
Dissertation

A Dynamically Extensible Cross-Document

Link Service

A dissertation submitted to the
Vrije Universiteit Brussel

for the degree of
Doctor of Philosophy in Sciences

presented by

Ahmed A.O. Tayeh

21st October 2016

Copyright c© 2016 by Ahmed A.O. Tayeh

Dedication

To

My lovely parents

Haneen, my precious wife

Mariam, my lovely daughter

My lovely sisters & brothers

Abstract

Digital documents often do not exist in isolation but are implicitly or ex-
plicitly linked to parts of other documents. The hyperlink concept, which
was instrumental in the success of the World Wide Web, is considered
the basis for creating and managing relations between documents. Using
hyperlinks, most recent digital document formats as well as existing link
systems enable users to associate information within as well as across
different documents. However, due to a lack of empirical studies that in-
vestigate the end-user needs and behaviour when associating information
within and across documents, the development of most existing document
linking approaches is not driven by end-user requirements. Furthermore,
existing document linking solutions often show some shortcomings in
terms of the offered link granularity and cannot easily be extended to
support new document formats. Most existing document formats only
support hyperlinks to web resources but do not provide support for link-
ing to parts of arbitrary third-party documents. In addition, the majority
of current link systems enable the linking to a predefined set of document
formats but it is not evident how the architecture of these systems can
be extended to support new document formats.

In this dissertation we address the lack of user-driven and extensible
cross-document linking solutions. Our approach consists of two major
efforts including a user study and an architecture in combination with
an extensible link service prototype. The user study relies on a multi-
case design approach consisting of an online survey and interviews with
participants of the online survey in order to investigate users’ current
behaviour in associating information as well as their appreciation and
criticism of existing solutions. The insights from our user study enabled
us to formulate a number of design implications for a dynamically ex-
tensible cross-document linking solution.

i

The presented cross-document link service, which is based on the
RSL hypermedia metamodel, meets end-user requirements and enables
the linking of arbitrary documents at different levels of granularity. In
our dynamically extensible cross-document link service, emerging doc-
ument formats are supported via new data and visual plug-ins for the
presented link browser or by integrating third-party document viewers
via gateways. Our cross-document link service supports the dynamic ex-
tensibility and configuration of supported document formats without the
need to redeploy the core link service. The presented link service cur-
rently supports the linking of six different document formats, with three
of them being integrated with their third-party document viewers.

The extensibility of the presented link service has been verified in
two different evaluations. An end-user study has further been conducted
in order to evaluate the usability of the proposed cross-document link
service. We feel confident that the presented concepts for a dynamic-
ally extensible cross-document link service improve the maintainability
of documents in so-called cross-media information spaces and enable the
future-proof linking across different document formats.

Samenvatting

Digitale documenten staan vaak niet op zichzelf maar worden vaak im-
pliciet of expliciet gelinkt aan delen van andere documenten. Het concept
van de hyperlink, een doorslaggevende factor in het succes van het World
Wide Web, wordt beschouwd als de basis voor het creren en beheren
van relaties tussen documenten. Door gebruik te maken van hyperlinks
laten recente digitale bestandsformaten alsook bestaande link systemen
gebruikers toe om informatie te associren, zowel binnenin als tussen ver-
schillende documenten. Door een gebrek aan empirisch onderzoek dat de
noden en het gedrag van de eindgebruikers bestudeert bij het associren
van informatie is het echter zo dat bestaande technieken voor het linken
van documenten niet voortgekomen zijn uit de noden en eisen van de
eindgebruiker. Daarbovenop schieten bestaande link oplossingen vaak te
kort in termen van de aangeboden link granulariteit en ze kunnen ook
niet uitgebreid worden om nieuwe bestandsformaten te ondersteunen. De
meeste bestandsformaten ondersteunen enkel links naar bronnen op het
web en niet naar stukken uit arbitraire documenten door derden. Daar-
bovenop ondersteunen de meerderheid van de bestaande link systemen
enkel links voor een voorgedefinieerde groep van bestandsformaten en
het is niet evident om deze systemen uit te breiden om nieuwe bestands-
formaten te ondersteunen.

In dit proefschrift adresseren we het gebrek aan gebruikersgestuurde
en uitbreidbare cross-document link oplossingen. Onze aanpak is tweele-
dig en bestaat uit een gebruikersstudie en architectuur in combinatie met
een prototype van een uitbreidbare link service. De gebruikersstudie is
gebaseerd op een multi-case design dat bestaat uit een online vragen-
lijst samen met interviews met participanten van de vragenlijst, om zo
het gedrag van gebruikers na te gaan bij het associren van informatie.
Zo werden ook sterke punten en tekortkomingen van bestaande syste-
men verkregen. De inzichten verkregen via deze gebruikersstudie lieten

iii

ons toe om ontwerp-implicaties te formuleren die geschikt zijn voor een
dynamisch uitbreidbare cross-document link oplossing.

De voorgestelde cross-document link service, gebaseerd op het RSL
hypermedia metamodel, voldoet aan de noden van de eindgebruiker en
laat het linken van arbitraire documenten op verschillende niveaus van
granulariteit toe. In ons dynamisch uitbreidbare cross-document link ser-
vice kan ondersteuning voor opkomende documentformaten toegevoegd
worden door middel van nieuwe data en visualisatie plug-ins voor de
link browser, of door externe document viewers te integreren via gate-
ways. Onze cross-document link service ondersteunt de dynamische uit-
breidbaarheid en configuratie van de ondersteunde documentformaten
zonder dat de kern van de link service opnieuw opgestart moet worden.
De gepresenteerde link service ondersteunt momenteel het linken van zes
verschillende documentformaten waarvan er drie gentegreerd werden met
hun respectievelijke externe document viewers.

De uitbreidbaarheid van de voorgestelde link service werd gevalueerd
in twee verschillende evaluaties. Daarbovenop werd een studie voor
eindgebruikers uitgevoerd om de

bruikbaarheid van de voorgestelde cross-media link service te evalu-
eren. We hebben er vertrouwen in dat de gepresenteerde concepten voor
een dynamisch uitbreidbare cross-document link service de beheerbaar-
heid van documenten in zogenaamde cross-media information spaces ver-
beteren, alsook het linken van verschillende bestandsformaten op een
toekomstbestendige manier kan ondersteunen.

Acknowledgements

First and foremost, I would like to express my deep and sincere gratitude
to my parents Abed Elrahman Tayeh and Amna Tayeh for their mo-
tivation and aid throughout my life and study. Without their excellent
support, I would have not had the courage and motivation to finish my
PhD. In the same vein, I would like to thank all of my family members
for their invaluable support, including my wife Haneen Tayeh, brothers,
sisters, father in law Ibrahim Elhabil and my mother in law Inshirah El-
habil.

With regards to this PhD, my greatest gratitude goes to Prof. Dr. Beat
Signer, co-director of the WISE Laboratory of the Vrije Universiteit Brus-
sel. His logical way of thinking as well as his wide knowledge have been of
great value for me. Prof. Dr. Signer was always available for advice, guid-
ance, encouragement and fruitful stimulating discussions. I really appre-
ciate his understanding, encouragement and personal guidance through
the four years of my PhD journey. Furthermore, I am very grateful for
his thorough and careful review of this thesis. I hope we can continue to
cooperate together in the near future.

Next, I would like to thank the members of my PhD jury, Prof. Dr.
Olga De Troyer, Prof. Dr. Bernard Manderick, Prof. Dr. Wouter Verbeke,
Prof. Dr. Bruno Dumas and Prof. Dr. Angelo Di Iorio, for providing me
with good pointers to further improve the quality of my text.

I would like to extend my gratitude towards most members of the
WISE group research, for all the productive discussions as well as enjoy-
able chats. Special thanks goes to Reinout Roels, Dr. Joachim Vlieghe
and Dieter Van Thienen for the proof-reading of some parts of my thesis.

I am also deeply indebted to all of my friends who supported me
during this PhD and through the difficult times I went through in Bel-
gium. Thanks to Mohanned Zaid, Zohair Qashlan, Omar El Mansi,

v

Rezeq Zomlot, Asharf Hamamreh, Mustapha El Baba, Dr. Ahmed Ewais,
Dr. Abdalghani Mushataha, Dr. Wael Al Sarraj, Mohammed Ali, Mo-
hammed El Najjar, Ashraf Dabour, Mohammed El Khaldi, Dr. Mah-
moud El Najjar and Luis Alberto Guillen. Special thanks goes to Mo-
hammed Saed, Ezziddeen Tayeh and Nidal Tayeh for taking care of me
after some surgeries, the productive discussions regarding this thesis as
well as for the proof-reading of parts of this thesis.

Finally, I would like to thank all the people I forgot to mention here
who contributed to this PhD in some way or another.

I do thank you all, Ahmed

Table of Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem Statement . 3

1.3 Research Objectives . 6

1.4 Research Questions . 7

1.5 Research Approach and Methodology 7

1.6 Contributions . 10

1.7 Thesis Structure . 12

2 Background 15

2.1 Basic Terminology . 15

2.2 A Short History of Hypermedia 17

2.3 Evolution of Document Linking 19

2.4 Link Models . 22

2.4.1 The XML Linking Language (XLink) 22

2.4.2 The Resource Selector Link Metamodel 24

2.5 Linking Features in Document Formats 27

2.6 Hypermedia and Annotation Systems 31

2.6.1 Open Hypermedia Systems 32

vii

viii TABLE OF CONTENTS

2.6.2 Annotation Tools 35

2.6.3 Extensible Architecture for Annotation and Link

Services . 37

2.7 Discussion . 39

2.8 Towards an Ideal Cross-Document Link Service 40

2.8.1 Requirements for an Ideal Link Service 40

2.8.2 A Comparison between Existing Annotation and

Linking Systems 43

2.9 Summary . 45

3 User Behaviour in Associating Information 47

3.1 Context . 47

3.2 Literature Review . 48

3.3 Methodology . 49

3.3.1 Data Collection 50

3.3.1.1 Online Survey 50

3.3.1.2 Interviews 52

3.3.2 Population . 53

3.3.3 Data Analysis . 53

3.4 Results . 53

3.4.1 Associating Information in Physical Documents . 56

3.4.2 Associating Information in Digital Documents . . 59

3.4.2.1 Single Digital Document 59

3.4.2.2 Different Documents of the Same Docu-

ment Type 61

3.4.2.3 Different Documents of Different Types 63

3.4.3 Associating Information Across Physical and Di-

gital Documents 65

TABLE OF CONTENTS ix

3.4.4 A Deeper Look into the Information Association

Mechanisms . 66

3.4.4.1 Characteristics of the Associations . . . 66

3.4.4.2 User Satisfaction with Used Association

Mechanisms 69

3.4.4.3 The Need for a Linking Tool 71

3.4.4.4 User Work Practices 72

3.5 Discussion and Design Implications 73

3.6 Threats to Validity . 76

3.7 Summary . 77

4 A Dynamically Extensible Cross-Document Link Service 79

4.1 Proposed Solution . 80

4.1.1 Link Browser . 82

4.1.2 Link Browser Extensibility 85

4.1.3 Link Model . 85

4.1.4 Integration of Third-Party Document Viewers . . 88

4.1.4.1 Communication Between the Link Ser-

vice and Add-ins 91

4.1.5 Plug-in Metadata 93

4.1.6 Users of the Link Service 93

4.1.6.1 End Users 93

4.1.6.2 Third-Party Developers 95

4.2 Architecture Overview 95

4.3 Communication Between Link Service Components . . . 97

4.4 Dynamic Link Service Extensibility 100

4.4.1 Metadata and Online Repository 102

4.4.2 Plug-in Tracking 104

x TABLE OF CONTENTS

4.5 Integration of Document Formats 105

4.5.1 Data Plug-ins . 105

4.5.2 Visual Plug-ins 106

4.5.3 Requirements for Integrating a Document Format 110

4.5.4 Supported Document Formats 111

4.6 Integration of Third-Party Document Viewers 113

4.6.1 Third-Party Document Viewer Add-ins 113

4.6.2 Gateway Plug-ins 115

4.6.3 Communication Channels 118

4.6.3.1 Messages 119

4.6.4 Requirements for Integrating a Document Viewer 120

4.6.5 Supported Document Viewers 121

4.6.5.1 Google Chrome Add-in 121

4.6.5.2 HTML Document Format Plug-ins . . . 122

4.7 Discussion . 122

4.8 Summary . 125

5 Evaluation 127

5.1 Supported Document Formats and Viewers 127

5.1.1 PDF Document Format 128

5.1.2 XML Document Format 128

5.1.3 Images . 129

5.1.4 Microsoft Word 130

5.1.4.1 JavaScript-based Add-in 130

5.1.4.2 C# Add-in 132

5.1.4.3 Word Document Format Plug-ins 133

5.1.5 Microsoft PowerPoint 133

TABLE OF CONTENTS xi

5.1.5.1 Microsoft PowerPoint Add-in 133

5.1.5.2 PowerPoint Document Format Plug-ins . 133

5.1.6 Google Chrome 133

5.1.6.1 Google Chrome Add-in 134

5.1.6.2 YouTube Video Plug-ins 135

5.1.7 Discussion . 135

5.2 Integration of Existing Document Formats and Viewers . 136

5.2.1 Methodology . 136

5.2.2 Results . 137

5.2.2.1 Third-Party Document Viewers 137

5.2.2.2 Document Formats 139

5.2.3 Discussion . 140

5.3 End-User Evaluation . 141

5.3.1 Goal . 141

5.3.2 Methodology . 141

5.3.3 Population . 142

5.3.4 Setup . 142

5.3.5 Results . 143

5.3.6 Discussion . 146

5.4 Summary . 147

6 Use Case 149

6.1 Document Retrieval Systems 150

6.2 Motivation . 151

6.3 Enhanced Document Retrieval and Discovery 152

6.3.1 Use of a Document’s Content and Metadata . . . 153

6.3.2 The Use of Explicit Hyperlinks 154

xii TABLE OF CONTENTS

6.3.3 Support for Multiple Visualisations 156

6.3.4 System Architecture 158

6.3.5 Implementation 160

6.4 User Evaluation . 161

6.5 Summary . 164

7 Conclusions and Future Work 165

7.1 Summary . 165

7.1.1 User Study . 166

7.1.2 A Dynamically Extensible Cross-Document Link

Service . 166

7.2 Discussion . 168

7.2.1 Contributions . 170

7.2.2 Limitations . 172

7.3 Future Work . 173

Appendices 175

A Survey on Cross-Document Associations 177

B Abstract DefaultDocument Class for Visual Plug-ins 193

C Gateway Interface 199

D Link Service Evaluation Questionnaire 203

1
Introduction

1.1 Context

Documents do not exist in isolation but are often related to other doc-
uments. These inter-document relationships can either be defined via
explicit references and footnotes or be established implicitly based on
the similarity of content in different documents. Associative hyperlinks
are considered the basis for creating and managing relations and associ-
ations between documents as well as other information objects [79]. They
were originally introduced in Vannevar Bush’s visionary paper about the
Memex [26]. Rather than classifying documents in hierarchical structures
as realised in the Dewey Decimal Classification (DDC), Bush proposed to
mimic the working of the human brain by supporting associative hyper-
links or so-called trails between documents. The associative hyperlinks
proposed by Bush were seminal for succeeding digital hypermedia models
and systems such as the oN-Line System (NLS) [51]. The concept of hy-
perlinks was further instrumental in the success of the World Wide Web
by enabling the referencing, annotation and augmentation of content.

Most recent digital document formats support simple forms of link-
ing, enabling users to associate information across different documents.
For instance, the well-known Hypertext Markup Language (HTML) sup-
ports simple linking features that allow users to define unidirectional

1

2 Chapter 1. Introduction

hyperlinks that can be traversed only from their source to their tar-
get. Like HTML, the Portable Document Format (PDF) [3], the Office
Open XML (OOXML) standard [50] or EPUB [41] support simple uni-
directional hyperlinks to define associations between documents [134].
The simple linking features offered by most document formats only allow
users with write permissions to the source document (e.g. the owner of
a document) to create new hyperlinks. For example, hyperlinks within a
web page represented by an HTML document always have to be authored
by its developer. Thereby, users without write permissions who would
like to associate information across documents are not able to create
hyperlinks based on the simple document linking features. The unidirec-
tional hyperlinks offered by most document formats further imply that a
linked document (target) as well as its reader are not aware of hyperlinks
pointing to it from other source documents.

Many solutions including open hypermedia systems, annotation sys-
tems or the XLink standard [46] have been proposed in order to address
the shortcomings of the previously mentioned simple hyperlinks. Some
of these solutions have been developed to open web documents for third-
party annotations and associations to external resources as part of the
Web 2.0 movement where users have become producers as well as con-
sumers of information. Open hypermedia systems (also known as link
services) separate a document’s content from its hyperlinks; something
that is not supported by most document formats. In order to do so,
link services manage hyperlinks separately from the linked documents in
centralised databases or so-called linkbases. Thereby, users without write
permissions are able to create new hyperlinks in any of the document
formats supported by these systems. Some open hypermedia systems
such as Webvise [66] and Arakne [21] have enabled third-party users to
augment web pages with new hyperlinks.

The advent of the Extensible Markup Language (XML) [60] and its
linking model (XLink) has been a major step towards enhancing linking
on the Web. XML and XLink can be used to create hyperlinks that go
beyond the simple unidirectional hyperlinks. Similar to open hyperme-
dia systems, XML in combination with XLink can be used to separate a
document’s content from its hyperlinks, allowing users without write per-
missions to create hyperlinks between different XML documents. Besides
the simple unidirectional hyperlinks, XLink also supports so-called ex-
tended hyperlinks which enable the definition of bi- and multidirectional
hyperlinks.

1.2. Problem Statement 3

Many annotation systems allow users without write permissions to
annotate and attach external resources to the referenced documents.
An annotation can be considered as a hyperlink [8, 126] since it estab-
lishes a relationship between parts of a document and external resources
(e.g. comments or notes). Nowadays, most document viewers (e.g. Adobe
Acrobat Reader1) are shipped with built-in annotation features that allow
users to annotate the supported document formats. More recently, vari-
ous digital library management systems (DLMSs) [53] have incorporated
interactive annotation features that facilitate discussion among users and
open the documents in digital libraries for linking to external resources.
While in most DLMSs the annotation features are offered by built-in
components, the Flexible Annotation Service Tool (FAST) [6] has been
developed as a stand-alone annotation tool in order to offer its services
to multiple DLMSs.

1.2 Problem Statement

There is no doubt that specific document formats and hypermedia solu-
tions facilitate the creation of associations between “some” documents.
Nevertheless, we identify three main shortcomings with respect to the
offered linking features. First, while many document formats offer the
possibility to link to entire third-party documents, it is normally not pos-
sible to address parts of documents. Second, document formats as well
as existing hypermedia solutions support the linking to a specific (mostly
predefined) set of document formats and are not extensible to support
the linking to additional existing as well as emerging document formats.
Third, the development of most existing linking solutions has been solely
motivated by limitations of their predecessors or new features to be sup-
ported rather than being based on a clear understanding of the needs
and requirements of end users. In the following, we further elaborate on
each of these three shortcomings.

Addressing parts of documents: Some document formats have
taken into account that relationships between documents might exist
at any level of granularity—at the document, paragraph or even word
level—by enabling the linking to snippets of information in other docu-
ments of the same document format. For instance, the HTML document
format allows the creation of hyperlinks to snippets of information in

1https://get.adobe.com/reader

4 Chapter 1. Introduction

other HTML documents. XML and XLink can also be used to create
hyperlinks that address parts of other XML documents. Nevertheless,
most document formats do not offer the possibility to link to snippets of
information in documents of another document format. For example,
while a developer can create hyperlinks in an HTML document target-
ing entire third-party documents which are supported by the growing
Web (e.g. a PDF or Word document), they cannot address parts of these
documents. In a PDF document we can also create hyperlinks to entire
Word documents via a Uniform Resource Identifier (URI) but we cannot
link to specific parts within a Word document. Please bear in mind that
in the rest of this thesis we will use the term cross-document linking for
hyperlinks between snippets of information (at any level of granularity)
in different documents (regardless their formats).

