestureSample

DefaultDescriptor

Figure 4. Gesture representation

The GestureClass class represents an abstract ges-
ture characterised by its name and a list of descriptors. For
example, to cope with circles as a specific gesture, we in-
stantiate a new GestureClass and set its name to ‘Cir-
cle’. Note that the class itself does not contain any informa-
tion about what the gesture looks like and needs at least one
descriptor specifying the circle as a graphical object. A set
of gesture classes is grouped in a GestureSet which can
then be used to initialise an algorithm. The Descriptor
interface has to be implemented by any gesture descriptor.
For instance, we provide the SampleDescriptor class
describing gestures by samples which is used by training-
based algorithms. A single GestureSample is an in-
stance of a gesture and contains the note captured by an
input device. In addition to the sample descriptor, we offer
a textual description specifying the directions between char-
acteristic points of a gesture as well as a digital descriptor

representing the gesture in terms of a digital image. Note
that the digital descriptor is not used in the recognition pro-
cess but rather acts as a visualisation for a recognised ges-
ture to be used, for example, in graphical user interfaces.

In addition, we need a mechanism to persistently store
any gesture samples for later retrieval. Again, our goal was
to be flexible and not to rely on a single mechanism for
storing data objects. The iGesture storage manager encap-
sulates any access to persistent data objects and uses a con-
crete implementation of a storage engine interface to inter-
act with the data source.

We decided to use db4objects [4], an open source object
database for Java, as the primary storage container. How-
ever, we implemented a second storage engine that simply
serialises the data objects into an XML document based on
the x-stream Java library [13].

4 User Interface

The management console of the iGesture framework is
a Java Swing application consisting of three main parts to
test gestures, define new gestures and create test sets which
are represented by the Test Bench, Admin and Test
Data tabs shown in Figure 5. The graphical user interface
is based on the Model-View-Controller (MVC) design pat-
tern [3] and can easily be extended with additional func-
tionality if required—even without recompiling the main
view—since the list of tabs to be dynamically instantiated
is loaded from a property file.

Figure 5. iGesture management console

The test bench tab provides functionality to acquire a sin-
gle gesture from an input device and execute the recogniser
with the gesture set and algorithm of the user’s choice. This
enables a simple and quick manual testing of specific ges-
tures. All gesture sets of the currently opened persistent
storage container are available and any registered algorithm
may be used.

Figure 5 shows the admin tab which is used to admin-
ister gesture sets, gesture classes and the corresponding de-
scriptors. Any new gesture captured from the input device is
shown in the Input Area and can, for example, be added
to the sample descriptor of a given gesture class. Further, it
is possible to create, edit and delete new gesture classes as
well as manipulate the descriptors and gesture sets. The
admin tab also provides functionality to export and import
complete gesture sets together with the corresponding ges-
ture classes and their descriptors to a single XML document
which later can be used to initialise the recogniser compo-
nent independently of a specific storage manager.

The test data tab is used to create test sets for evaluat-
ing algorithms and their configurations. Any test set can
be exported to an XML file which may then be used as a
source for an automatic batch process evaluation. The goal
of the batch processing tool is to simplify the evaluation of
new algorithms and enable the comparison of different algo-
rithms. It further supports the designer of a new algorithm
in adjusting and optimising different algorithm parameters
by providing a mechanism to automatically run a single al-
gorithm with different settings. A batch process is config-
ured with an XML file specifying the configuration objects
to be created. We provide different mechanisms for specify-
ing an algorithm’s parameters. It is possible to define fixed
parameter values or to provide sequences, ranges and power
sets a parameter has to be tested with as shown in Figure 6.

<?xml version="1.0" encoding="UTF-8"?>
<iGestureBatch>
<algorithm name="org.igesture.alg.SiGridAlgorithm">

<parameter name="GRID SIZE">
<for start="8" end="16" step="2" />

</parameter>
<parameter name="DISTANCE FUNCTION">
<sequence>
<value>HammingDistance</value>
<value>LevenshteinDistance</value>

</sequence>
</parameter>
<parameter name="MIN DISTANCE">
<for start="1" end="5" step="1" />

</parameter>
</algorithm>
</iGestureBatch>

Figure 6. XML batch configuration

Based on the XML configuration, all possible parame-
ter permutations are generated and, for each configuration,
the batch process instantiates the algorithm and processes
the given test gestures set. The results of a batch process,
containing the key figures for each run and gesture class,
such as precision, recall and F-measure, as well as the con-
figuration of the parameters, are collected in a test result
data structure which is stored in an XML document. We
also provide some XSLT templates to render the results as
an HTML document and sort the data based on specific
key figures. This allows the designer of a new recognition

algorithm to easily identify the most promising parameter
settings for a given algorithm and test set.

The algorithm designer also has to provide a configura-
tion file which can be used by the application developer to
instantiate the recogniser with a given algorithm and param-
eter set. For the application programmer, it becomes very
easy to use the gesture recognition engine as shown in Fig-
ure 7. In addition to the explicit handling of the results by
the client application, iGesture also provides an event man-
ager where a client can register actions to be triggered when
a specific gesture class has been recognised.

Recogniser recogniser = new Recogniser(
ConfigurationTool.importXML("config.xml"));

ResultSet result = recogniser.recognise(note);

if (!result.isEmpty() {
logger.log(result.getResult().getName());

}

Figure 7. Recogniser

We mainly use the digital pen and paper technology pro-
vided by the Swedish company Anoto as an input device
for the iGesture framework. However, since the iGesture
framework should not depend on a specific hardware tech-
nology, all the components work on an abstract input device
interface. This makes it easy to integrate new devices and
use them for capturing new gesture sets as well as control-
ling specific applications. So far we support different An-
oto digital pens as well as the standard computer mouse as
a gesture input device. Furthermore, we are currently in-
tegrating the Wintab tablet API to also acquire data from
arbitrary graphics tablet solutions.