Extensibility of linking solutions: Over the last decades, we have
witnessed a dramatic increase in the number of digital document formats
that we use as part of our daily activities. This implies that information
is scattered over these documents and therefore we should be able to
create associations between pieces of information in the different docu-
ment formats. This asks for an extensible linking solutions enabling the
linking to existing as well as emerging document formats. Nowadays,
we see this extensibility feature only realised for hyperlink resolution in
web browsers. When a web page links to an entire third-party docu-
ment (e.g. PDF or Word), the web browser calls a specific plug-in to
visualise the document based on the media type2 (formerly MIME type)
of the hyperlink’s target. The extensibility of a linking solution should
not be limited to resolving hyperlinks but also allow users to create hy-
perlinks between snippets of information in different document formats.
Moreover, it should be possible to seamlessly integrate any document
format in the linking solution.

The linking features of various document formats often imply that
hyperlinks can only be defined to web resources and are not extensible
to support other existing or emerging document formats. This means
that the possibilities for creating explicit associations between desktop
documents via hyperlinks are rather limited. One would expect that the
emergence of cloud computing [13] would bridge the gap between desktop
and web documents, especially since an increasing number of document
formats (e.g. Word or PowerPoint document formats) are edited and
stored in the cloud. However, as previously mentioned, the HTML linking

2https://www.w3.org/TR/CSS21/media.html

1.2. Problem Statement 5

features are not sufficient to address parts of documents supported by
the growing Web when linking to them.

Link services were mainly developed to enhance the management of
hyperlinks. Most existing link services have two main shortcomings.
First of all, they support the linking across a predefined set of docu-
ment formats that have to be visualised and authored within the link
service itself. In other words, users have to leave their preferred third-
party document viewers (e.g. Microsoft Word or Adobe Acrobat Reader)
and their supported document formats (e.g. Word or PDF) in order to
profit from the features offered by a link service. Second, it is not evident
how the architectures of existing link services can be extended in order to
support other existing and emerging document formats [135, 134]. Usu-
ally, in order to extend a link service to support a new document format,
its link model and the user interface have to be extended [125, 126]. The
link model has to be extended in order to be able to address parts of
documents in a new document format. On the other hand, the user in-
terface has to be extended in order to support the visualisation of the
new document format. Unfortunately, even though there are some link
services that have extensible link models, to the best of our knowledge
none of them offers the extensibility on the visualisation (user interface)
layer [125, 126, 135, 134]. This has the drawback that these link ser-
vices have to be reimplemented or redeployed whenever a new document
format has to be supported.

Most web and digital library annotation systems as well as the built-
in annotation features of document viewers have one major limitation.
They only support simple annotation features (e.g. notes or comments)
and it is not evident how their architectures can be extended in order to
support the linking across different document formats. It is worth men-
tioning that some of the web annotation tools are based on the powerful
XLink standard but do not exploit its strengths for linking between XML
documents.

User-driven linking solutions: The understanding of end-user be-
haviour in associating and linking documents as well as the end-user re-
quirements for a document linking solution leads to the development of
successful and usable linking solutions. In fact, there have been different
studies in a number of domains that revealed some interesting general
findings regarding the user behaviour in associating information. For
example, some studies have shown that users rely on digital or physical
folders when organising and associating entire documents [81, 18, 90].

6 Chapter 1. Introduction

Other studies revealed that the cross-document referencing task is car-
ried out while reading and writing [2, 109, 110]. Nevertheless, we could
not find a single study mainly investigating user behaviour in linking and
associating information within and across documents. This lack of study
results might be a main reason why the development of most existing
linking solutions is not driven by end-user requirements.

1.3 Research Objectives

This dissertation consists of two main research parts. In the first part
of our research we investigate the current user behaviour in associating
information within and across documents. The result of this research
provides some insights about end-user requirements for a cross-document
linking solution.

The second essential part of the research focuses on investigating
the possibilities to support cross-document linking features in existing
as well as emerging document formats. We are interested in realising
an extensible cross-document link service that helps users in associating
information within and across documents. This means that we are not
considering the development of a new document standard to overcome
the limitations of existing document formats. Our research is situated in
the domain of Hypermedia and Software Engineering. We come up with
a cross-document link service that supports the integration of existing
as well as emerging document formats. Our link service makes use of
an existing powerful link metamodel. Therefore, it is worth to note that
most of Our cross-document link service takes into account that users
rely on proprietary third-party document viewers to author and visual-
ise specific document formats (e.g. Microsoft Word or Adobe Acrobat
Reader). Therefore, our link service is not only extensible to support
new document formats, but it also addresses the challenge of seamlessly
integrating third-party document viewers. Furthermore, our link service
is dynamically extensible. We can outline various reasons why a link ser-
vice should be dynamically extensible. First of all, it is not feasible to
extend or redeploy an existing link service every time a new document
format has to be supported. Imagine that each time we navigate to a
new document type on the Web, we would have to install a new version
of the web browser. This would definitely be a big burden for any user.
Further, each user might only make use of a small subset from the mul-

1.4. Research Questions 7

titude of existing document formats. Rather than having a monolithic
link service that supports all document formats, users should be able to
dynamically extend the link service in order to support their preferred
document formats. Finally, offering cross-document linking features to
proprietary document viewers should not ask for changes to the core of
these systems since this might not be accepted by their creators.

In the proposed link service we also integrate different document
formats as well as third-party document viewers. There is no doubt that
the integration of different document formats in the link service serves
as an assessment of the link service’s extensibility. Nevertheless, we also
conduct a technical evaluation for the link service’s extensibility. Last
but not least, we evaluate the usability of the proposed link service in an
end-user study. It is worth mentioning that our end-user evaluation does
not address the potential cognitive overhead of creating and navigating
the hyperlinks using our link service.

1.4 Research Questions

This dissertation provides answers to the following research questions
and the related sub-questions that have been formulated based on the
previously mentioned problem statement:

1. RQ1: What is the user behaviour in associating informa-
tion within and across documents?

2. RQ2: How to support cross-document linking functional-
ity in different document formats?

(a) RQ2.1: What are the design and end-user requirements for a
dynamically extensible cross-document link service?

(b) RQ2.2: How to support extensibility in a cross-document link
service—in the link model and on the visualisation layer—in
order to support existing and emerging document formats?

1.5 Research Approach and Methodology

We have adopted the Design Science Research Methodology (DSRM)
defined by Peffers et al. [113] to tackle the formulated research ques-

8 Chapter 1. Introduction

tions. DSRM provides a process model for carrying and evaluating design
science research in information systems. The DSRM process model in-
cludes six steps: 1) problem identification and motivation, 2) definition of
the objectives for a solution, 3) design and development of the solution,
4) demonstration, 5) evaluation and 6) communication. In the rest of this
section, we explain how these steps have been realised in our research.

1. Problem identification and motivation: This step has been
covered in Section 1.2. It has been realised by acquiring knowledge
of the state of art in document linking approaches and the import-
ance of finding solutions for the problem statement discussed in
Section 1.2.

2. Definition of the objectives for a solution: The objectives of
the solution have been defined based on two empirical literature
studies. Some objectives of the solution have been defined after
the first empirical literature study which investigated the suppor-
ted linking features in different document formats, existing link
standards, annotation tools and link services. The objective of
the first study was to provide answers for some knowledge ques-
tions [142] in order to highlight the shortcomings of existing linking
solutions. These knowledge questions include but are not limited
to i) what are the supported linking features in some popular doc-
ument formats, ii) what are the solutions proposed to enhance the
linking in document formats and iii) what are the architectures used
by the different linking solutions and what are their strengths and
limitations. The answers provided by the knowledge questions are
presented in Chapter 2. Other objectives of the solution have been
defined after realising that there is no single study investigating
the current user behaviour in associating information within and
across documents of different formats. Therefore, we have carried
out a second empirical literature study of some previous research
studies that revealed general findings regarding the associating of
information as presented later in Section 3.2. This second literature
study has helped us in carrying out an exploratory study that is
mainly investigating the user behaviour in associating information
within and across documents and is introduced in Chapter 3.

The answers from both empirical studies were used to outline the
objectives for realising the solution proposed in this dissertation.
The objectives of the solution were used to rationalise the signific-

1.5. Research Approach and Methodology 9

ance of the problem specification described in Section 1.2 as well
as the suitability of the research questions listed in Section 1.4.

3. Design and development of the solution We have applied a
mixed methods approach in order to explore the current user be-
haviour in associating information across documents. The mixed
methods approach involved an online survey as well as interviews.
Our study has revealed a number of interesting results based on
which we derived some design implications and requirements for a
dynamically extensible cross-document link service. The explorat-
ory study, its results as well as the design implications are presented
in Chapter 3.

Our proposed solution is a dynamically extensible cross-document
link service which fulfils the second part of the objectives of a solu-
tion defined in the second research step in Section 1.3. There were
multiple research steps involved. First, we outlined essential re-
quirements for an ideal cross-document link service that is extens-
ible and flexible to support existing as well as emerging document
formats. This step provided answers for a part of the knowledge
question RQ2.1. Second, we provided answers to RQ2.2 by design-
ing an extensible architecture for a cross-document link service.
This step indeed has given answers to multiple knowledge as well
as design questions [142]. Knowledge questions contained in this
step include but are not limited to i) what are the extensibility
approaches and mechanisms that can be used in a cross-document
linking solution and ii) how can existing third-party document view-
ers be integrated in a cross-document linking solution. What is an
architecture for an extensible dynamic cross-document link service
was the main design question contained of this step.

4. Demonstration In this step, we have demonstrated the useful-
ness of the proposed cross-document link service by integrating
multiple document formats as well as external third-party doc-
ument viewers with the link service. Our link service currently
supports the linking of XML, plain text, HTML, PDF, Word and
PowerPoint document formats. The HTML, Word and PowerPoint
documents are supported by integrating their own third-party doc-
ument viewers (i.e. Google Chrome, Microsoft Word and Microsoft
PowerPoint). Users are able to create bi- and multidirectional hy-
perlinks between the supported document formats. Moreover, we

10 Chapter 1. Introduction

have demonstrated the usefulness of the proposed solution by de-
veloping an enhanced desktop environment which is presented in
Chapter 6 and exploits the hyperlinks defined via the link service
in combination with some data mining algorithms to enhance the
search and retrieval of desktop documents.

5. Evaluation The presented link service has been evaluated in three
different evaluations which are going to be presented in Chapter 5.
Two evaluations were conducted to validate the extensibility of the

link service whereas the third evaluation investigated the usabil-
ity of the link service in an end-user study.

6. Communication Some of the findings of this dissertation have
been disseminated at the International Conference on Web Inform-
ation Systems Engineering (WISE) where two full papers describing
the link service have been published:

(a) Tayeh, A.A.O. and Signer, B.: “A Dynamically Extensible
Open Cross-Document Link Service”, Proceedings of WISE
2015, 16th International Conference on Web Information Sys-
tem Engineering, Miami, USA, November, 2015

(b) Tayeh, A.A.O. and Signer, B.: “Open Cross-Document Link-
ing and Browsing based on a Visual Plug-in Architecture”,
Proceedings of WISE 2014, 15th International Conference on
Web Information System Engineering, Thessaloniki, Greece,
October, 2014

1.6 Contributions

In the following, we would like to highlight the main contributions of this
dissertation.

1. A user study investigating the user behaviour in associat-
ing information within and across documents

To the best of our knowledge our study is the first study that
investigates the user behaviour in associating information within
and across different document formats. Our user study investigates

1.6. Contributions 11

the behaviour of 238 knowledge workers in associating information.
The contributions of the user study can be summarised as follows:

(a) The user study revealed association mechanisms adopted by
participants when associating information in digital as well as
physical documents. It further identified some characteristics
of different types of associations identified by users as a result
of the different association mechanisms.

(b) The user study revealed some general findings about common
work practises and the appreciation or criticism of users with
regard to each association mechanism.

(c) Based on the results of the user study we formulated a number
of design implications for an effective information and cross-
document linking solution.

2. Requirements for an ideal link service

Based on a critical review and analysis of existing linking solutions
as well as our expertise, we managed to derive a number of funda-
mental requirements for an extensible cross-document link service.
These requirements have been published in [135].

3. A dynamically extensible cross-document link service

To the best of our knowledge, our link service that has been pub-
lished and presented at the WISE conferences [134, 135] is the first
linking solution that is dynamically extensible on the link model as
well as the user interface level. In contrast to most existing linking
solutions, our link service allows users to create advanced hyper-
links (i.e. bi- and multidirectional hyperlinks) between documents.
Furthermore, existing third-party document viewers can seamlessly
be integrated with our link service. Thereby, in contrast to most
existing link services, users willing to benefit from our link service
should not have to abandon their preferred third-party document
viewers. They can create hyperlinks between documents that are
visualised in the link service as well as documents shown in their
personal third-party document viewers. Besides a working link ser-
vice prototype we made a number of contributions:

(a) We presented an architecture for a dynamically extensible
cross-document link service.

12 Chapter 1. Introduction

(b) Based on a visual plug-in mechanism, our link service’s user
interface (link browser) is extensible to support existing as
well as emerging document formats.

(c) We proposed a mechanism for integrating existing as well as
emerging third-party document viewers with our link service.
In contrast to some existing linking solutions, our proposed
mechanism does not require changes to the core of third-party
document viewers and further allows any “extensible” third-
party document viewer (e.g. Google Chrome) to be seamlessly
integrated with our link service.

(d) We integrated a number of document formats (e.g. plain text,
XML, Word and PDF) as well as third-party document view-
ers (e.g. Microsoft Word, Microsoft PowerPoint and Google
Chrome) with our link service. We further illustrated the
usefulness of our link service by presenting a framework that
exploits the link service’s hyperlinks in a desktop document
retrieval tasks.

1.7 Thesis Structure

The remainder of this dissertation is structured as follows:

Chapter 2. Background. In this chapter we discuss the necessary
background and the state of art in document linking approaches. We dis-
cuss the evolution of document linking approaches as well as the linking
support in existing document formats and link models. After discussing
existing link services and highlighting their shortcomings, we outline six
fundamental requirements for an ideal cross-document link service.

Chapter 3. User Behaviour in Associating Information. In
this chapter we present our user study that investigates end-user beha-
viour in associating information within and across document formats.
After presenting the results of the user study and critically discussing its
results, we propose a number of design implications for the development
of future cross-document linking solutions.

Chapter 4. A Dynamically Extensible Cross-Document Link
Service. In this chapter we present our link service that overcomes the
shortcomings of existing linking solutions and allows end users to create
advanced hyperlinks across documents of different formats. We discuss

1.7. Thesis Structure 13

the proposed link service after presenting its proposed architecture and
components.

Chapter 5. Evaluation. In this chapter we present the three dif-
ferent evaluations of the link service including two technical evaluations
as well as an end-user study. In the technical evaluations we critically
evaluate and discuss the extensibility of our link service. In the end-user
study we evaluate and discuss end-users’ satisfaction with the presented
link service.

Chapter 6. Use Case. In this chapter we illustrate the usefulness
of our link service by presenting a framework for enhancing desktop doc-
ument discovery and retrieval that exploits the link service’s data. We
further present an end-user study of the presented framework.

Chapter 7. Conclusions and Future Work. After critically
discussing our user study and the proposed solution for cross-document
linking, in this chapter we propose future research directions and provide
some concluding remarks.

2
Background

In this chapter, we discuss the necessary background and the state of
art in document linking approaches. We start by introducing the basic
terminology that will be used in this thesis. We briefly outline the his-
tory of hypermedia/hypertext systems and models before discussing the
evolution of document linking approaches. After presenting existing link
models, we provide a review of the hyperlink support in existing docu-
ment formats. We then discuss existing document linking systems and
highlight their limitations regarding the cross-document linking features.
We conclude this chapter by outlining six important requirements for
an ideal cross-document link service and provide a comparison between
existing linking systems in the light of these six requirements.

2.1 Basic Terminology

Before we start presenting related work, we introduce some basic hyper-
media terminology that is used in this thesis. The concept of a hyperlink
is heavily used in this thesis. A hyperlink simply defines an association
between two or more information entities (e.g. images, documents or
multimedia content). Nowadays, the most frequently used hyperlinks
are so-called unidirectional hyperlinks (e.g. web hyperlinks). A unidirec-
tional hyperlink implies that the hyperlink L is directed from a source

15

16 Chapter 2. Background

entity S to a target entity T as shown in Figure 2.1. This means that the
hyperlink can be traversed only from the source to the target. The target
entity further is not aware of the explicit relationship defined within the
source entity.

Figure 2.1: Unidirectional link L directed from a source entity S to a
target entity T

A unidirectional HTML hyperlink is illustrated in Listing 2.1. In this
example, the hyperlink L is defined using the <a> tag. The hyperlink
source S is specified as the word VUB. A user should click on the VUB

word in order to navigate to the hyperlink target T. The hyperlink target
is the VUB website whose address is given by the href attribute. In con-
trast to unidirectional hyperlinks, a bidirectional hyperlink implies that
a hyperlink can be traced from both endpoints as shown in Figure 2.2.
Even though the hyperlink can be traced from both endpoints in a bid-
irectional hyperlink, it is still very common to name one endpoint as a
source and the other one as a target.

1 <!DOCTYPE html>
2 <html>
3 <body>
4 VUB
5 ...
6 </body>
7 <html>

Listing 2.1: Unidirectional HTML hyperlink

A multidirectional hyperlink defines an association between one or
multiple source entities and one or multiple target entities. As illus-
trated in Figure 2.3, a multidirectional hyperlink can either be a multi-
target (Figure 2.3a), a multi-source (Figure 2.3b) or a multi-source multi-
target hyperlink (Figure 2.3c).

A link model defines a conceptual model with abstractions and con-
cepts to link different entities in a hypermedia application or in specific
document formats. The link features offered by different link models
range from simple unidirectional hyperlinks to advanced multidirectional
hyperlinks. Some link models [124, 46] are general enough to be used
in many hypermedia applications, while other models [75, 22] provide

2.2. A Short History of Hypermedia 17

Figure 2.2: Bidirectional hyperlink which can be traced from both end-
points

application-specific features such as the adaptation of the linked entities.
It is worth mentioning that many hypermedia applications [112, 68] are
not based on a documented and explicit link model, but are rather using
some hard-coded linking features.

(a) multi-target hyperlink (b) multi-source hyperlink (c) multi-source multi-target
hyperlink

Figure 2.3: A multidirectional hyperlink connects one or multiple source
entities with one or multiple target entities

The last two main concepts are embedded and external hyperlinks.
An embedded hyperlink implies that the hyperlink is forming a part of
a document. For example, an HTML hyperlink has to be authored by
the document owner and is represented via an <a> tag that is located in
the HTML document itself (see Listing 2.1). In most cases, a document
format which supports embedded hyperlink features implies that only
the owner of a document can add new hyperlinks to the document. In
contrast, an external hyperlink does not form a part of the document’s
content but is rather stored externally from the linked document. The
idea of external hyperlinks has been envisioned by Vannevar Bush in
1945 [26] and has been used in open hypermedia systems such as Sun’s
link service [68] and Microcosm [73]. A hypermedia application support-
ing external hyperlinks may allow any user to define new hyperlink for
its supported document formats.

2.2 A Short History of Hypermedia

The Memex [26] envisioned by Vannevar Bush is accredited as being the
origin of hypertext systems. According to Bush’s vision, users should use

18 Chapter 2. Background

the Memex system in order to introduce new trails (associative hyper-
links) between snippets of information in different documents stored in a
persistent storage of microfilms that was used at that time. Every associ-
ative hyperlink should be identified via a unique identification code and
then stored externally from the linked documents. Thereby, users are
able to later retrieve any associative hyperlink along with the linked doc-
uments by entering the associative hyperlink’s code. Inspired by Bush’s
associative hyperlinks and trails, Ted Nelson coined the term hypertext
as non-sequential writing [105], where at any time, pointers can be in-
troduced in documents which direct the reader to a different section,
paragraph or another (part of a) document. The term hypermedia was
also coined by Nelson [104] and implies that hyperlinks are defined across
different types of media such as images, movies, text or audio.

Over the last decades various hypermedia models for different do-
mains have been proposed based on the hyperlink concept. Xanadu [105],
a well-known research project, has been proposed by Nelson. The Xanadu
project and its Xanalogical model introduced various new ideas to the
hypertext community, including advanced hypertext concepts such as
bidirectional hyperlinks and transclusion which enables the inclusion of
content by referencing it. The Dexter hypertext reference model [71]
is another well-known model for hypertext systems. It defines a con-
ceptual model for abstractions and concepts found in many hypermedia
systems in order to promote the interoperability and interchange between
the different hypermedia systems. The Amsterdam Hypermedia Model
(AHM) [75] enriched the Dexter reference model with the notions of time
and context and thereby provides abstractions for linking dynamic mul-
timedia information. Furthermore, the Fundamental Open Hypertext
Model (FOHM) [100] was built in order to support the interoperability
between hypermedia systems by allowing the exchange of metadata and
information about hyperlinks. Moreover, the AHAM reference model [22]
is a Dexter-based reference model that provides abstractions for content
and hyperlink structure adaptations in adaptive hypermedia systems. As
previously mentioned, XLink is a powerful link model proposed to en-
hance the linking in XML documents. XLink offers advanced linking
functionality such as bi- and multidirectional external hyperlinks. Last
but not least, the Resource Selector Link (RSL) metamodel [124] is a
general and flexible link metamodel that has been used in various hyper-
media systems over the last decade. It is worth mentioning that we have
used the RSL metamodel as a link model for our cross-document link

2.3. Evolution of Document Linking 19

service and therefore a brief explanation of RSL and XLink is be presen-
ted in Section 2.4. A motivation for the use of the RSL metamodel and
a comparison of existing link models is provided later in Section 4.5.1.

Besides the hypermedia models, various hypermedia applications have
been developed for different domains. The Hypertext Editing System
(HES) [30], FRESS [47] and NLS [51] were early pioneering hypertext
research prototypes. Note that the HES system pioneered the concept of
unidirectional hyperlinks. As mentioned earlier, many open hypermedia
systems such as Intermedia [68] and Sun’s link service [112] have been
developed in order to enhance the management of hyperlinks. The Web
is the most successful hypermedia system that enables the referencing,
annotation and augmentation of content. Note that the Web and its
Semantic technologies such as RDF [43], RDF Schema and OWL [10]
promoted the linked data concept [76], where Web content and Web
hyperlinks are semantically enriched in order to enable the processing of
data by computers.

2.3 Evolution of Document Linking

The fact that documents do not exist in isolation [26] has always been
the motivation for many researchers in different domains (e.g. hyperme-
dia, document engineering and digital libraries) to develop models and
systems for enhancing the linking across documents. The Memex system,
mentioned in Section 2.2 and depicted in Figure 2.4 has been envisioned
by Bush in 1945 as a result of his observation of the existence of rela-
tions between documents. The Memex which looks like a desktop has
two displays for visualising two adjacent pages. The pages are stored
on microfilms and are accessed by the Memex in order to project them
on the two displays. A user is able to create trails between the projec-
ted pages. Even though the Memex is based on relatively naive design
concepts, it introduced a number of interesting ideas for linking different
documents. Inspired by Bush’s Memex, many early hypermedia systems
such as HES and Xanadu have made significant contributions to con-
cepts for linking across documents. HES was developed by Andries van
Dam and Ted Nelson at Brown University. Even though the main focus
of HES was on text editing, formatting and printing, it pioneered many
other hypermedia systems including the Web.

20 Chapter 2. Background

Figure 2.4: The visionay Memex system, based on [26].

Starting from 1960 and for almost twenty years [12], documents were
very simple due to their simple document production systems. In other
words, they were totally different from today’s rich and sophisticated
document formats. Documents were essentially composed of textual con-
tent using simple editing systems and formatted using simple low-level
formatters [12]. Examples of such simple editing and formatting sys-
tems are TROFF [82] and RUNOFF [119]. Due to the simplicity of
document structures at that time, linking features were not supported
in logical document structures but were rather offered at the application
level (e.g. in HES).

The introduction of Scribe [115], the first markup language [12], was
a revolutionary step towards a new generation of document formats
(i.e. markup languages). With the markup language approach, a doc-
ument is no longer dependant on simple formatters anymore but rather
depends on its supported markup commands for describing relations
between content. Furthermore, in general a markup language produces
portable non-proprietary documents were documents can be edited and
visualised using any document viewer that understands its specification.
An HTML document, for instance, can be visualised using arbitrary web
browsers such as Google Chrome or Firefox.

2.3. Evolution of Document Linking 21

Scribe and other early markup languages such as the Generalised
Markup Language (GML) [58] do not support the linking to other doc-
uments or external resources. These document formats only enable so-
called cross-references within a document itself such as references to fig-
ures, tables or headings. The introduction of the Standard Generalised
Markup Language (SGML) [59] was a major step towards supporting
linking in different document formats. A number of concepts have been
introduced in the SGML metalanguage that facilitate the creation of
embedded hyperlinks addressing parts of the same document or other
documents. SGML hyperlinks can be created using complex structures
and attributes describing the relationships between document nodes and
other documents. A hyperlink in SGML is represented as a separate
element which can potentially be enriched with additional metadata. In-
spired by SGML, HTML also supports embedded hyperlinks. However,
in contrast to SGML hyperlinks, HTML hyperlinks are easy to create as
illustrated in Listing 2.1. Most recent markup document formats such
DocBook [138] have been inspired by the HTML link features and of-
fer simple embedded and unidirectional hyperlinks to other document
formats.

In contrast to markup languages, many recent document formats
such as PDF or Word do not discriminate between a document’s con-
tent and its formatting. These document formats adopted the What You
See Is What You Get (WYSIWYG) approach for document production.
A WYSIWYG document is modelled as a sequence of paragraphs [57]
and is represented as monolithic blocks of linear content [122] without
any semantic interpretation [17]. In other words, as criticised by various
authors [103, 122, 134] WYSIWYG document formats stuck to a conser-
vative representation of information and have degraded the computer to
a paper simulator. Thereby, the WYSIWYG document formats do un-
fortunately not contribute to the advancement of document linking, but
rather emulate the simple linking features of early markup languages.

The simple forms of unidirectional and embedded linking that are sup-
ported by most document formats yielded to many research and commer-
cial systems that tried to offer more advanced linking features for different
document formats. A number of link models such as XLink have been
proposed in order to enrich some document formats with more linking
features. Furthermore, many open hypermedia systems as well as an-
notation systems have been developed to play a major role in opening
some document formats for third-party associations and annotations.

22 Chapter 2. Background

In the following sections, we elaborate on the linking features sup-
ported in most popular document formats, some important link models
as well as different systems that contributed to enhancing the linking of
documents.

2.4 Link Models

2.4.1 The XML Linking Language (XLink)

The Xlink model has been introduced in 2001 [46] in order to enable
the linking across XML documents. It also overcomes the limitations of
embedded unidirectional web hyperlinks. XLink offers the possibility to
create hyperlinks that go beyond the simple embedded unidirectional hy-
perlinks. As mentioned before, XLink supports external hyperlinks that
can be either simple unidirectional or extended hyperlinks. An extended
hyperlink defines associations and paths between a collection of resources,
where each path associates two resources. A resource may be linked to
any subset of resources forming part of the collection. This mechanism
allows for bi- and multidirectional hyperlinks. Listing 2.2 shows an ex-
ample of an extended multidirectional hyperlink that is defined between
three different resources (three different Google service web pages). Four
different associations (arcs) have been defined between the three Google
service web pages.

Based on XPointer expressions [45], XLink can be used to create hy-
perlinks that address parts of an XML structure. XPointer is mainly
based on XPath [38] that can be used to navigate through the XML
document tree. Moreover, with XPointer expressions it is further pos-
sible to realise generic hyperlinks. A generic hyperlink associates (parts
of) documents based on string pattern matching [78]. For example, us-
ing XLink and XPointer a generic hyperlink can be defined from any
occurrence of a specific term in an XML document to another term in
another XML document. Even though the use of XPointer and XLink
seems advantageous, XLink shows one main shortcoming. It is limited
to tree-like document models since XPointer is only applicable to tree
document models. In fact, according to the XPointer specification [45],
XLink hyperlinks with their XPointer expressions are limited to a subset
of XML-based documents.

2.4. Link Models 23

1 <!−− List of Google Services, google.xml document −−>
2 <googleServices>
3 <services xlink:type= ”extended”
4 xmlns:xlink= ”http://www.w3.org/1999/xlink”>
5 <owner>Google</owner>
6 <!−− locator elements −−>
7 <service xlink:type=”locator” xlink:label= ”s1”
8 xlink:href=”http://www.google.com”
9 <title>Google Search Engine </title>

10 </service>
11 <service xlink:type=”locator” xlink:label= ”s2”
12 xlink:href=”http://translate.google.com”
13 <title>Google Translate </title>
14 </service>
15 <service xlink:type=”locator” xlink:label= ”s3”
16 xlink:href=”scholar.google.com”
17 <title>Google Scholar </title>
18 </service>
19 <!−− arcs −−>
20 <next xlink:type=”arc” xlink:from=”s1” xlink:to=”s2” />
21 <next xlink:type=”arc” xlink:from=”s2” xlink:to=”s3” />
22 <previous xlink:type=”arc” xlink:from=”s2” xlink:to=”s1” />
23 <previous xlink:type=”arc” xlink:from=”s3” xlink:to=”s2” />
24 </services>
25 </googleServices>

Listing 2.2: An extended XLink hyperlink

There exist various implementations of the XLink standard. The
Amaya1 web browser and Mozilla Firefox implement the simple hyper-
links of the XLink standard. Amaya opens web pages for third-party
annotations that are internally represented using XLink and RDF. The
Goate [94] system implements XLink and represents an attempt to en-
hance the simple embedded link model for the Web. Goate is based on
an HTTP proxy architecture to augment HTML documents with fea-
tures of the XLink model such as bi- and multidirectional hyperlinks.
Bidirectional hyperlinks have been realised by two unidirectional hyper-
links pointing to each other, while a multidirectional hyperlink has been
realised by a collection of unidirectional hyperlinks with the same source.
Goate offers these advanced hyperlink features by inserting the hyper-
links and destinations into an HTML document via a web proxy. The
XLinkProxy [37] system and its descendant XLinkZilla [78] represent
another approach that is similar to Goate and can be used for aug-
menting HTML documents with XLink features through a web proxy.
Xspect [36] is another tool similar to XLinkProxy and Goate that fa-

1https://www.w3.org/Amaya

24 Chapter 2. Background

cilitates the browsing and visualisation of a linkbase’s hyperlinks on the
Web. Webvise [66] is another system aimed to enrich web documents with
third-party associations such as advanced multidirectional hyperlinks and
annotations. It was built on top of an early Devise Hypermedia (DHM)
framework [67, 64, 65] open hypermedia system which implements the
Dexter Hypertext Reference Model. The multidirectional hyperlinks of
Webvise are similar to the extended XLink hyperlinks and therefore some
researchers considered Webvise as an implementation of XLink [78]. In
the same way as Goate, XLinkZilla or XLinkProxy, DHM uses a web
proxy architecture to augment web pages with multidirectional hyper-
links. Last but not least, X2X2 represents a Java-based tool that im-
plements XLink and facilitates the creation, management and storage of
hyperlinks that are inserted into documents on the fly.

2.4.2 The Resource Selector Link Metamodel

The Resource Selector Link (RSL) metamodel [124] whose core that is de-
picted in Figure 2.5 has been proposed to be general and flexible enough
in order to be used for evolving hypermedia systems. RSL is based on
the concept of linking arbitrary entities, whereas an entity is either a
resource, a selector or a link. A resource is an abstract concept that rep-
resents a media type such as a video, a text, an audio file or a complete
document. The RSL resource must be extended in order to represent
the concrete media types that exist in a given hypermedia application.
The selector is an abstract concept to address parts of a resource. The
RSL selector must be extended in order to represent the concrete frag-
ment identifier of a specific media type. For example, a text selector
for a text resource can be defined by its start and end indices whereas
a video selector might be defined as a timespan. The RefersTo associ-
ation between the resource and selector concepts with the corresponding
cardinality constraints reflects the fact that a selector always has to be
associated with exactly one resource, while many selectors can be defined
and attached to a resource. Finally, the link concept defines a one-to-one,
one-to-many, many-to-one or many-to-many association between any en-
tities. The associations HasSource and HasTarget enforce that each link
must have at least one source and at least one target. By using such a
constraint, a hypermedia system can to some extent overcome the prob-
lem of broken or dangling hyperlinks. A hypermedia system that is based

2http://xml.coverpages.org/x2xAnn19991202.html

2.4. Link Models 25

on the RSL metamodel might, for example, not allow the deletion of a
document that is still a target of a hyperlink.

entity

link

Links

selector

Selectors

resource

Resources

(1,*)(1,*)

(1,1) (0,*)

(0,*) (0,*)

RefersTo

HasTargetHasSource

partition

HasProperties

parameter

Properties
(0,*) (0,*)

HasResolver

contextResolver

Context
ResolversEntities

(0,*) (0,*)

Figure 2.5: Core RSL components, based on [124].

The RSL core also provides two interesting concepts that play an
important role in customising the behaviour of entities. Context resolvers
are attached to any entity and can be used to define conditions that have
to be met in order to access the entity. One can for example use this
valuable feature in a one-to-many hyperlink. Context resolvers can then
be attached to each hyperlink target in order to specify the context in
which a specific hyperlink target is visible. This means that we can adapt
the resolution of a hyperlink to a specific context. A property is a key
and value tuple that can be defined in order to customise an entity’s
behaviour for a specific system. Note that each entity can be associated
with multiple properties.

RSL further supports user rights management where access rights
can be defined at the entity level. Figure 2.6 highlights the user rights
management offered by the RSL metamodel. RSL distinguishes between
two kinds of users; individuals and groups. A group of users contains
individuals or other groups of users. Access permissions for each entity
are defined by using the associations AccessibleTo and InaccesibleTo.
Furthermore, the user rights management component of RSL takes into
account that each user might probably have different preferences, for
example for the visualisation of different entities. Hence, each user might
be associated with a number of preferences.

Last but not least, RSL takes the initiative by supporting the res-
olution of so-called overlapping hyperlinks at the metamodel level. An
overlapping hyperlink occurs when parts of selectors of a resource are

26 Chapter 2. Background

user

Users

parameter

Preferences

group

Groups

entity

Entities

(0,*)

(0,*)

(0,*)
(0,*)

(0,*)

HasMembers

AccessibleTo

individual

IndividualsCreatedBy

InaccessibleTo

(0,*)

(0,*)

(0,*)

(1,1)

partition

Has
Preferences

(0,*)

Figure 2.6: RSL user management component, based on [124].

overlapping. Usually, an overlapping hyperlink causes a hyperlink res-
olution problem since it is not clear which anchor/selector should be
activated. XLink supports the creation of overlapping hyperlinks, but
to the best of our knowledge, RSL is the only link model that provides
a mechanism for the resolution of overlapping hyperlinks. Figure 2.7
illustrates the RSL layer component which takes responsibility for man-
aging and resolving overlapping hyperlinks. Two main concepts have
been introduced in this component that deal with the problem. The
Layers collection maintains the different overlapping selectors of a re-
source by defining different layers overlapping selector can be associated
with. Hence, every overlapping selector has to be on a different layer.
Each resource can have multiple ordered layers. The Active Layers

sub-collection of the Layers collection defines the currently active lay-
ers. Layers can be activated or deactivated depending on the selectors
we want to access. It is out of the scope of this thesis to provide a full
description of the RSL metamodel but all the details about the RSL hy-
permedia metamodel can be found in [124].

Over the last decade, the RSL metamodel has proven its flexibility,
generality and extensibility and served a basis for the implementation of
many hypermedia solutions. RSL served as a basis for the implement-
ation of the iServer cross-media platform [123, 124]. iServer has then
been used in a variety of projects for physical-digital information integ-
ration and in particular for the implementation of the iPaper interactive
paper framework [107, 120]. Based on the iPaper framework, bi- and
multidirectional hyperlinks could be realised between printed papers and
web pages. Furthermore, iServer has been used to build a semantic file

2.5. Linking Features in Document Formats 27

selector resource
(1,1) (0,*)

RefersTo

layer

Layers

OnLayer |HasLayers|

Selectors Resources

(1,1)

(0,*) (0,*)

(0,*)

layer

Active
Layers

Figure 2.7: RSL layer component, based on [124].

system to overcome the classical hierarchical file management [29]. Last
but not least, RSL has been used as a basis for a metamodel for fluid
cross-media document formats [133].

2.5 Linking Features in Document
Formats

In this section, we present a review of the hyperlink support in some
existing document formats. As shown in Table 2.1, we have selected the
most prominent and widely-used document formats. As mentioned in
Section 2.3, early document formats such as GML, tnt [56] and Scribe
did not support the linking to resources outside of a document but only
supported intra-document references. Nevertheless, it is worth mention-
ing that Scribe and GML support the division of a document into smaller
sub-documents. This feature can be seen as a limited form of outgoing
hyperlinks to external documents where the main document contains
commands to embed the smaller sub-documents when needed.

Unidirectional and embedded hyperlinks were supported in SGML, a
descendant of the GML document format. SGML was developed to be
a markup metalanguage that can be used to define the specification of
other markup languages. The SGML metalanguage was used to create
HTML which is used to create structured web documents. HTML hyper-
links are technically limited by the possibilities of the SGML metalan-
guage. HTML hyperlinks form a basic building block of the document
itself. It offers simple typed and embedded unidirectional hyperlinks

28 Chapter 2. Background

Format
Hyperlink

Type
Supported Target Resources

SGML
embedded

unidirectional
web resources, entire third-party documents

HTML
embedded

unidirectional
web resources, entire third-party documents

RTF
embedded

unidirectional
web resources, entire third-party documents

LATEX
embedded

unidirectional
web resources, entire third-party documents

PDF
embedded

unidirectional
web resources, entire third-party

documents, parts of PDF documents

XML
external uni-,
bi- and multi-

directional

web resources, entire third-party
documents, parts of XML-based documents

XHTML
embedded

unidirectional
web resources, entire third-party documents

DocBook
embedded

unidirectional
web resources, entire third-party documents,

parts of other DocBook documents

OOXML
embedded

unidirectional
web resources, entire third-party documents,

parts of other OOXML documents

OpenDocument
embedded

unidirectional
web resources, entire third-party documents

EPUB
embedded

unidirectional
web resources, entire third-party documents

IBA
embedded

unidirectional
web resources, entire third-party documents

Table 2.1: Supported link models in existing document formats

which are defined via the link and a tags. In its latest HTML5 revi-
sion, there is the possibility to enrich hyperlinks with extra metadata
via HTML microdata [127] or RDFa [129]. With HTML hyperlinks, we
can address any web resource and therefore link to any entire third-party
document such as PDF or OOXML documents. When an HTML hyper-
link has an entire third-party document such as a PowerPoint, PDF or
Word document as a target, the web browser invokes a specific plug-in to
visualise the document based on the third-party document’s media type
(e.g. application/pdf or application/msword). Even though HTML
hyperlinks have been criticised by many researchers [106, 84, 122] for
being embedded and unidirectional, there is no doubt that they were
instrumental in the success of the most dominant and successful hyper-
media system, the World Wide Web.

2.5. Linking Features in Document Formats 29

The Extensible Markup Language (XML) [60] is a simplified variant
of the SGML metalanguage for the definition and creation of special-
purpose markup languages. The XML metalanguage is the most widely
known and used metalanguage. Various document formats have been
developed using XML such as OOXML and XHTML [114]. The XML
metalanguage does not offer a direct mechanism for creating hyperlinks.
XLink and XPointer expressions [45] can be used to link parts of XML-
based documents with each other. As mentioned in Section 2.4.1, XLink
and XPointer expressions only support the linking to XML documents.