To simplify the time-consuming process of capturing
gesture samples from different users, we provide a compo-
nent to generate interactive gesture capture paper forms as
shown in Figure 8. After a set of gesture classes has been
defined, the corresponding interactive paper forms can be
generated automatically and printed out with the position
encoding pattern provided by Anoto.

Figure 8. Interactive paper capture form

Each row of the form contains a sample of the gesture to
be captured and some empty fields that the user has to fill in

with the digital pen. The pen data is continuously streamed
to the iGesture application and stored in the corresponding
gesture sample set. To support the exchange of gesture sets
with other applications, we further provide an import and
export for the Ink Markup Language (InkML) [1].

5 Evaluation and Conclusion

So far we have implemented two existing algorithms for
the iGesture framework: the Rubine algorithm [9] and the
Simple Gesture Recogniser (SiGeR) [11] algorithm devel-
oped by Swigart. In addition, we designed and implemented
two new algorithms: an extension of the Rubine algorithm,
called E-Rubine, that introduces new features and SiGrid an
algorithm comparing gestures based on their signatures.

We have also assembled various test sets including Mi-
crosoft Application Gestures and the Palm Graffiti alphabet
and numbers, as well as some customised multi-stroke ges-
ture sets. All the algorithms have been evaluated with the
different test sets and the initial results for our E-Rubine
algorithm are quite promising. An example of such an eval-
uation with the graffiti letters test set is shown in Table 1.

E-Rubine Rubine SiGrid
Correct 342 305 297
Error 18 48 66
Reject 3 10 0
Precision 0.950 0.864 0.818
Recall 0.991 0.968 1.000
F-Measure 0.970 0.913 0.900

Table 1. Graffiti letters

The category Correct contains the input gestures that
have been correctly recognised by the algorithm whereas
the Error category contains incorrectly recognised gestures.
A third category Reject contains the rejected gestures which
have been returned as unclassifiable by the algorithm. In the
example shown in Table 1, each gesture class was trained
with 4 different users each providing 4 samples. The test
set had a size of 363 samples and was produced by the same
persons used for the training of the algorithm. The figures
show that, in this setting, our E-Rubine algorithm clearly
outperforms the original Rubine algorithm but also the sim-
ple SiGrid algorithm still provides good results. It is out
of the scope of this paper to describe the two new E-Rubine
and SiGrid algorithms in detail. However, more information
about these algorithms as well as additional initial evalua-
tions can be found in [10].

The iGesture framework has been helpful in implement-
ing and testing existing algorithms as well as developing
new algorithms. It was very convenient that the captured
test sets could be used for any algorithm implemented,

enabling the results of different algorithms to be easily com-
pared. As mentioned earlier, the framework also simpli-
fies the task of any application developer who wants to add
some gesture recognition functionality to their application
since there is a single API that works with all available al-
gorithms. iGesture has already been successfully integrated
into some of our interactive paper applications, including
an interactive paper laboratory notebook application. We
do not see iGesture as a replacement for existing frame-
works but rather as an integration platform which should
provide a single tool for designers of new recognition al-
gorithms as well as for application developers and thereby
assist the exchange of new research results. Last but not
least, the iGesture framework [6] has recently been released
under an Apache 2 open source license making it accessible
to a broader community.

References

[1] Y.-M. Chee, M. Froumentin, and S. M. Watt. Ink Markup
Language (InkML). Technical Report, W3C, October 2006.

[2] M. Egger. Find New Meaning in Your Ink With Tablet PC
APIs in Windows Vista. Technical Report, Microsoft Cor-
poration, May 2006.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[4] R. Grehan. The Database Behind the Brains. Technical Re-
port, db4objects, Inc., March 2006.

[5] J. I. Hong and J. A. Landay. SATIN: A Toolkit for Infor-
mal Ink-Based Applications. In Proceedings of UIST ’00,
13th Annual ACM Symposium on User Interface Software
and Technology, pages 63–72, San Diego, USA, November
2000.

[6] iGesture, http://www.igesture.org.
[7] A. C. Long. quill: A Gesture Design Tool for Pen-Based

User Interfaces. PhD thesis, University of California at
Berkeley, 2001.

[8] M. C. Norrie, B. Signer, and N. Weibel. General Frame-
work for the Rapid Development of Interactive Paper Appli-
cations. In Proceedings of CoPADD 2006, 1st International
Workshop on Collaborating over Paper and Digital Docu-
ments, pages 9–12, Banff, Canada, November 2006.

[9] D. Rubine. Specifying Gestures by Example. In Proceed-
ings of ACM SIGGRAPH ’93, 18th International Conference
on Computer Graphics and Interactive Techniques, pages
329–337, New York, USA, July 1991.

[10] B. Signer, M. C. Norrie, and U. Kurmann. iGesture: A Gen-
eral Tool to Support the Development and Deployment of
Pen-Based Gesture Recognition Algorithms. Technical Re-
port 561, Department of Computer Science, ETH Zurich,
2007.

[11] S. Swigart. Easily Write Custom Gesture Recognizers for
Your Tablet PC Applications. Technical Report, Microsoft
Corporation, November 2005.

[12] Swing Gestures, http://sourceforge.net.
[13] XStream, http://xstream.codehaus.org.