The XHTML markup language is an XML-based reformulation of
HTML. The only difference between HTML and XHTML is that XHTML
has to be well-formed in order to be parsed using the standard XML pars-
ers. The fact that all features of HTML 4.01 were mapped to XHTML
implies that there are no differences in the linking features offered by
both document formats. Therefore, also XHTML only supports em-
bedded unidirectional hyperlinks to web resources or entire third-party
documents.

Besides the support for linking to web documents, many desktop
document viewers such as Microsoft Word offer some linking features in
their proprietary document formats (e.g. Rich Text Format (RTF) [132]).
Moreover, most publishing standards such as LATEX[86], PDF, EPUB and
DocBook [138] provide different linking features. Most of these document
formats support simple forms of linking to entire third-party documents
and web resources.

RTF is a proprietary document format developed by Microsoft Cor-
poration. It is used for presentation and cross-platform interchange of
text documents. The support for hyperlinks has been introduced in early
revisions of RTF. Users are able to create bookmarks within the docu-
ment itself and link to these bookmarks from other places in the doc-
ument. Moreover, embedded and unidirectional hyperlinks to web re-
sources and entire external documents can be defined in a document.

LATEX, which has been used to write this dissertation, is a markup
language that is suitable for producing scientific documents, letters and
presentations. The original LATEX document format specification has no
support for hyperlinks. However, over the years LATEX has been extended
via various packages. One of these packages, called hyperref, allows the
creation of embedded and unidirectional hyperlinks within LATEX docu-
ments and supports hyperlinks to web resources as well as entire external
third-party documents. In contrast to LATEX, the PDF specification sup-

30 Chapter 2. Background

ports four different kinds of unidirectional and embedded hyperlinks.
PDF hyperlinks either reference intra-document anchors via the GoTo
actions, anchors in external PDF documents via the GoToR actions, an-
chors in an embedded PDF document via the GoToE actions or any web
resource via the URI action.

The DocBook document format is a semantic markup language for
writing structural documents such as technical and scientific documents.
The latest revision of DocBook is an XML application but it neglects all
the rich features of the XLink and XPointer standards. DocBook offers
different possibilities to enrich documents with hyperlinks. An anchor

tag can be used to create bookmarks in the document itself which will
serve as targets for intra-document references. The XLink:href tag is
used to create a hyperlink to an already defined anchor, web resource
or external third-party document. The XRef tag is used for establish-
ing more advanced linking features which leads to content reuse of the
referenced part. Finally, the olink tag can be used for establishing
hyperlinks across documents, where Internationalized Resource Identi-
fier (IRI)-based [49] linking is inappropriate. Thereby, the olink can be
used for establishing application-specific links in order to for example
retrieve information from a database.

EPUB stands for the Electronic PUBlication standard. EPUB is
a recent open eBook document format developed in order to overcome
many shortcomings that existed in its predecessor, the Open eBook Pub-
lication Structure (OEBPS) [1], and to profit from new web standards
and technologies. The EPUB standard is nowadays one of the most
acceptable and supported document formats in eBook readers such as
the Sony eBook reader3 and the Eee reader4. Due to the fact that
EPUB is based on XHTML, EPUB hyperlinks are embedded and uni-
directional. They enable the addressing of any web resource and entire
external third-party documents. Nevertheless, it is worth mentioning
that EPUB offers a mechanism called the EPUB Canonical Fragment
Identifier (epubcfi) [128] which allows the referencing to any position in
an EPUB document, in a way similar to the XPointer.

The iBook Author document format (IBA) [98] is another recent pro-
prietary document format developed by Apple Inc. for its devices and
operating systems. The document can be authored using a tool with the

3http://www.sony.co.uk/electronics/reader/t
4https://www.asus.com/Eee-Family/Eee Reader DR900

2.6. Hypermedia and Annotation Systems 31

same name, iBook Author5. IBA is mainly based on the EPUB standard
with more customised widgets that offer more interactive features. The
IBA format does not go beyond what is supported in the EPUB stand-
ard, and hence, it supports embedded and unidirectional hyperlinks to
address web resources and entire external third-party documents.

Last but not least, the Office Open XML (OOXML) [50] and the Open
Document Format for Office Applications (OpenDocument or ODF) [140]
are recent document formats that resulted from applying XML techno-
logies to open proprietary document formats (e.g. Microsoft Office doc-
uments). Unfortunately, only the simple linking features of the XML
link model have been adopted in these document formats. OOXML
is used for presenting word, spreadsheets and presentation documents
produced by Microsoft Office applications. The primary goal of the
OOXML standard is to facilitate the interoperability between multiple
office applications on multiple platforms. As mentioned, OOXML neg-
lects the advanced linking features that are already supported by XLink
and only adopted the simple embedded unidirectional hyperlinks that
were supported in office documents. OOXML hyperlinks are able to ad-
dress web resources, anchors in the same document as well as anchors
in other OOXML documents. Nevertheless, it worth mentioning that
the latest OOXML standard does not specify how hyperlinks to parts of
other OOXML documents should be realised. Like the OOXML format,
the OpenDocument standard is capable of presenting word processing,
spreadsheets and presentation documents. It also facilitates the extensib-
ility and the interoperability between the different office applications on
multiple platforms. OpenDocument hyperlinks are embedded and uni-
directional, so they are able to address web resources and entire external
third-party documents.

2.6 Hypermedia and Annotation Systems

As mentioned earlier, hypermedia and annotation systems are considered
the main trend for enhancing the linking of documents. Hypermedia sys-
tems were developed to facilitate the linking across different media types
(e.g. text, images or videos) and/or different document formats. The
different hypermedia systems can be classified into two main categor-
ies. The first class of systems contains closed proprietary hypermedia

5http://www.apple.com/ibooks-author

32 Chapter 2. Background

systems. Closed hypermedia systems offer linking features to some me-
dia types or proprietary document formats with the major limitation
that hyperlinks are embedded inside the linked objects. This limitation
prevents the management and manipulation of hyperlink metadata. An
example of such hypermedia systems is Guide [23]. The second class of
hypermedia systems are open hypermedia systems or link services. Open
hypermedia systems overcome the shortcomings of the closed hyperme-
dia systems by enabling the management and manipulation of hyperlink
metadata externally to the linked objects. Some open hypermedia sys-
tems offer linking features not only to their own proprietary document
formats but also to other document formats such as HTML. Examples
of these systems include Sun’s Link Service [112] and Microcosm [73].

Annotations are in fact either metadata or content that is attached to
a document or parts of a document [9, 8]. In both cases, an annotation
can be seen as a hyperlink since it establishes an association between
a resource (a document or parts of it) with an external resource in the
form of notes, comments or formal metadata (RDF) [8, 126, 125]. Over
the last decades, a variety of annotation tools have been developed for
different domains and different purposes. For example, various systems
have been developed to enhance collaborations and discussions on the
Web [70, 69, 24, 25]. Furthermore, a number of annotation systems have
been realised for enhancing the collaboration and discussion among sci-
entists in different digital libraries [4, 5, 7, 6, 42, 55, 52]. In the following
two subsections, we discuss linking features as well as limitations of ex-
isting link services and annotation tools. In Section 2.6.3, we present
an idea for an extensible annotation and link service proposed by Signer
and Norrie [125, 126] which inspired the design of our extensible link ser-
vice architecture. After a critical discussion of the presented systems, in
Section 2.8 we outline essential requirements for an ideal extensible link
service as well as a comparison of existing annotation and link systems
in the light of these requirements.

2.6.1 Open Hypermedia Systems

One of the most well-known open hypermedia systems is Intermedia [68]
which was developed at Brown University’s Institute for Research in In-
formation and Scholarship (IRIS). The Intermedia link service is a multi-
user hypermedia system for Unix environments which demonstrates vari-
ous hypermedia features. Intermedia has an explicit layered architecture

2.6. Hypermedia and Annotation Systems 33

that clearly separates between data, logic and presentation layers. In the
data layer, a DBMS model is used to store the hyperlink metadata extern-
ally from the linked documents. The presentation layer enables users to
author documents as well as their hyperlinks. Intermedia’s presentation
layer supports the authoring and visualisation of five different document
formats. Users are able to create bidirectional hyperlinks across the sup-
ported document formats. While Intermedia supports the linking across
five different document formats, it also shows a number of shortcom-
ings. Even though Intermedia is based on a layered architecture, it is not
evident how Intermedia can be extended to support additional document
formats. Moreover, Intermedia was intended to be used as a complete
authoring tool and not purely as a link service. This implies that any
document format that wants to profit from Intermedia’s linking features
has to be visualised and authored within an Intermedia viewer.

The integration of third-party document viewers was one of the main
goals when developing Sun’s link service [112] and Microcosm [73]. Sun’s
link service is a pure link service providing users the ability to create
bidirectional hyperlinks between different document formats. The ma-
jor contribution of Sun’s link service is its ability to integrate external
third-party document viewers by providing a protocol to communicate
with them. Thereby, users are able to create hyperlinks between differ-
ent documents that are visualised with their own third-party document
viewers. However, Sun’s link service has a major shortcoming. The
third-party document viewers’ integration protocol comes in the form of
a program library that has to be included in any external application
in order to communicate with the link service. This means that third-
party document viewers have to be rewritten in order to benefit from the
features offered by Sun’s link service.

The Microcosm link service supports the external linking to Microsoft
applications such as Microsoft Word. Furthermore, Microcosm offers
some other features including the dynamic linking of documents as well
as generic hyperlinks. With Microcosm’s generic hyperlinks, a user can
for example create a hyperlink from a snippet of information in a doc-
ument to other documents containing a specific word or set of words.
Even though Microcosm supports the linking across multiple external
applications, it is not evident how Microcosm can be extended to sup-
port emerging document formats and their own third-party document
viewers.

34 Chapter 2. Background

With the wide acceptance of the Web as a public hypermedia sys-
tem, the open hypermedia community tried to enhance the Web’s simple
linking mechanism that prevents the manipulation as well as the man-
agement of web hyperlinks. The embedded HTML hyperlinks prevented
end users from enriching web documents with associations to external
resources such as annotations and other documents. Thus, many open
hypermedia systems such as Hyper-G [95] and Webvise [66] have been
developed in order to augment web pages with new associations and an-
notations. Moreover, some existing open hypermedia systems such as
Microcosm and Chimera [11] have been extended for the Web. Further-
more, as discussed earlier some XLink-based systems such as Goate [94],
XLinkZilla [78] and Xspect [36] have enriched HTML documents with
more advanced hyperlinks.

Chimera [11] is an open hypermedia system that was mainly de-
veloped to offer linking features for heterogeneous software development
environments. It offers advanced linking features such as multidirectional
hyperlinks for heterogeneous software objects in a distributed and mul-
tiuser context. Nevertheless, we present this link service in this context
for two main reasons. First of all, Chimera has an interesting architec-
ture which offers the linking features to different software development
environments by treating each of them as a client for the link service’s
server. Second, as mentioned earlier, Chimera has been used to enrich
the Web with external hyperlinks by considering the Web as a client of
the Chimera server. In Chimera, augmented web pages with annota-
tions and hyperlinks are either rendered in an applet or in an ordinary
web browser. The same shortcomings mentioned for the aforementioned
Sun’s link service and Microcosm systems are also valid for Chimera.

Hyper-G and its successor, HyperWave [96], are other open hyper-
media systems for web augmentation [21]. Both systems have adopted a
different mechanism than Chimera in order to augment web documents.
First, they do not directly augment HTML documents but they use the
special Hypertext Format (HTF) document format. Users are able to in-
teract and augment HTF documents by using a proprietary Hyper-G or
HyperWave browser. Later, users can access and visualise the augmented
documents by using the proprietary or an ordinary web browser. In order
to visualise the documents in an ordinary web browser, a special gateway
is used to translate the HTF documents into HTML documents. Unfor-
tunately, Hyper-G and HyperWave are targeting HTML documents and

2.6. Hypermedia and Annotation Systems 35

it is not evident how they might be used to enrich non-HTML document
formats with external hyperlinks.

The Distributed Link Service [31] is another well-known system for
web augmentation. DLS is based on Microcosm’s link service which can
seamlessly be integrated in the user’s web browser. By using DLS, users
are able to directly interact with the HTML documents visualised in the
web browser. Users are further not only able to create and navigate hy-
perlinks but also customise the visualisation of the augmented hyperlinks
in order to distinguish them from a document’s original hyperlinks. As in
Microcosm, users are able to create generic hyperlinks based on a specific
word or a pattern.

2.6.2 Annotation Tools

Since the introduction of the World Wide Web, researchers have been
trying to enrich its simple embedded unidirectional linking model with
more advanced features. As mentioned earlier, some Web augmentation
systems have been proposed as well as the XLink and XPointer stand-
ards. Furthermore, many research and commercial annotation tools have
been developed to open the Web for third-party annotations and asso-
ciations to external web documents. It is worth mentioning that most
of these annotation tools did not offer an explicit feature to create hy-
perlinks between parts of web documents. Nevertheless, their offered an-
notation features are very beneficial for web users and their collaboration.
WebAnn [24] and CoNote [44] were early Web annotation tools that were
mainly used for collaborative annotations and discussions on the Web.
CoNote has been developed to facilitate the communication among stu-
dents and their teachers using shared annotations and discussions. Using
CoNote, teachers and students were able to have discussions within lec-
ture documents. Annotations and discussions in CoNote were supported
at document or section level. WebAnn has gone beyond CoNote by sup-
porting fine-grained annotations of web pages, enabling annotations of a
section, paragraph or even a word in a web page. It is worth mentioning
that WeAann has been embedded in Microsoft Internet Explorer.

With the Web 2.0 movement, where users have become producers
as well as consumers of information, the increased collaboration among
web users motivated the World Wide Web Consortium (W3C)6 to create

6https://www.w3.org

36 Chapter 2. Background

the Annotea standard [83]. Annotea is the most well-known RDF-based
standard to enhance collaboration on the Web via shared web annota-
tions and bookmarks. These annotations can be notes, explanations or
comments that are externally attached to a web page and are augmen-
ted with RDF metadata. Annotea uses XPointer expressions to address
specific parts of a web page. A number of annotation tools have been im-
plemented based on the Annotea standard, including the W3C’s Amaya
web browser or the Annozilla7 extension for Firefox. It is worth men-
tioning that various other business annotation tools have been developed
including Diigo8 and Annotary9 which offer more or less the same features
offered by Annotea-based tools.

MADCOW [20] is another annotation tool that enables the opening of
web documents to third-party annotations and associations. MADCOW
uses a client-server architecture where the client has been reaslised as a
plug-in for Microsoft Internet Explorer. MADCOW overcomes Annotea-
based tools by offering the possibility to annotate richer media types such
images and videos. Moreover, it is worth mentioning that MADCOW
has been used to offer annotation features to documents in a digital
library [19]. The same criticism mentioned for Annotea-based tools is
also valid for MADCOW since it only adopted the simple annotation
concepts (e.g. notes or comments).

Figure 2.8: General architecture of the Flexible Annotation Service Tool
(FAST), based on [6].

Whereas many built-in annotation components have been integrated
in specific digital libraries in order to promote collaboration and discus-

7http://annozilla.mozdev.org
8https://www.diigo.com
9https://annotary.com

2.6. Hypermedia and Annotation Systems 37

sions among researchers, the Flexible Annotation Service Tool (FAST) [6]
has been implemented to be a stand-alone annotation service in or-
der to offer its features and services to multiple digital libraries. Like
Annotea-based tools or MADCOW, FAST offers simple annotation fea-
tures without cross-document linking. Nevertheless, FAST has a very
promising extensible architecture that enables the integration of external
digital libraries that are managed using different information manage-
ment systems (IMSs) as illustrated in Figure 2.8 . The architecture has
two main components; the core annotation service and a number of inter-
faces (gateways). Each gateway is connected to a different digital library
(i.e. IMS) and ensures that the digital library gets access to the core an-
notation service offered by FAST. Thereby, in order to integrate a new
digital library in the system, a new gateway has to be developed.

2.6.3 Extensible Architecture for Annotation and

Link Services

The fact that most existing annotation and link services are not flex-
ible and extensible to support the linking and annotation to existing
and emerging media types was a main motivation for the proposal of
the general architecture for open cross-media annotation and link ser-
vices [125, 126] shown in Figure 2.9. Similar to the FAST architecture, its
basic idea is the separation of linking and annotation functionality from
the annotated media. Hence, the architecture makes a clear separation
between the core link model and the user interface. An annotation and
link service that is based on the proposed architecture knows how to deal
with the core link model and is extensible to support other media types.
The proposed link model architecture is based on the RSL metamodel
presented in Section 2.4.2 which is flexible and extensible to support
various media types. For any new media type to be supported, a “data
plug-in” extending the RSL metadmodel has to be provided. The data
plug-in for a specific media type must provide the definition of its logical
structure by extending the RSL Resource and must further define how
to create selectors within its structure by extending the RSL Selector.

To the best of our knowledge, the cross-media annotation and link
architecture by Signer and Norrie was the first approach to introduce
the concept of extensibility on the visualisation layer of a link service.
As mentioned before, when a link or annotation service is extended to
support a new media type, also the user interface has to be extended to

38 Chapter 2. Background

Annotation/Link

Service

Client Application

 Annotation/Link

Browser and Editor

Visual Plug-ins

Resource Plug-in Repository

Data Plug-ins

Visual Plug-ins Data Plug-insVisual Plug-ins

Figure 2.9: General architecture for open cross-media annotation and
link services, based on [125, 126].

support the visualisation of the new media type. The extensibility on the
visualisation layer proposes to use visual plug-ins in order to avoid a re-
implementation and deployment of a link service’s entire user interface.
A visual plug-in for a specific media type has two main purposes. First it
should render a specific resource of the media type as well as its defined
selectors (anchors). Second, it should provide functionality to create and
delete resources as well as selectors.

The proposed cross-media annotation and link architecture further
takes into account that end users use different third-party applications
for rendering different media types. Thereby, the proposed architecture
supports the linking to media types visualised via their third-party ap-
plications. In order to integrate a third-party (client) application in a
link service, a visual plug-in extending its user interface as well as a data
plug-in extending the RSL metamodel must be provided. The visual
plug-in of a client application should communicate with the link service
about hyperlinks and selectors to be created and highlighted. The visual
plug-in must further provide visual handles to enable users to create, edit
and delete selectors. Last but not least, an end user should be able to
dynamically install the different plug-ins (i.e. data and visual plug-ins)
in order to extend the link service and support a new media type to be
visualised in the link service user interface or a corresponding third-party
application.

2.7. Discussion 39

2.7 Discussion

Most existing document formats have a simple embedded unidirectional
link model. The majority of them pay attention to hyperlinks to web
resources, neglecting the variety of other document formats. With the
exception of the XML linking language, it seems that more recent docu-
ment formats mimic the simple embedded hyperlink features supported
by early document formats (e.g. SGML and HTML). Even though the
advent of XML and XLink was a major step towards advanced linking
on the Web, most recent document formats that are based on the XML
standard (e.g. OpenDocument and OOXML) neglected the rich linking
features offered by the XLink standard. All these reasons together limit
the possibilities for cross-document linking where hyperlinks should be
created between snippets of information in different document formats.

Existing annotation tools as well as link services do not solve the
problem of cross-document linking, despite the fact that they were mainly
developed to allow users to associate and link documents to external re-
sources. Unfortunately, the development of most existing link services
and tools has been motivated by limitations of their predecessors or new
features to be supported rather than a clear understanding of the needs
and requirement of end users. For example, the development of Sun’s link
service and Microcosm was motivated by the lack of a link service that
supports the integration of third-party document viewers. The develop-
ment of web augmentation open hypermedia systems (e.g. Hyper-G, DLS
and Chimera) as well as XLink-based implementations (e.g. XLinkZilla
and Goate) was motivated by the lack of advanced external hyperlinks
on the Web.

The fact that most link services neglect the multitude of existing
third-party document viewers forces users who are willing to benefit from
a link service to abandon their preferred third-party document viewers. A
link service should not only support the linking to its supported document
formats but it should also provide a mechanism that allows the linking
to documents visualised in their third-party document viewers. However,
this mechanism should be different from Sun’s link service where third-
party document viewers have to be rewritten in order to benefit from the
link service’s features.

The support of a fixed set of document formats in a link service fur-
ther does not give users the necessary flexibility in linking their preferred
document formats. Nowadays, users deal with a variety of document

40 Chapter 2. Background

formats (e.g. HTML, PDF, PowerPoint, LATEX and EPUB) and they will
probably deal with emerging document formats that will support more
features than existing document formats. Therefore, a link service must
not only support the linking to existing document formats but also to
emerging new document formats. This asks for a link service that is not
only extensible on the link model level but also on the visual (user in-
terface) level. In the next section, we outline six important requirements
that should be fulfilled by an ideal link service in order to be flexible
and extensible enough to support existing as well as emerging document
formats and document viewers.

2.8 Towards an Ideal Cross-Document
Link Service

2.8.1 Requirements for an Ideal Link Service

By carefully analysing the shortcomings of existing annotation and link
services, we derived a number of fundamental requirements for an ideal
extensible cross-document link service. We strongly believe that these
requirements are the most essential requirements for integrating existing
and emerging document formats as well as third-party document viewers
with an extensible link service. This implies that it is still possible to have
other requirements for a cross-document link service which are relevant
for other features (e.g. collaboration or scalability) that are out of the
scope of this thesis. In the following, we discuss each of the requirements
in detail.

R1: Flexible and Extensible Link Service Architecture Most
annotation and link services are not based on explicit link models. They
often contain a mixture of conceptual and technical hard-coded link mod-
els. Other tools which are based on link standards are limited by the
particular shortcomings of some of these standards such as the ones of
the XLink standard discussed earlier. The fact that document formats
have different document models means that anchors and selectors can be
defined and addressed in different ways. For example, an anchor in a tree
document model can be defined via an XPointer-like expression while an
anchor in a text-only linear document model might be defined by its
start and end indices. This challenge asks for a flexible and extensible
link model. Thereby, flexibility means that the model should deal with

2.8. Towards an Ideal Cross-Document Link Service 41

the different document formats supported by the link service whereas
extensibility deals with emerging document formats to be supported at a
later stage. Moreover, we strongly believe that the user interface of a link
service must be extensible too as proposed by Signer and Norrie [126].
Most existing annotation and link services have to be redeployed every
time a new media type has to be supported. Ideally, the user interface of
a link service with an extensible link model will not have to be redeployed
in order to support a new document format and the manipulation of the
corresponding link anchors.

R2: Support for Multiple Document Formats This require-
ment can be divided into two sub-requirements: a link service should be
able to support existing document formats and should be able to deal with
emerging document formats. A link service should not be limited to a
specific document format or a predefined set of document formats. An
extensible link service should offer a simple mechanism to allow third-
party developers or users to integrate additional document formats. The
redeployment of the entire link service should not be an option since it
requires the intervention of the link service deployer. The link service
should benefit from the new dynamic extensibility techniques applied in
applications and software development tools such as the Eclipse IDE10,
LATEX editors (e.g. TEXnicCenter11) or the Google Chrome web browser.

R3: Easy Integration of Third-Party Document Viewers Sup-
porting third-party document viewers should be taken into account in
any successful link service. Otherwise, the link service must provide the
authoring/editing of third-party documents and be appealing enough to
convince users to no longer use their preferred third-party document
viewers. This is not practical as users might want to continue using
the document viewers they are familiar with. Nowadays, most propriet-
ary third-party document viewers come along with their own Software
Development Kit (SDK) or Application Programming Interface (API)
(e.g. Foxit Reader Plug-in SDK12, Microsoft’s Office Developer Tools13

or the Acrobat Reader plug-in architecture SDK14) in order to be exten-
ded on demand to support some extra functionality. An extensible link
service should benefit from a third-party document viewer’s extensibility
rather than forcing third-party document viewer vendors to rewrite their

10https://eclipse.org
11http://www.texniccenter.org
12http://www.foxitsoftware.com
13http://msdn.microsoft.com/en-us/library/jj620922.aspx
14http://www.adobe.com/devnet/acrobat.html

42 Chapter 2. Background

applications. Plug-ins or add-ins can be implemented for these third-
party document viewers in order to provide visual handles for creating
and editing anchors in the supported document format. Furthermore,
the link service should provide mechanisms to communicate with third-
party plug-ins about newly created anchors as well as hyperlinks to be
followed or highlighted.

R4: Flexible Communication Channels The support for third-
party document viewers asks for communication across different proto-
cols. The APIs and SDKs of some third-party document viewers limit
their plug-ins or add-ins to a specific set of communication protocols.
For example, Google’s Chrome Extension API15 and extensions for other
web browsers only support WebSocket communication with third-party
document viewers whereas TCP sockets are the default communication
protocol for third-party desktop document viewers. An extensible link
service should support the multitude of existing communication proto-
cols since otherwise some third-party document viewers might not be
integrated with the link service.

R5: Customisable Link Service The previous requirements im-
ply that the different link service components are extensible via plug-ins
extending the link model, visual plug-ins or third-party document view-
ers plug-ins. It is not practical to push users to install all plug-ins at once
given that they might not use most of the supported document formats
or third-party document viewers. Therefore, end users should be able to
customise their link services by installing only the document formats that
are really needed. Customisability of the link service means that the link
service is extensible on demand. The LATEX environment which has been
used to write this thesis is a good example for on-demand extensibility
via various packages to support extra functionality. The Eclipse IDE16

and Google’s Chrome web browser are two other examples, where dif-
ferent plug-ins are installed when needed. Extensibility on demand not
only saves disk space but also increases the performance and memory
efficiency of a tool. In order to successfully support on-demand custom-
isation, the availability of the plug-ins should be ensured via a central
online plug-in repository.

R6: Plug-in Versioning Different document format specifications
are often updated to support new features. Moreover, third-party docu-
ment viewers are normally updated with new features to either support

15https://developer.chrome.com/extensions
16http://www.eclipse.org

2.8. Towards an Ideal Cross-Document Link Service 43

the new document format specification or to support new features in the
application itself. Therefore, new versions of (some) plug-ins for a given
document format are expected to be published. The link service should
deal with this evolution by providing a mechanism for updating existing
document format plug-ins.

2.8.2 A Comparison between Existing Annotation

and Linking Systems

In Table 2.2 we present a comparison of a number of existing link ser-
vices and annotation tools presented earlier in the light of the six re-
quirements for an ideal cross-document link service. Each requirement is
mapped to one dimension (column) in the comparison table, except for
the first and second requirements. The first requirement is mapped to
the two ‘extensible link model’ and ‘extensible user interface’ dimensions.
The second requirement is mapped to the two ‘cross-document linking’
and ‘emerging documents’ dimensions. The former evaluates whether a
system supports cross-document linking between multiple existing docu-
ment formats, while the latter evaluates whether a system is extensible
and might support emerging document formats. In the table, we use
the 4 symbol to illustrate that a feature is supported whereas the (4)
symbol means that there is only limited support for a given feature or
the feature is supported with some major drawbacks.

As shown in the table, existing linking systems are far away from
the ideal cross-document link service. None of the existing systems sup-
port the seamless integration of existing third-party document viewers or
flexible communication channels. Furthermore, none of them supports
the dynamic extensibility or the configuration of supported document
formats or third-party document viewers.

Intermedia did not take into account any document viewer. Thereby,
hyperlinks cannot be established from Intermedia documents to parts of
other external third-party documents. Even though Intermedia is based
on a layered architecture, it is not evident how the architecture can be
extended to support more document formats on the level of the link model
or on the user interface level. Similar to Intermedia, Sun’s link service
has a monolithic user interface which requires a redeployment whenever
a new document format has to be supported. As already discussed, the

44 Chapter 2. Background

Link

Service

Extensible

Link

Model

Extensible

User

Interface

Cross-

Document

Linking

Emerging

Docu-

ments

External

Applica-

tions

Flexible

Channels
Customisable

Plug-in

Version-

ing

Intermedia 7 7 4 7 7 7 7 7

Sun’s Link

Service
(4) 7 4 (4) (4) 7 7 7

Microcosm 7 7 4 7 (4) 7 7 7

Chimera (4) 7 (4) (4) (4) 7 7 7

Hyper-G 7 7 (4) 7 7 7 7 7

DLS 7 7 (4) 7 7 7 7 7

Annotea-

based

Solutions

7 7 7 7 7 7 7 7

MADCOW (4) 7 7 7 7 7 7 7

FAST 7 7 7 7 (4) 7 7 7

CoNote 7 7 7 7 7 7 7 7

WebAnn 7 7 7 7 7 7 7 7

Goate 7 7 (4) 7 7 7 7 7

XLinkProxy 7 7 (4) 7 7 7 7 7

Xspect 7 7 (4) 7 7 7 7 7

iServer 4 7 4 (4) (4) 7 7 7

Table 2.2: Comparison of existing link services and annotation tools

mechanism for integrating third-party document viewers in Sun’s link
service asks for changes to the core of third-party document viewers. In
contrast to Intermedia, Microcosm has a monolithic architecture which
requires a redeployment whenever a new document format has to be
integrated with the link service.

Chimera, Hyper-G and DLS have only augmented web pages with
advanced hyperlinks. In contrast to Hyper-G and DLS that have been
developed as monolithic components, third-party document viewers can
benefit from Chimera’s features since it treats external applications as
clients for its server. We therefore believe that Chimera’s link model is
extensible to support other document formats besides HTML but not
without redeployment.

As mentioned earlier, annotation tools including Annotea-based solu-
tions (e.g. Amaya web browser and Annozilla extension for Firefox),
WebAnn, CoNote, MADCOW and FAST adopt the simple annotation
concepts (e.g. notes or comments) and do not support the creation of
hyperlinks between existing content. We believe that even if the link-
ing of existing content is supported and the extensibility is addressed,

2.9. Summary 45

these solutions are limited to the features offered by XLink. It is worth
mentioning that it seems that MADCOW’s underlying annotation/link
model is extensible via redeployment since it offers the possibility to at-
tach additional types of external resources (e.g. images and videos) to the
annotated content. Furthermore, the integration of new digital libraries
with the FAST system can be considered as a feature for integrating
third-party document viewers.

The main goal of XLink-based systems such as Goate, XLinkProxy
and Xspect was to enrich web documents with the advanced linking fea-
tures of XLink. Therefore, these systems do not offer linking features to
other existing document formats. Furthermore, it is not evident how the
architecture of these systems can be extended to support other exiting
document formats or third-party document viewers.

Last but not least, iServer which is based on the RSL metamodel
offered external bi- and multidirectional hyperlinks to various multime-
dia types such as videos, web pages and printed papers. The flexibility
offered by its link model allows the integration of other multimedia types
and document formats with a redeployment and configuration of the sys-
tem. However, iServer has a monolithic user interface which implies that
it needs a redeployment and configuration whenever a new media type
has to be supported. Even though iServer supports the linking between
printed papers and web pages that are visualised via Firefox web browser,
it does not offer an extensible mechanism for integrating other third-party
document viewers.

2.9 Summary

In this chapter we presented the background and state of art of doc-
ument linking approaches. We started by providing a brief history of
hypermedia systems and the evolution of document linking approaches
that have been started with the visionary idea of the Memex in 1945.
We have then discussed XLink and RSL as well as their existing imple-
mentations. We have further discussed the linking features supported
by existing document formats and highlighted some of their limitations.
We then presented existing link services and annotation tools and dis-
cussed their architectures as well as their mechanisms offered to support
cross-document linking in existing document formats. After critically
discussing the existing approaches for cross-document linking, we have

46 Chapter 2. Background

defined six fundamental requirements that should be taken into account
by any ideal cross-document link service in order to integrate existing
and emerging document formats as well as third-party document view-
ers. In the light of these six requirements, we finally compared existing
link services and annotation tools.

3
User Behaviour in

Associating Information

In this chapter we explore the user behaviour in associating information
across different physical and digital documents and address the current
lack of empirical studies in this domain. The study provides insights
into the strategies and systems that users apply to associate informa-
tion across documents. In addition, it reveals the limitations of current
practices and allows us to formulate suggestions to improve information
association across documents. The findings also enable us to identify a
set of design implications for the development of future cross-document
linking solutions.

3.1 Context

As explained in the previous chapter, the development of most existing
linking systems has been solely motivated by limitations of their prede-
cessors or new features to be supported rather than a clear understanding
of the needs and requirements of end users. We believe that the devel-
opment of an extensible and successful cross-document linking solution
requires insights into user expectations regarding cross-document link-

47

48 Chapter 3. User Behaviour in Associating Information

ing solutions and their functionality. These insights can be gained from
studying users’ current information associating behaviour. We will in-
vestigate information association mechanisms adopted by users in order
to associate information within and across documents as well as their ap-
preciation and criticism of existing mechanisms. While this thesis mainly
focuses on the support of cross-document associations between digital
documents, the study presented in this chapter also considers user beha-
viour in associating information in the physical space and across physical
and digital documents. This enables us to compare the user behaviour
in relation to both digital and physical media and to gain a deeper un-
derstanding of the best practices from the physical world. As such, the
exploration provides insights into how to best support information linking
and integration across both digital and physical media. These insights are
also valuable for the general research on Cross-Media Information Spaces
and Architectures (CISA) in the WISE research lab1 which investigates
conceptual models and architectures for integrating information across
media spaces.

3.2 Literature Review

To the best of our knowledge, there are no existing studies that are
mainly aiming to understand knowledge workers’ behaviour in associat-
ing information within and across digital as well as physical documents.
Nevertheless, there have been many different studies in different domains
that revealed some general interesting findings regarding this matter. In
the digital world, some of the studies have stated that system folders
which are used to organise documents are a mean to associate “entire”
documents. Besides folders, previous studies revealed that users use an-
notations in order to create associations between parts of documents.
In the physical world, the filing and piling organisational strategies [90]
are also used by users to organise relevant documents which can be con-
sidered as a kind of associating information.

Previous studies in Human Computer Interaction (HCI) that aimed
to understand and analyse a user’s reading and writing activities have
stated that users perform a cross documents referencing task in order
to integrate and associate information from one or multiple documents.
According to Adler et al. [2], a cross-document referencing task forms

1http://wise.vub.ac.be/content/cross-media-information-spaces-and-architectures

3.3. Methodology 49

about 26% of the whole reading and writing activity tasks. The work
done by O’Hara et al. [109, 110] revealed that readers of digital or physical
documents tend to use different kinds of annotations (e.g. marginal notes
or line markers) in order to make references between documents. In
her work “Toward an Ecology of Hypertext Annotation” [93], Marshall
stated that some user annotations in physical books are an emulation of
some hypertext patterns such as creating and referring to anchors within
the books themselves. Readers, for example, create highlighted or line-
marked anchors in a printed book in order to refer to them from another
part of the same book. Readers also tend to use annotations to explicitly
make references to entire chapters or sections in the same book. Readers
also mimic the creation of hypertext anchors by grouping some book
content with an annotation or a highlight in order to refer to it from
another part with the same book.

The literature within the Personal Information Management domain
is mainly focusing on how people organise and retrieve information arte-
facts. Despite the fact that Whittaker et al. [141] have noted the lack
of empirical research in PIM, there are some interesting findings that
are relevant to the context of our research. Jones et al. [81] stated that
folders are used to summarise, organise and associate information that
is relevant for a specific user task (e.g. a planned project or some course
material). Another study by Boardmann et al. [18] revealed that some
users use a consistent folder naming convention to relate resources to
each other. According to the same study, users create so-called overlap-
ping folders, folders with the same name, using different tools (e.g. Out-
look and file system) in order to organise resources that are related to
the same production activity. Users might, for example, create a folder
named marriage in an email client to store all emails concerning their
marriage plan and at the same time create another system folder with
the same name to store other related documents (e.g. wedding photos).

3.3 Methodology

In order to obtain robust as well as compelling evidence, we have chosen a
qualitative approach using a multi-case design to explore different users’
cross-document information association behaviour [144, 77]. The study
relies on a mixed methods approach consisting of an online survey com-
bined with interviews with participants of the online survey. The parti-

50 Chapter 3. User Behaviour in Associating Information

cipants in our research were informed that the collected data would be
used for scientific research as well as scientific publications. Furthermore,
we ensured the participants that their data would be treated confiden-
tially and would be fully anonymised if used in any future publications.

3.3.1 Data Collection

3.3.1.1 Online Survey

For the purpose of this study we designed an online questionnaire which
is included in Appendix A. The questionnaire focuses on investigating
whether users associate information in both physical and digital media,
which mechanisms are used by users to associate information, why they
create these associations and how end users appreciate or criticise the
mechanisms they currently use to define these associations. The online
survey allowed us collect data from a much larger number of participants
than it would have been feasible through alternative methods such as
observations and think aloud experiments [144]. Furthermore, an experi-
mental setup would cause a conflict with the purpose of this study which
is to identify if, why and how people are creating associations between
documents in everyday settings. In a survey, users should be able to
freely report about their previous activities in associating information.

In order to identify reasons or barriers for associating information,
we first needed to find out if users had ever “felt the need to associate
information” in a particular manner (further referred to as a scenario). A
negative reply to this question suggests that it is rather unlikely that they
have engaged in this type of association activity, whereas a positive reply
indicates that users are likely to have engaged in associating information
or experienced an inability to do so. In the case of a negative reply, the
survey immediately moved on to the next scenario. In case of a positive
answer, participants were asked to provide more information about their
behaviour in associating information or the difficulties and barriers that
prevented them from creating these associations.

The survey contained both open-ended questions and quantitative
questions using a 5-point Likert scale (e.g. questions enquiring the fre-
quency of associating information). The open-ended questions enable
participants to freely describe their previous activities in associating in-
formation within and across documents. It is worth mentioning that some
of the survey questions investigate the information association mechan-

3.3. Methodology 51

isms that have been already revealed by previous research, including the
use of digital folders and annotations. The survey was conducted using
the LimeSurvey2 online tool and contained four groups of questions:

1. Questions related to a participant’s demographic information such
as gender, country of residence, education and age;

2. Questions concerning a participant’s self-reported behaviour in as-
sociating information in the physical space. The questions differ-
entiate between two main scenarios

• Associating information within a single physical document
(SP) (e.g. between two different sections or chapters in a prin-
ted book)

• Associating information across multiple physical documents
(MP). An annotation in a printed document that declares
the existence of a relationship to (parts of) another printed
document is an example for this scenario;

3. Questions related to a participant’s self-reported behaviour in as-
sociating information within and across digital documents. The
questions differentiate between three main scenarios:

• Associating information in a single digital document (SD);

• Associating information across multiple digital documents of
the same document type (MDS) (e.g. between two PDF doc-
uments);

• Associating information across multiple digital documents of
different document types (MDD) (e.g. between a Word doc-
ument and a PDF document).

4. Questions regarding a participant’s self-reported behaviour in as-
sociating information across digital and physical documents (DP).

Please note that the scenario names and their abbreviations are ex-
tensively used in the rest of this chapter. Some general examples of
associating information in all the different scenarios are illustrated in
Figure 3.1.

2https://www.limesurvey.org

52 Chapter 3. User Behaviour in Associating Information

(a) single physical (SP) (b) multiple physical (MP) (c) digital physical (DP)

(d) single digital (SD) (e) multiple digital same (MDS) (f) multiple digital different (MDD)

Figure 3.1: General examples of associating information in the different
scenarios

At the end of the survey, the participants were invited to upload
screenshots or images of associations they have created in the past. In
total, we have received 15 images. Finally, the participants were also
invited to provide their email address if they were willing to extend their
participation in the form of an interview. As an incentive, participants
who provided their email address could win a 30 EUR Amazon voucher.
The email addresses were kept confidential and were only used to make
arrangements for setting up the interviews.

3.3.1.2 Interviews

In addition to the online survey, we interviewed some of the survey par-
ticipants in order to further investigate their answers to gain detailed
insights about their information association behaviour. We used unstruc-
tured open questions to obtain descriptions of interesting mechanisms for
associating information or clarifications of vague answers given during the
survey. The interviews were performed either face-to-face or via Skype
and lasted 15 minutes on average. Permission for recordings and their fur-
ther use for research and publication purposes was obtained prior to the
interviews. In addition to the recordings, the researchers also collected
notes during the interviews. The interviews and notes were transcribed
in a Word document to facilitate the data analysis.

3.4. Results 53

3.3.2 Population

The link to our online survey has been internationally distributed to re-
searchers via email through various mailing lists. Given the focus of our
study, we choose to recruit participants from a population of research-
ers as they represent a group of knowledge workers who frequently use
documents and can be expected to engage in document linking. It is
worth mentioning that other user groups such as secretaries could also
be considered as knowledge workers since they frequently use documents.
However, we believe that researchers are more engaged in associating in-
formation especially when reading and writing scientific articles. In total,
238 people completed the survey. Our sample includes Master’s students
(n=23), PhD students (n=169) and researchers holding a PhD degree
(n=46). The 238 participants consisted of 82 female and 156 male par-
ticipants, with ages ranging from 21 to 60 years. While 97 participants
have provided us their email addresses, we have only chosen 12 parti-
cipants for the interviews.

3.3.3 Data Analysis

The collected quantitative data was analysed using descriptive statistics,
while the qualitative data was analysed using an informal coding. During
the qualitative analysis, the written comments of participants, the notes
of the interviewer as well as the received images and screenshots were
all taken into account. First, the qualitative data was carefully checked
in search of common association mechanisms used by the participants.
Based on this assessment, a list of association mechanisms was compiled
for every scenario presented to the participants (i.e. SP, MP, SD, MDS,
MDD, DP). Second, we identified the characteristics and limitations of
each mechanism and calculated how many participants claimed to have
used it.

3.4 Results

Our study shows that most knowledge workers are either occasionally
or frequently associating information across documents as indicated in
Figure 3.2. Users are associating information during both reading and
writing activities which confirms the findings presented in [2, 109, 81]. As

54 Chapter 3. User Behaviour in Associating Information

shown in Table 3.2, users use different association mechanisms to associ-
ate information in the different scenarios. Please note that in Table 3.2,
association mechanisms that have been already identified in previous re-
search are shown in normal font, whereas the mechanisms we discovered
are emphasised in italics.

Figure 3.2: Frequency of associating information in the different scenarios

We begin by presenting the relative size of the subsample of parti-
cipants who associate information in a particular scenario (see Table 3.1).
Similar to the structure of the questionnaire, the findings presented in
this section are divided into distinctive groups based on the different
information association scenarios. We continue by providing a more de-
tailed description of the different association mechanisms as well as a
statistical description of how often each association mechanism has been
adopted by users as shown in Table 3.2. Please note that the percent-
ages presented in Table 3.2 are relative to the number of participants
who associate information in the corresponding scenario (see Table 3.1).
For instance, out of the 74.3% who associate information in scenario SP,
11.8% use line and arrow drawings in order to associate information. We
close this section with a detailed explanation about the characteristics
of different types of associations identified by users as a result of the
different association mechanisms. In addition, we also address common

3.4. Results 55

Scenario
Size of the subsample
relative to the total

number of participants
SP 74.3%
MP 61.3%
SD 70.5%

MDS 62.6%
MDD 60.9%
DP 54.2%

Table 3.1: Relative size of the subsample of participants who associate
information in a particular scenario

work practices and the appreciation or criticism of users with regard to
each mechanism. This detailed information is used in Section 3.5 to for-
mulate a number of design implications for a suitable information and
cross-document linking solution.

Mechanism SP MP SD MDS MDD DP
B1 24.2% 28.7% 35.8% 30.2% 28.9% 21.7%
B2 30.5% 29.4% 27.6% 20.1% 19.3% 24.8%
U1 31% 22.6% 35% 45.6% 48.2% 25.5%

Annotations &
highlights

U2 31% 42.4% 34.3% 33.5% 34.4% 35.6%
Line and arrow drawings 11.8% — — — — —
Common symbols 2.2% — — — — —
Separate documents 2.2% 7.5% 3.3% 12.7% 12.4% 4.6%
Physical folders — 3.4% — — — —
Post-it notes 1.1% 1.3% — — — 0.7%
Physical counterparts — — 2.8% 3.3% 3.4% 3.8%
Copy & paste — — 2.2% 1.3% 1.3% —
Digital folders — — — 63% 66% —
External applications — — — 3.3% 2.7% —
Writing physical parts
into a digital document

— — — — — 2.3%

Scanning physical
documents

— — — — — 3.1%

Table 3.2: Association mechanisms used in the different information as-
sociation scenarios

56 Chapter 3. User Behaviour in Associating Information

3.4.1 Associating Information in Physical

Documents

As shown in Table 3.1, many participants (74.3%) indicated that they
associate information in a single physical document and among them
11 participants (6.2%) reported doing this very frequently (Figure 3.2).
In the case of MP, 61.3% of the participants indicated that they have
faced situations where they had to associate information across two or
more physical documents, with only 6 participants (4.1%) of them doing
this very frequently. This difference in terms of frequency can be caused
by various factors. As discussed later, some users apply simple and trivial
mechanisms to associate information in SP that cannot be applied in MP
(e.g. drawing a simple line between the associated parts). Furthermore,
sometimes the closeness of the associated parts in SP (e.g. information in
the same page) helps users to easily associate information in this scenario.

Our investigation revealed that participants are applying different
mechanisms to create associations between pieces of information in both
physical scenarios. Most of the participants use annotations (e.g. com-
ments, arrows or highlights) in order to explicitly associate information.
This seems to confirm the findings presented in [110, 93, 109]. The use of
annotations as well as highlights enables participants to establish associ-
ations at any level of granularity since participants are able to highlight
and annotate any part of a document. Annotations and highlights also
yields to different types of bidirectional and unidirectional associations.

Our study revealed two main types of bidirectional associations res-
ulting from using annotations and highlights as illustrated in Figure 3.3.
For the first type (B1), the bidirectionality is established via highlighting
the different parts as well as writing annotations that include references
to each other next to all these parts. For the second type (B2), parti-
cipants only write annotations next to each part without highlighting. In
a bidirectional association, participants write references to all the linked
(associated) information parts to help them later in information refinding
tasks. The first type of bidirectional association (B1) mimics the creation
of hypertext anchors since participants explicitly highlight the exact text
anchors to be linked with each other. This finding confirms Marshall’s
findings [93] that participants create highlighted or line-marked anchors
in a printed book in order to refer to them from another part in the same
document.

3.4. Results 57

(a) B1 (b) B2

Figure 3.3: Two main types of bidirectional associations using annota-
tions and highlights

In the single document scenario (SP), bidirectional associations of
type B1 are used by 24.2% of the participants, whereas they are used
by 28.7% of the participants in the MP scenario. The second type of
bidirectional associations (B2) is used by 30.5% of the participants in
the single document scenario and by 29.4% of the participants in the
different documents scenario. We also discovered other interesting bi-
directional association patterns. One important pattern emerges in a
single document scenario where the parts are close to each other (e.g. on
the same page). In these instances, 11.8% of the participants indicated
that they would normally draw arrows or lines between the associated
parts. Moreover, four participants (2.2%) indicated that they use com-
mon symbols or numbers in order to match the different pieces in the
single document scenario. The use of line drawings as well as common
symbols as association mechanisms illustrates the flexibility in creating
associations in the single physical document scenario.

(a) U1 (b) U2

Figure 3.4: Two main types of unidirectional associations using annota-
tions and highlights

58 Chapter 3. User Behaviour in Associating Information

We also discovered that many participants are creating unidirectional
associations between the intended pieces of information. Two main types
of unidirectional associations resulting from using annotations and high-
lights were discovered. As illustrated in Figure 3.4, in the first type (U1),
the unidirectionality is established by highlighting the different parts
and by writing annotations next to only one of the parts. In the second
type (U2), participants do not highlight any part but rather write annota-
tions next to one of the parts. Unidirectional associations of type U1 are
used by 31% of the participants in scenario SP and by 22.6% of the par-
ticipants in scenario MP. The U2 associations are used by 31% of the
participants in the scenario SP and by 42.4% of the participants in scen-
ario MP. The collected data from the survey and the interviews shows
that participants prefer to have bidirectional associations due to the ad-
vantages in re-finding the related (linked) parts.

Another interesting finding is that numerous participants tend to use
a separate document in order to explicitly create associations, especially
in scenario MP. In the single physical document scenario (SP), 2.2% of
the participants indicated that they use a separate document (digital or
physical) in order to note, summarise or copy and paste the different
parts. One participant wrote: “I use an external document to link the
parts by citing the paragraph numbers”. On the other hand, in scen-
ario MP, 7.5% of the participants are using a separate document to
explicitly indicate the association. “I start a new document and write
something about these two different documents”, one participant wrote.
Another participant answered:“I make a list of things to remember and
link them together on a new blank document”. Another participant who
uses a separate digital document mentioned: “I use my computer to link
the specific parts of different physical documents by citing the paragraph
numbers”.

Other association mechanisms applied by participants include the use
of physical folders, ring binders as well as paper stacks in order to asso-
ciate information across multiple physical documents (MP), mentioned
by 3.4% of the participants. These mechanisms result in the filing and
piling organisational strategies that are well known in the PIM literature.
It is out of the scope of this study to discuss these strategies but more
information can be found in [90]. Other participants have indicated the
use of post-it notes in order to associate information in both, scenario
SP and MP. Last but not least, one participant (0.5%) in SP and two
participants (1.3%) in MP said that they try to memorise the associ-

3.4. Results 59

ations. One of them wrote: “I just try to remember, and most likely I
forget about the existence of the association”.

3.4.2 Associating Information in Digital Documents

In general, most participants are applying numerous mechanisms to asso-
ciate information in the different digital scenarios. Out of the participants
who associate information, 7.7% in scenario SD, 3.3% in scenario MDS
and 3.4% in scenario MDD have explicitly indicated their inability to
create associations between the intended parts. In general, the lack of a
suitable linking tool as well as the effort in creating associations between
the intended parts are the main reasons that prevented various parti-
cipants from creating associations. “I do not have a convenient mean to
do so”, one participant commented. Other participants wrote: “Too time
intensive to make visual connections on most document types”, “I do not
know how” and “In fact all annotation tools available in my software are
not proper enough to establish the association”.

Associations across different digital documents are created at differ-
ent levels of granularity. As illustrated in Figure 3.5, they are created
to link different parts of the documents (c), parts of a document with
the entire other documents (b) or entire documents (a). In the context
of scenario MDS, 75.1% of the participants who associate information
associate information due to the relationship between the different parts
of the documents (c). In the same scenario, 57% of the participants
associate information based on the relationship between parts of a docu-
ment with entire other documents (b), whereas 48.3% of the participants
create associations as relationships between entire documents (a). In the
context of scenario MDD, 46.2% of the participants who associate inform-
ation associate information due to the relationship between entire docu-
ments (a). In the same scenario, 80% of the participants are motivated
by the relationship that exists between parts of different documents (c),
whereas 61.3% of the participants are motivated by the relationship that
exists between parts of a document and entire other documents (b).

3.4.2.1 Single Digital Document

In scenario SD, 70.5% of the participants indicated that they have faced
situations where they associated information within a single document.
While 82.3% of those participants who associate information in a single

60 Chapter 3. User Behaviour in Associating Information

(a) (b) (c)

Figure 3.5: Associations between digital documents are created to link
entire documents (a), parts of a document with the entire other docu-
ments (b) or different parts of the documents (c)

document use annotations as well as highlights to explicitly create the
associations, another 10% of the participants have adopted various other
interesting mechanisms to create the associations between the different
parts. As mentioned before, the remaining 7.7% of the participants are
not able to create the intended associations.

The annotation features provided by the different document viewers
and applications (e.g. Adobe Acrobat Reader or Foxit Reader annota-
tion features) have enabled the majority of the participants to create
the associations using annotations and highlights not only in scenario
SD but also in the other digital scenarios MDS and MDD. This is an
interesting finding since it contradicts to some extent some findings of a
previous study carried out by O’Hara et al. [109] which compared par-
ticipants’ reading activities of physical and digital documents. In their
study published in early 1997 and conducted using Microsoft Word 6.0
for reading digital documents, the majority of participants did not prefer
to annotate digital documents. According to O’Hara et al., the difficulty
of annotating documents, the inflexibility of interaction techniques via
mouse and keyboard and the changes to the original document (e.g. text
underlining) were the main reasons that prevented participants from an-
notating digital documents. The contradiction between our finding and
the previous study finding might be explained in different ways. In the
study of O’Hara et. al., participants were obliged to use a specific “old”
document viewer for reading documents. It is possible that some of the
participants were not familiar with the annotation features offered by
Microsoft Word 6.0. Furthermore, probably some participants who did
not annotate documents in Microsoft Word 6.0 were annotating docu-
ments in other document viewers (e.g. Adobe Acrobat Reader). Last but
not least, there is no doubt that some annotations of Microsoft Word
(e.g. text underlining) will change the original document content. Never-

3.4. Results 61

theless, nowadays most document viewers (e.g. Adobe Acrobat Reader)
treat annotations as a separate layer on top of the original document
content. Users are able to hide, display and print documents with or
without their annotations.

By using the annotations and highlights mechanism to create associ-
ations, participants tend to create bidirectional and unidirectional associ-
ations between the different parts. Out of the 82.3% of the participants
who use annotations and highlights, 35.8% create bidirectional associ-
ations by highlighting the different parts and writing annotations next
to each of the parts (B1). 27.6% establish bidirectional associations of
type B2. Unidirectional associations of type U2 are established by 34.3%,
whereas U1 associations are used by 35% of the participants.

As mentioned before, apart from the use of the annotations and high-
lights, many interesting association mechanisms are used by the parti-
cipants. As in the physical document scenarios, various users (3.3%) tend
to use separate documents to summarise or copy and paste the associ-
ated parts. According to many participants, the new document used to
describe the different associations serves as a database of related informa-
tion or a starting point to remember some content of the linked documents
at a later stage. Five participants (2.8%) mentioned that they prefer to
read printed versions of the documents and associate information in phys-
ical counterparts. Two of them have explicitly indicated the flexibility
in annotating physical documents compared to digital documents. Four
participants (2.2%) said that they copy one part and paste it next to the
other. One of the two participants wrote: “I repeat a paragraph in the
other part of the document”. Three other participants (1.7%) indicated
that they rely only on their memories to remember the association.

3.4.2.2 Different Documents of the Same Document Type

In this scenario, 62.6% of the participants tend to associate information.
Most participants have adopted various mechanisms to create associ-
ations between pieces of information in different documents of the same
document type. These mechanisms include but are not limited to storing
the linked documents in the same digital folder, using annotations and
using separate documents for describing the intended associations.

Participants are mainly using the digital folder mechanism (63%) in
order to create associations between entire documents. Some of the parti-
cipants use consistent naming schemas while storing documents in folders

62 Chapter 3. User Behaviour in Associating Information

as shown in Figure 3.7. This finding confirms the finding of [81] which
stated that participants use folders in order to organise related inform-
ation. It is worth mentioning that previous research has shown that
traditional hierarchical folder structures are ineffective and cognitively
demanding [54, 61, 14]. The study of Golemati et al. [61] demonstrated
the profound problem of hierarchical folders in desktop environments
where participants could not remember the location of their documents
in 17% of the retrieval tasks.

As in the previous scenarios, unidirectional and bidirectional asso-
ciations are resulting from the use of annotations and highlights. Uni-
directional associations of type U2 are established by 33.5%. Figure 3.6
illustrates an association of type U2 created by one of the participants.
The U1 unidirectional associations are applied by 45.6% of the parti-
cipants. Bidirectional associations of type B1 are established by 30.2%
of the participants, whereas B2 associations are created by 20.1% of the
participants.

Figure 3.6: MDS: A U2 unidirectional association using an annotation

The other mechanisms (e.g. the use of separate documents) are ap-
plied by 22.6% of the participants. The use of a separate document
to associate information is adopted by quite a large percentage of the
participants with 12.7% of the participants using separate documents
to summarise, describe or copy and paste the parts. “I usually find it
counterintuitive to annotate the different documents and prefer to cre-
ate a separate document (Word outline) with comments, explanations to
linked documents etc.”, one participant explained. Another participant
mentioned: “Re-type or copy-paste the parts into a Word document and
set the bibliography with APA style in each part and briefly describe how
they are related”. Two other participants wrote: “I create another file
that has the intended links, however, those tend to get lost and are not

3.4. Results 63

really used” and “I usually create a third document divided into concep-
tual sections (one topic per section). I then copy-paste the relevant part
of each document under the topic it refers to along with its reference in
brackets”. Two other participants (1.3%) have explicitly mentioned that,
if possible, they copy one of the associated parts and paste it into the
other associated document(s) (i.e. next to the other associated part).

As in the previous digital scenario (SD), the use of the physical coun-
terpart mechanism is applied by five participants (3.3%). They prefer to
associate information in the printed version of the intended documents.
“I prefer to work on printed material which I can also easily sort phys-
ically in addition to storing the files in the same folders”, one justified
their tactic. Three other participants (2%) rely on their memories to re-
member associations. According to them, over time they tend to forget
their associations.

Five of the participants (3.3%) have indicated the use of some external
applications (e.g. Evernote3, JabRef4 and Zotero5) to create associations
between entire documents of the same digital type. The bibliography ref-
erence managers such as JabRef and Zotero are used by participants to
make associations between entire documents in order to facilitate the cre-
ation of citations and bibliography while writing some scientific reports
(e.g. journal or conference papers). One participant mentioned: “I use
my reference manager (Zotero) to indicate that one document is related
to another. Related documents are available under the related tab on the
document’s details panel”. It is worth mentioning that most of the inter-
viewees (12) did not indicate the use of bibliography reference managers
in their answers to the online survey questions. Nevertheless, in the in-
terviews, all of the interviewees have confirmed the use of these systems
during the scientific writing activity. Further, most of the interviewees
did not consider the bibliography reference managers as association and
linking tools.

3.4.2.3 Different Documents of Different Types

In this scenario, 60.9% of the participants associate information across
two or more documents. As in the previous scenario, storing associated
documents in the same folder is the dominant mechanism adopted by

3https://evernote.com
4http://jabref.sourceforge.net
5https://www.zotero.org

64 Chapter 3. User Behaviour in Associating Information

66% of the participants. Figure 3.7 illustrates an annotated screenshot
of a folder of one of the participants where linked documents are stored
and consistently named.

Using annotations and highlights, unidirectional associations are es-
tablished more than bidirectional associations. The U1 associations are
created by 48.2% of the participants whereas U2 associations are estab-
lished by 34.4% of the participants. 28.9% of the participants create
B1 associations whereas B2 associations are created by 19.3% of the par-
ticipants.

Another 20.8% of the participants are applying various other mechan-
isms similar to the aforementioned mechanisms in scenario MDS (e.g. the
use of separate document, external applications or document physical
counterparts). It is worth mentioning that those participants (20.8%)
are a subset the participants (22.6%) who have mentioned the use of
various association mechanisms other than the folder and annotations
mechanisms in the previous scenario MDS. Some of them have mentioned
various details about their mechanisms. One participant who uses the
copy and paste mechanism mentioned: “I grab and paste a screenshot of
one document inside the other one (e.g. a screenshot of a PDF inside a
Word or an Excel document)”. Two participants who use the external
application mechanism wrote: “just putting some notes in Evernote and
citing documents” and “create screenshots of relevant parts and use them
in Evernote”.

Figure 3.7: MDD: Linked documents are stored and consistently named
in a folder

3.4. Results 65

3.4.3 Associating Information Across Physical and

Digital Documents

Almost half of the participants (54.2%) indicated that they have asso-
ciated information across digital and physical documents. The collected
data revealed that participants are using various mechanisms to associ-
ate information across digital and physical documents. Using annotations
and highlights, participants tend to create either unidirectional or bid-
irectional associations between information across physical and digital
media. Out of the 54.2% who associate information across physical and
digital media, 21.7% of the participants tend to create bidirectional asso-
ciations by highlighting the different parts and writing annotations next
to each part (B1). Furthermore, bidirectional associations of type B2
are created by 24.8% of the participants. Unidirectional associations of
type U1 are created by 25.5% of the participants, whereas unidirectional
associations of type U2 are created by 35.6% of the participants.

Another 16.3% of the participants have declared the use of a wide
range of mechanisms to associate the intended parts across physical and
digital media. Some of them (3.8%) indicated that they tend to print
the digital document to have the flexibility in annotating and archiving.
Other users (2.3%) prefer to write the information of the physical part
into the digital document. “I type the part I need from the physical doc-
ument in the digital one”, one participant wrote. Another participant
mentioned: “I try to gather all relevant information in the digital world,
and hence, I type the parts from the physical document in the digital
document”.

Other participants (4.6%) indicated the use of the separate document
mechanism to associate information across physical and digital media.
One of them uses a separate physical document whereas the rest use sep-
arate digital documents. The participant who uses the physical document
mentioned: “I make a list in a new physical document that lists all the
names of the documents I should link together”. One of the participants
who uses a digital document explained: “I create a summary file with
the same title as the digital one”.

Four other participants (3.1%) mentioned that they scan the physical
document or take a photo of it using their smartphones. The scanned
document or photo is then stored in the same digital folder as the digital
document. “I scan the physical document or page and store it in the same
folder as the digital one, or paste it in the digital document whenever it

66 Chapter 3. User Behaviour in Associating Information

is possible”, one participant explained. It is obvious that those four
participants are also using the same folder strategy in combination with
the scanning mechanism. One participant (0.7%) mentioned the use
of post-it notes on the physical document in order to explicitly create
associations.

3.4.4 A Deeper Look into the Information

Association Mechanisms

Most of the information association mechanisms revealed by our user
study are a result of different work practices. Moreover, each of them
produces different types of associations (e.g. unidirectional or bidirec-
tional). Furthermore, participants have different levels of satisfaction
about their adopted association mechanisms. In this section, we dis-
cuss the nature of associations resulting from the different information
association mechanisms. We further elaborate on the users’ satisfaction
with their information association mechanisms used in digital scenarios
(SD, MDS and MDD) as well as across digital and physical documents
(DP). User issues and suggestions should help us to derive some design
implications for the development of an ideal cross-document linking sys-
tem. Finally, we discuss common work practices and how they shape the
decisions regarding the use of a specific association mechanism.

3.4.4.1 Characteristics of the Associations

As mentioned earlier, each association mechanism establishes a different
kind of association. We have already discussed some characteristics (bid-
irectionality and unidirectionality) of associations resulting from the use
of annotations and highlights in the different scenarios. Two important
aspects should be kept in mind while investigating the nature of an as-
sociation; the granularity of the associated parts (e.g. fragments or entire
documents) as well as the attached references to the associated parts. A
bidirectional association enables a user to navigate from a source to a
target document and vice versa. On the other hand, a unidirectional
association only enables a user to navigate from a source to a target
document. Some associations do not imply any traversal such as the
associations created by the folder mechanism. In Table 3.3 we provide a
summary of the characteristics of the resulting associations of the differ-
ent association mechanisms.

3.4. Results 67

Directionality Associated information’s granularity
Mechanism

Uni Bi Directed Entire document level Any level

Annotations & highlights 4 4 4 4 4

Line & arrow drawings 7 4 4 7 4

Common symbols 4 4 4 4 4

Separate documents 4 4 4 4 4

Physical folders 7 7 7 4 7

Post-it notes 4 4 4 7 4

Physical counterparts 4 4 7 4 4

Copy & paste 4 4 4 7 4

Digital folders 7 7 7 4 7

External applications 7 7 7 4 7

Writing physical parts into

a digital document
4 7 4 7 4

Scanning physical documents 7 7 7 4 4

Table 3.3: General characteristics of the resulting associations

The use of the annotations and highlights mechanism enables users to
create all types of associations at any level of granularity. Annotations
written next to two linked parts in a bidirectional association should
contain references to each other in order to enable a user to easily navig-
ate between the linked documents. If annotations in one linked part do
not contain reference(s) to the other part(s), the created association is
categorised as a unidirectional association. The different document view-
ers have enabled users to write annotations at any place in a document
(e.g. marginal annotations, annotations between the original document
content or on top of a page). Users are further able to highlight almost
any part of a document. Thereby, with annotations and highlights, users
can associate information at word, paragraph, section and chapter level
or even define associations between entire documents.

The drawing mechanism (i.e. lines and arrows), connecting inform-
ation parts that are close to each other, produces bidirectional associ-
ations. Users are able to see all endpoints of the resulting associations.
The fact that “most” of the drawings are attached to a single document
limits the possibilities to create associations at some levels of granular-
ity. With the drawing mechanism users can, for example, not establish
associations between two chapters or two sections of different chapters in
a document. As with drawings, the common symbols mechanism would
normally produce bidirectional associations. In contrast to the drawing
mechanism, common symbols support the linking at more levels of gran-
ularity. Users should be able to associate different chapters, sections or

68 Chapter 3. User Behaviour in Associating Information

even entire documents with the common symbols as long as they attach
the right references to the linked parts.

The use of separate physical or digital documents for associating in-
formation enables the creation of unidirectional and bidirectional associ-
ations at any level of granularity. Some users write the correct references
to all the linked documents which results in a bidirectional association.
On the other hand, a unidirectional association can be established by
neglecting the writing of a reference to one of the linked parts. Users can
also establish associations at any level of granularity. Some users cre-
ate associations between entire documents by summarising all the linked
documents or writing only the titles of the linked documents. Others
establish associations at a lower level of granularity by, for example,
summarising or copying and pasting two important paragraphs from two
different documents.

The use of the system folder as well as the bibliography reference
managers enables users to create undirected associations between entire
documents. The traversal between documents is not defined in both of
the mechanisms. A system folder visualises its documents in a way (e.g. a
list) that enables users to navigate to any document. Most bibliography
reference managers enable the navigation not between documents but
from a document to its system folder.

The associations resulting from physical archives as well as scanning
mechanisms have more or less the same characteristics as the associations
resulting from the use of system folders. The scanning of documents im-
plies that the linked documents are stored in the same folder, whereas
the system folders are an emulation of the physical archives. The use of
the printed versions of digital documents (physical counterparts) mech-
anism to associate information implies the use of annotations or physical
archives for associating information. Thereby, the associations resulting
from this mechanism have more or less the same characteristics as the
associations resulting from using annotations or physical archives. Last
but not least, the associations resulting from the copy and paste, the
writing of physical parts into digital documents and post-it notes mech-
anisms depend on the recording of the associated documents’ references
as well as the granularity of the information part that has been noted or
copied (e.g. entire document or only a paragraph).

3.4. Results 69

3.4.4.2 User Satisfaction with Used Association Mechanisms

Figure 3.8 illustrates the participants’ satisfaction with the used mech-
anisms in the three different digital scenarios as well as across digital
and physical documents. Please note that the percentages presented in
Figure 3.8 are relative to the number of participants who associate in-
formation in the corresponding scenario (see Table 3.1). It is clear that
many participants (57.7%) are satisfied with the mechanisms they use
for associating information in a single document (SD). In contrast to
the single digital document scenario, most participants are not happy or
uncertain about the way they create associations in the other scenarios
MDS, MDD and DP. In scenario MDS, 31.6% of the participants have
indicated that they are not satisfied with the used mechanisms. In the
same scenario, 32.2% of the participants are uncertain about the way
they create associations. In scenario MDD, 40% and 28.3% are not sat-
isfied and uncertain respectively. Finally, for scenario DP, 59.7% are not
satisfied with the used mechanisms.

Figure 3.8: User satisfaction when associating information in digital doc-
uments and across digital and physical documents

Participants have given us numerous reasons for not being satisfied
with their currently used association mechanisms. Some participants,
especially those who reported the difficulty of creating associations in the
different scenarios, have given us general complaints such as: “I cannot

70 Chapter 3. User Behaviour in Associating Information

create it”, “It is not efficient and mostly relies on my memory, which
may fail in finding back the associations I have seen when I read the
documents months or years before”, “I have to reread the documents again
in order to remember the connection”, “It is not intuitive how to make the
associations” and “It is hard to do it properly, no uniform tool exists”.

In the context of the different digital scenarios, most participants
who use annotations and highlights to associate information complained
about the wasted time in creating and refinding the association between
the documents. Some of their complaints are: “I have to read the an-
notation and then search for the related parts/documents. It would be
nicer if I have something more visually like a link connecting the differ-
ent parts to jump directly or pop-up related information from the other
document”, “I still have to remember where I have written the annota-
tion that expresses the relationship” and “It is time consuming to make a
lot of annotations”. One participant complained and suggested a better
solution: “It is not efficient if you have to write stuff down two times.
Being able to make a direct link would be better”.

Many of the participants who adopted the organisation of related doc-
uments with the system folders have given numerous reasons for not being
satisfied with this mechanism. Some of their complaints were: “common
folder is not the most accurate”, “the structure [of the folders] is unclear,
it is not organised well enough, causing confusion and waste of time”
and “there might be a more efficient way to do it”. Last but not least,
participants who use separate documents as well as the copy and paste
mechanisms were mainly concerned about the time wasted as well as the
context of the association. “Sometimes, in order to gather the linked
information into a separate document, the information is simplified and
it becomes difficult to understand the context, but also time consuming if
you need to search and go back to the initial documents”, one participant
complained. Another participant complained: “It requires a lot of extra
work, lots of copying that results in redundancy, and most of the times it
is hard to keep track of all the associations manually”.

In the context of associating information across digital and physical
documents, participants were mainly complaining about the time wasted
in creating associations as well as retrieving and tracking of the linked
documents. We think that most of the used association mechanisms
in this context (DP scenario) require an effort from users, for example,
creating annotations in the two different media (physical and digital) or
scanning and archiving documents. The tracking of linked documents

3.4. Results 71

in both media is further not an easy task. Some of the participants’
complaints were: “Printed documents do not tend to get lost or forgotten.
Nevertheless, the annotations are lost or unreliable because I am not in
the computer world to get help in finding them. Furthermore, path and
name of the linked digital documents change, and one results deleting or
updating annotations (if found) in the printed document” and “There is
no easy way to retrieve the linked information”.

3.4.4.3 The Need for a Linking Tool

After asking the survey participants about their issues with the used
mechanisms, they were asked whether they feel the need for a tool or
a mechanism to facilitate the linking (associating) of information in the
different scenarios SD, MDS, MDD and DP. Most of the survey parti-
cipants (179) have indicated the need for a tool for associating inform-
ation that easily supports the creation of associations between different
digital document parts as well as the easy navigation between these doc-
ument parts.

In the context of the digital scenarios, 25.1% out of the 179 parti-
cipants have shared their thoughts and suggestions for a suitable tool for
associating information. 35 participants emphasised that a future tool
must support the creation of hyperlinks. Some of them mentioned: “It
comes natural to me that such a system would resemble the mechanism
of the Web”, “Conventional bookmarking or hyperlinking should do it”
and “Hyperlinks seem to be an obvious choice [...]. Honestly, I do not
know why this has not been done 20 years ago”. Some participants were
concerned about the usability of any future linking tool, “It should be ex-
tremely quick and easy”, “A linking tool that is easy to learn” and “links
to other document and jumping directly to the correct target paragraph”.

Some participants were concerned about the inclusion of essential fea-
tures in any future linking tool. Two of them were concerned about the
integration of the linking mechanism in their workflow. The first parti-
cipant mentioned: “It would be dreamable if the linking mechanism would
be available in the native document viewing program, and not that we are
forced to use another application to link documents”. The second parti-
cipant wrote: “It would be important to consider that the tool should work
fine not only in the latest version of each software but also in the older
versions”. One of the participants who complained about the searching
and refinding associations mentioned: “[...] allowing me to link and then

72 Chapter 3. User Behaviour in Associating Information

search for the associations”. Other participants have given other sugges-
tions such as: “By creating an HTML page, in this page we can represent
the name of all documents as a mindmap. Each part of this map (i.e. par-
ent or child) will be linked to the appropriate document using a hyperlink
mechanism. Our own notes can be added as comments near to the map
parts” and “a tool that allows you to define the associations (e.g. cluster
A; cluster B or cluster C) and show them in a different window next to
the document, so that you can visualise the different elements in each
cluster and go from one to the other without restrictions”.

In the context of the DP scenario, 20% out of the 59.6% who are
not satisfied with the used mechanisms have shared their thoughts and
suggestions for a better linking mechanism across digital and physical
documents. One of the participants who is familiar with the recent
Anoto6 digital pen and paper technology suggested to exploit this tech-
nology in realising any future cross-media linking solutions. Other par-
ticipants suggested the use of QR codes7 and RFID tags [139], “by cre-
ating a link between them [means a physical and digital documents], for
example indicating the position of the document in the physical space via
RFID tags and in the digital space via a URI or the user’s file system”.
Another participant suggested a totally different idea to “automatically
scanning physical documents and do text recognition on them. Then col-
lect keywords from them to organise them on the computer together with
the digital files”.

3.4.4.4 User Work Practices

Most of the interviewees have mentioned the use of multiple documents
while reading and writing not only in the physical space but also in the
digital space. The use of multiple screens for multi-document viewing
and associating information is a very common work practice for most
of the interview participants. These findings are consistent with pre-
vious research findings [109]. According to the study participants, the
simultaneous use of multiple documents enables them to easily annotate
related information or summarise it in a separate document.

The annotation features of different document viewers are an import-
ant mean to establish associations by using annotations and highlights.
Nevertheless, as complained by different participants, while users are able

6http://www.anoto.com
7http://www.qrcode.com/en/index.html

3.5. Discussion and Design Implications 73

to create different kinds of annotations within their documents, they are
not offered the necessary functionality to search, re-find or manage their
annotations. According to various participants, most of the time they
are forced to open their documents and search inside them to recall and
find the previously created associations.

Another interesting work practice that we have discovered in our user
study is the limited use of bibliography reference managers in reading
activities. As mentioned before, participants are mainly using these ap-
plications for some scientific writing activities. We discovered that most
of the users are not aware of the many interesting features (e.g. relate
documents to each other) offered by these applications. Indeed, as most
of the interviewees have indicated, these systems are not per se linking
and association tools, but they can be seen as a layer on top of the system
folder where users can group documents that reside in different system
folders into one unified collection.

Last but not least, the advancements of the resolution of cameras em-
bedded in smartphones enables various participants to scan and take pho-
tos of physical documents while associating information in the DP scen-
ario. According to two interviewees, this practise does not require an
effort in taking the photo, but it needs an effort for archiving and storing
the taken photo. According to one of them, the required effort depends
on the applications installed in the smartphone as well as the synchronisa-
tion of the smartphone and a user’s main work station such as a desktop
computer or a laptop.

3.5 Discussion and Design Implications

Our study revealed a number of interesting and important findings. It has
shown that the activity of associating information forms an integral part
of reading and writing activities of knowledge workers. Participants have
adopted various mechanisms to associate information in both physical
and digital spaces. They further associate information within and across
different documents at any level of granularity. Study participants are
associating information at the document, chapter, section, paragraph or
even at word level.

In most of the investigated scenarios, users are mainly using annota-
tions, folders and separate digital or physical documents to explicitly cre-
ate the associations between documents. Some of the association mech-

74 Chapter 3. User Behaviour in Associating Information

anisms used in the physical space (SP and MP) are emulated with or
similar to other mechanisms in the digital space (SD, MDS and MDD).
The use of a physical folder mechanism (e.g. filing cabinets) in the phys-
ical space is, for example, emulated via the digital folder mechanism in
the digital space. The use of separate documents to associate information
is a common mechanism in both physical and digital media.

In addition, our study reveals that users tend to create different types
of associations (i.e. bidirectional, unidirectional and undirected associ-
ations) between the associated parts. Nevertheless, regardless of the
nature of the created associations, most users are not satisfied with their
used mechanisms. Even though many hypermedia solutions exist in busi-
ness and research, our study shows that there is a lack of efficient and
usable linking tools that can be used by end users to associate inform-
ation in the different scenarios. Most of the users have been forced to
adopt different association mechanisms in order to overcome the lack of
suitable linking tools. Based on their suggestions and the characterist-
ics of their created associations, users do not only need systems that
create associations between entire documents (e.g. system folder or bibli-
ography reference managers), but also they ask for solutions that enable
the creation of associations at any level of granularity. Furthermore,
users need efficient association systems that go beyond the support of
creating associations at different levels of granularity. An efficient asso-
ciation system should allow users to easily and efficiently organise, search
and retrieve their created associations. Moreover, an efficient association
system should take into account current user behaviour in associating
information across documents. It can, for example, give users who use
the separate document mechanism the option to automatically gather all
the associated parts in a separate document. In the remainder of this
section, we outline a number of important design implications for a fu-
ture linking solution that we have derived from the collected data as well
as from users’ mentioned issues and suggestions.

DI1: Granularity of the associations: As mentioned earlier, the
associations between documents exist at any level of granularity. A user
should be able to establish “hyperlinks” at any level of granularity. The
fact that document formats have different logical structures and docu-
ment models (e.g. tree or linear structures) [57] should not create any
barrier in supporting this feature in a future linking and association sys-
tem. An association and linking application should rather enable differ-
ent fragment identifiers (selectors or anchors) for the different document

3.5. Discussion and Design Implications 75

formats. For example, a start and end index could be used for identi-
fying selectors and anchors in plain text documents. In contrast, the
XPointer [46] standard might be used to enable selections in some XML
document formats such as OOXML or the OpenDocument format.

DI2: Bidirectional associations: As discussed before, many users
prefer bidirectional associations over unidirectional associations. A fu-
ture association and linking tool should not only enable the creation
of bidirectional associations, but also allow users to seamlessly navigate
from one source document to another. We believe that users who are
used to create unidirectional or undirected associations will not com-
plain about the support of bidirectional hyperlinks after they experience
their advantages. Unidirectional hyperlinks are always criticised due to
the inability to navigate in two directions [134, 122]. An update or de-
lete operation on one endpoint of a unidirectional hyperlink will often
produce a broken (dangling) hyperlink. Bidirectional hyperlinks are less
exposed to such inconsistencies when updating or deleting any endpoint.
This is due to the nature of bidirectional hyperlinks where an application
should ensure the consistency of both endpoints.

DI3: Documents side by side: As discussed before, our study and
a previous study [2] have both confirmed that knowledge workers need
multi-document viewing and manipulation as part of their reading and
writing activities. The use of multi-document viewing enables users to
easily associate information across documents. It is worth mentioning
that many systems have been built based on the side-by-side reading
and annotating of documents such as [35, 34]. A future association and
linking tool should enable the visualisation of documents side by side to
give users the flexibility in creating “hyperlinks” between the visualised
documents. A hyperlink between two documents that are visualised in
a side-by-side manner can, for example, be created by simply using a
drag-and-drop interaction.

DI4: Linking across physical and digital media: Information is
available in different physical and digital media types. In fact paper and
printed documents are still forming an important source of information.
It is not sufficient to build applications that support the associating of
information in digital media only but we should think about possibilities
to support the information integration and association across physical
and digital media [121]. As mentioned before, the interactive paper and
digital pen seem promising in this context. A future linking application
should overcome the limitation of existing cross-media applications by

76 Chapter 3. User Behaviour in Associating Information

supporting the seamless integration of printed materials and arbitrary
digital media.

DI5: Management of the associations Giving the users the pos-
sibility to create associations between different documents should come
along with the possibility to manage their associations. As discussed
before, a future linking application should have an integral management
component that helps user in managing and searching their associations.
In fact, an optimal link management component should go beyond the
simple search mechanism for associations. Instead, users should be able
to filter and sort their associations based on many dimensions such as
the types of the associated documents, context of associations or the time
when they were created.

In the rest of this thesis, we take the initiative by presenting a cross-
document link service that takes into account end user requirements for
an ideal linking tool. Our link service addresses most of the aforemen-
tioned design implications for future linking systems. Moreover, our link
service overcomes the shortcomings of existing link services by taking into
account the fundamental requirements for an ideal link service presented
in Section 2.8.

3.6 Threats to Validity

Many factors can jeopardise the validity of our user study. First of all, it
is possible that the survey participants have different interpretations of
what an association means depending on the applications they use or the
activities they carry out. Furthermore, we have already discussed how
some results of our study contradict with previous findings of O’Hara et
al. [109] due to the advancement of document viewers. According to their
findings, users did not like to annotate documents due to the difficulty
of annotating documents and the inflexibility of interaction techniques.
In contrast to their findings, we found that most of the users are using
annotations to create associations between digital documents. We believe
that existing applications might offer enhanced linking functionality and
thereby future findings would then contradict with some of ours. Last
but not least, our findings might only be generalised for the community
of researchers. Other knowledge workers (e.g. secretaries) might have
different interpretations of what an association means.

3.7. Summary 77

3.7 Summary

In this chapter we have presented a study that relies on a multi-case
design approach for exploring user behaviour in associating information
across digital and physical documents. We have collected data from
238 knowledge workers using an online survey. Furthermore, 12 parti-
cipants of the online survey have been interviewed to gain detailed in-
sights about their behaviour in associating information. Using the online
survey, we have investigated user behaviour in associating information
in six different scenarios. These scenarios are associating information
within a single physical document (SP), associating information across
multiple physical documents (MP), associating information in a single
digital document (SD), associating information across multiple digital
documents of the same document type (MDS), associating information
across multiple digital documents of different document types (MDD)
and associating information across digital and physical documents (DP).
The collected quantitative data was analysed using descriptive statistics,
whereas the qualitative data was analysed using informal coding.

Our study showed that most knowledge workers are associating in-
formation in the different information association scenarios. Information
is associated more frequently in the single digital and physical scenarios
(SP and SD). We have discovered twelve different association mechanisms
applied by users in associating information in the different scenarios. The
results showed that four out of the twelve different association mechan-
isms (i.e. digital folders, physical folders, separate documents and annota-
tions & highlights) are used more frequently than the other mechanisms.
We have discussed the nature of associations resulting from the twelve
association mechanisms. For example, associations resulting from the
annotations & highlights mechanism, are uni- and bidirectional. Fur-
thermore, they associate information at any level of granularity. Our
study further showed that many participants are not satisfied with their
used mechanisms for associating information in the different scenarios.
Most of the participants were concerned about the wasted time in creat-
ing and refinding their associations. A majority of the participants have
further indicated the need for a tool for information association that sup-
ports the creation of associations as well as the navigation between the
associated documents.

Based on the collected data and criticism of study participants about
their used association mechanisms, we have derived and outlined a num-

78 Chapter 3. User Behaviour in Associating Information

ber of important design implications for a future linking solution. A
future linking solution should enable users to establish hyperlinks at any
level of granularity. Furthermore, it should allow users to create bidirec-
tional hyperlinks and to seamlessly navigate these hyperlinks. In addi-
tion, a future linking solution should consider the side-by-side reading
and visualisation of the linked documents and enable the linking across
digital and physical spaces. Finally, users should be able to manage and
retrieve their associations (hyperlinks).

4
A Dynamically Extensible

Cross-Document
Link Service

The survey presented in the previous chapter has illustrated the user
need for a cross-document linking solution. In Chapter 2, we have already
highlighted a number of limitations of existing linking solutions regarding
the support of cross-document linking. Most existing linking solutions
support the linking across a predefined set of document formats and are
not extensible to support other existing or emerging document formats.
Moreover, existing linking solutions are not extensible on the visual level
(user interface). Last but not least, most existing approaches do not con-
sider the support and integration of a user’s preferred document viewers.
Hence, users wishing to benefit from a specific link service are obliged to
abandon their preferred document viewers.

In this chapter, we investigate an architecture for a cross-document
link service that meets the user needs and overcomes the limitations of
existing linking solutions. The presented link service architecture and its
working prototype take into account the requirements for an ideal linking
solution discussed earlier in Section 2.8, as well as the design implications
outlined in Section 3.5. Throughout the chapter, we motivate each design

79

80 Chapter 4. A Dynamically Extensible Cross-Document Link Service

decision and indicate how the different link service components are used
to realise a dynamically extensible cross-document link service. Note that
whenever a design decision meets a requirement or a design implication
discussed in Section 2.8 and 3.5, we refer to the corresponding require-
ment.

This chapter is structured as follows. In Section 4.1, we briefly elab-
orate on our proposed cross-document link service. Section 4.2 presents
the general architecture of our link service. In Section 4.3, we outline the
communication between the different components of the link service and
in Section 4.4 we discuss the dynamic extensibility of our link service.
In Section 4.5, we elaborate on the integration of document formats in
the link service’s link browser (user interface), whereas in Section 4.6
we discuss the integration of third-party document viewers with our link
service. We critically discuss the presented link service in Section 4.7.
Finally, Section 4.8 provides a summary of this chapter.

4.1 Proposed Solution

The presented cross-document link service is based on the general open
cross-media annotation and link architecture presented in Section 2.6.3.
Figure 4.1 illustrates a high-level conceptual schema of the presented link
service. In brief, the link service contains six essential components: the
link model, the link browser, the gateway, the communication compon-
ent, the data storage and plug-in tracking components. The core link
model is extensible via plug-ins to support arbitrary document formats
(e.g. DocFormat1, DocFormat2 and DocFormat3 in Figure 4.1). The link
browser is also extensible via plug-ins and is responsible for visualising the
supported document formats (e.g. DocFormat1 and DocFormat2 in Fig-
ure 4.1). The gateway and communication components are essential for
integrating document formats that are visualised using their own third-
party document viewers (e.g. DocFormat3 in Figure 4.1). The gateway
component is also extensible via plug-ins to support arbitrary third-party
document viewers . The plug-in tracking component is responsible for ex-
tending the link service via the different plug-ins by communicating with
an online plug-in repository that is in charge of managing the different
plug-ins. Furthermore, the plug-in tracking component is responsible for
keeping track and managing the different plug-ins in the link service. The
data storage component deals with the persistent storage of the selectors

4.1. Proposed Solution 81

and hyperlinks. It is worth mentioning that the used link model is cap-
able to address any document via arbitrary resource identifiers (e.g. URI
or URN). In other words, a user can use our link service to create hyper-
links between documents that are stored on their devices (e.g. desktops
or smartphones), online (e.g. web pages) or in shared repositories. In the
rest of this thesis, we discuss examples of creating hyperlinks between
documents that are either stored locally (i.e. desktops) or online. We
believe that the creation of hyperlinks in documents that are stored in
shared repositories would raise many issues such as collaborative hyper-
link editing, privacy and access rights that are out of the scope of this
thesis. In the rest of this section, we further elaborate on our proposed
solution that overcomes the limitations exposed by existing linking solu-
tions.

Figure 4.1: Conceptual schema of the presented link service

82 Chapter 4. A Dynamically Extensible Cross-Document Link Service

4.1.1 Link Browser

As suggested by Signer and Norrie [125, 126], our link service makes a
clear separation between the link model (data level) and the link browser
(visual level) in order to facilitate the necessary link service flexibility
and extensibility. The link service provides end users with a link browser
whose components are outlined in Figure 4.2. The link browser is used to
visualise documents, create or navigate hyperlinks as well as to manage
hyperlinks. In the default setting, the link browser visualises documents
side by side (DI3), allowing users to easily create and navigate hyper-
links. The link browser further provides end users with visual handles
in order to open and close documents, create, edit, delete or navigate
hyperlinks. The link browser visualises a document in the left-hand side
(e.g. DocFormat1 in Figure 4.2) or right-hand side panel (e.g. DocFormat2
in Figure 4.2) as a result of navigating a hyperlink or upon a user re-
quest to visualise a specific document. The document visualised on the
right-hand side of the link browser might, for example, be a target of
a hyperlink contained in a document visualised on the left-hand side or
share no hyperlinks with the other adjacent document. We believe that
the side-by-side visualisation of linked documents is close to many user’s
workspace settings where they concurrently read, compare and manipu-
late documents [2]. Recent systems have adopted the side-by-side visu-
alisation of documents in in order to help users to actively read and
annotate their documents [34]. Note that the side-by-side visualisation
of linked documents in the link browser is similar to the user interface
configuration proposed by Bush for the Memex system [26]. Further,
Signer and Norrie have also discussed a similar approach for visualising
linked documents [125, 126]. It is worth mentioning that besides the
default setting of visualising documents side-by-side, the link browser
can also be configured to visualise a single document or more than two
documents.

The link browser allows the creation of bi- and multidirectional hy-
perlinks between snippets of information in the supported document
formats (DI2), something that is not supported by existing linking solu-
tions. Bidirectional hyperlinks are preferred over unidirectional hyper-
links since they help to overcome the problem of broken hyperlinks. In
order to illustrate the usefulness of bidirectional hyperlinks, imagine a
document A that has a unidirectional hyperlink targeting document B.
If document B has been deleted, then the hyperlink in document A will
become broken. This can be prevented by using bidirectional hyperlinks.

4.1. Proposed Solution 83

DocFormat 1 DocFormat 2

Visual Plug-in Visual Plug-in

CRUD

Menu

Add Selector Create Link Edit Link

Figure 4.2: Link browser visualising documents side by side

If a user tries to delete a target document, they should be informed that
the document is being linked by another document and that the deletion
of the target document should be prevented or that the target should
only be deleted together with the corresponding hyperlink.

DocFormat 1 DocFormat 2

CRUD

Menu

Hyperlink Sources

Selector start: 20, end: 50 [text1.txt]
Selector start: 100, end:200 [wordDoc.doc]

Create Link Delete Link

Hyperlink Targets

Selector xpointer(id (Brx)) [webpage.html]

Move to Targets >>

<< Move to Sources

Remove Selector

Cancel

Figure 4.3: The hyperlink overview menu for editing a hyperlink’s sources
and targets

Multidirectional hyperlinks should enable users to create hyperlinks
in cases where a document has a relationship with multiple other doc-
uments. It is common to find multiple web pages linked to a specific

84 Chapter 4. A Dynamically Extensible Cross-Document Link Service

Wikipedia1 article. With the simple hyperlinks on the Web, none of
these web pages (including the Wikipedia article) are aware of such an
explicit relation since it has to be established via multiple autonomous
unidirectional hyperlinks. In contrast, the support of multidirectional hy-
perlinks between related documents should enable users to be well aware
of the relationships between the different documents. Multidirectional
hyperlinks that are created via the link service can further be beneficial
for desktop retrieval systems making use of the link service hyperlink
metadata. For example, when a user searches for a document playing
a role in a multidirectional hyperlink (i.e. one of the hyperlink sources
or targets), a desktop retrieval system can use the hyperlink metadata
in order to recommend the other documents participating in the multi-
directional hyperlink.

A user can easily create bi- and multidirectional hyperlinks between
their documents. After opening a document in the link browser, they can
select parts of the document (DI1) and choose the option Add Selector

to create a selection (selector) via the supported CRUD operations shown
in Figure 4.2. The link browser then allows the user to choose (open)
another document in order to create another target selector. The user
might then either confirm the creation of a new bidirectional hyperlink
by pressing the Create Link button or open more documents to create
more selectors that will lead to the creation of a multidirectional hyper-
link. A user can always choose to edit a hyperlink’s sources and targets
before confirming its creation. The link browser provides the user with
an overview about the created selectors giving them flexibility in edit-
ing the hyperlink sources and targets. For instance, Figure 4.3 shows
three different selectors made by a user; a selector in a text document
(text1.txt), a selector in a Word document (wordDoc.doc) and a se-
lector in an HTML document (webpage.html). A user can easily move
the Word document selector from the hyperlink sources to the hyperlink
targets leading to the multidirectional hyperlink illustrated in Figure 4.4,
which is not supported by the three involved document formats or any
existing linking solution. In order to create the multidirectional hyper-
link, the user has to confirm its creation after finishing the editing of its
sources and targets.

1https://en.wikipedia.org

4.1. Proposed Solution 85

text1.txt

webpage.html

wordDoc.doc

T1

T2

S1

Figure 4.4: A multidirectional hyperlink between snippets of information
in three documents of different formats

4.1.2 Link Browser Extensibility

In contrast to all existing linking systems that neglect the extensibility of
their link browsers, we take into account that our link browser should be
able to support the visualisation of existing as well as emerging document
formats (R1 and R2). We have defined a list of the necessary function-
alities required to visualise and interact with any document in an ideal
link service such as the opening of a document, the highlighting of a docu-
ment’s selectors, the creation of a selector or the navigation to a hyperlink
target. The complete list of functionality is detailed in Section 4.5.2. All
this functionality is abstracted by the link browser and the link browser
does therefore not make any assumptions about the document format to
be visualised in its windows. For any document format to be suppor-
ted by the link service and visualised in the link browser, we propose
that a visual plug-in extending the link browser must be provided. The
visual plug-in must implement all the abstract functionality required to
visualise and interact with its resources (documents) and selectors.

4.1.3 Link Model

In order to support the linking between documents visualised in the link
browser, the link service requires concrete information on how to address
selectors and resources of a specific document format (DI1). Moreover,
the flexibility and extensibility of the link service to integrate exist-
ing as well as emerging document formats asks for a general schema
that defines selectors and resources of existing and emerging document

86 Chapter 4. A Dynamically Extensible Cross-Document Link Service

formats (R1 and R2). Unfortunately, for a number of reasons we can-
not provide such a general schema. There exists a variety of document
formats and standards including markup languages, WYSIWYG formats
as well as the new trend for eBook standards (e.g. EPUB [41]). These
document formats have different logical representations such as a linear
document model, a flat pseudo-hierarchical document model, an uncon-
strained tree-like document model or a constrained heterogeneous tree-
like document model as classified earlier by Furuta [57]. Furthermore,
the document formats with similar document models might still show
differences in terms of the granularity of the lowest level of atomic ob-
jects supported by the model. An atomic object in a model might, for
example, be a text string representing a paragraph, a sentence or even an
individual character. Last but not least, a multitude of media types such
as text, images, sound or video clips are supported in different document
formats. All these media types are informative and a selector within
these media types can form the source or a target of a hyperlink. One
might, for instance, have a hyperlink from a selection in an PDF docu-
ment to a specific time span of a video clip that is embedded in an HTML
document. All the aforementioned reasons and issues together indicate
that it is impossible to make any prior assumptions about the types of
linked documents and their selectors (R2 and DI1). That is one of the
main reasons why most existing linking solutions show some limitations
in terms of extensibility since they have adopted monolithic link models
that only support a fixed number of document formats.

One possible solution is to provide an intermediate format (e.g. XML)
and an addressing schema for every document format willing to benefit
from our link service. The specific schema for a document format then
can be used to convert the document format back and forth to the in-
termediate format. In this case, the link service should only know how
to address resources and selectors of the intermediate format. However,
this solution is very costly and not easy to implement considering the
heterogeneity of document models. Furthermore, the definition of the
addressing schemas for the different document formats is a tedious and
complex task given the extensive specifications of some document formats
(e.g. 5585 page specification of OOXML or 751 page specification of the
OpenDocument format).

We believe that the link service requires a link model that is general
and flexible enough to be used for defining resources and selectors of
existing and emerging document formats. The chosen link model should

4.1. Proposed Solution 87

provide enough abstractions for resources, selectors as well as hyperlinks.
One possible definition could be that hyperlinks might have one or more
sources and one or more targets. The source could be a selector that is
represented via an XPointer expression for tree-like documents or start
and end indices for some document formats having a linear document
model. The definition of sources and targets should be kept abstract and
each document format willing to benefit from the link service should then
provide a concrete definition of how parts of a resource can be addressed
by extending the abstract hyperlink concepts via a plug-in mechanism.
The definition of the document addressing parts can be achieved by using
third-party document APIs, different programming language libraries for
document formats or available implementations of some standards such
as Document Object Model (DOM) libraries.

Figure 4.5: A bidirectional hyperlink between a PDF document visualised
in the link browser and an HTML document visualised in the Google
Chrome web browser

We have chosen the RSL metamodel presented in Section 2.4.2 as the
link model for our cross-document link service. The RSL metamodel is
based on the concept of linking arbitrary entities. A resource and se-
lector concept is defined in RSL. The former defines a media type such
as a complete document whereas the latter is attached to a resource and
is used to address parts of that resource (DI1). The RSL metamodel has

88 Chapter 4. A Dynamically Extensible Cross-Document Link Service

already proven its flexibility and extensibility (R1 and R3) and served
as a basis for a number of hypermedia applications [122, 121, 107]. A
more elaborated motivation for using the RSL metamodel as the core link
model as well as a comparison between the RSL metamodel and XLink
standard is given in Section 4.5.1. For every document format that should
be supported within our link service, a data plug-in extending the RSL
abstractions and defining how to address selectors and resources of a
given document format has to be provided. The data plug-in for a spe-
cific document format must provide the definition of its logical structure
by extending the RSL resource and must further define how to create
selectors within its structure by extending the RSL selector.

4.1.4 Integration of Third-Party Document Viewers

Our link service further addresses the challenge of seamlessly integrating
third-party document viewers (R3). This gives users the flexibility to con-
tinue using document viewers they are familiar with. Furthermore, they
can create hyperlinks between documents visualised in the link browser
and documents visualised in their own third-party document viewers. For
example, Figure 4.5 shows a bidirectional hyperlink created between a
PDF document visualised within our link browser and an HTML docu-
ment visualised in an external web browser. Moreover, users are able to
create hyperlinks between documents visualised in different third-party
document viewers. In the rest of this section, a discussion of how the link
service can integrate existing and emerging document viewers is followed
by some use cases explaining the creation of hyperlinks in the supported
document viewers.

Nowadays, some features for extensibility are offered by most docu-
ment viewers via their dedicated SDKs or APIs such as the Foxit Reader
Plug-in SDK for the Foxit Reader PDF viewer or Microsoft’s Office De-
veloper Tools for Office applications. This enables developers and end
users to support new features (e.g. visual handles) and customise the
behaviour of the extensible third-party document viewer. Developers are
able to build add-ins—sometimes also called extensions or plug-ins—for
a document viewer by using the provided SDK. In order to extend a
document viewer with an add-in, the add-in has to be installed in the
document viewer according to the specification given by its vendor. Nor-
mally, an end user should be able to easily install an add-in and to benefit
from its provided functionality.

4.1. Proposed Solution 89

We exploit extensibility features offered by third-party document view-
ers in order to integrate them in our link service. For every third-party
document viewer to be integrated within our link service, an add-in for
the third-party document viewer is required. We have defined a list of
functionality (detailed in Section 4.6.1) that must be supported by a third-
party document viewer add-in in order to be successfully integrated with
our link service. In brief, an add-in must communicate with our link ser-
vice about any selectors to be created or navigated. We do not limit the
communication between the link service and third-party document view-
ers to a specific type of communication protocol, but rather support vari-
ous communication channels including TCP sockets, WebSockets and a
RESTful API. As discussed in Section 2.8, the support of a wide range of
communication protocols should facilitate the integration of existing and
emerging third-party document viewers in a link service (R4). The add-
in should further provide visual handles (GUI actions) allowing users to
create, navigate, delete and edit selectors (hyperlink sources or targets).

Similar to the document formats visualised in the link browser, the
link service requires information in order to address resources as well
as selectors of document formats integrated with their own third-party
document viewers. The integration of a document format visualised in
its third-party document viewer therefore also asks for a data plug-in
defining how to address its resources as well as selectors. The data plug-in
for a specific document format integrated with its third-party document
format must provide the definition of its logical structure by extending
the RSL resource and must further define how to create selectors within
its structure by extending the RSL selector. Thereby, the structure of
data plug-ins for document formats integrated in the link browser is the
same as the structure of data plug-ins of document formats integrated
with their third-party document viewers. It is worth mentioning that if
the link service has to support the visualisation of a document format A
and a document viewer of the same document format (A), a single data
plug-in defining how to address resources and selectors of the document
format A is sufficient.

Data plug-ins and add-ins are not sufficient for a successful integration
of existing and emerging third-party document viewers in the link service.
The fact that document formats of third-party document viewers have
different logical structures as well as selectors and resources implies that
messages exchanged between the link service and an add-in are different
than messages exchanged between the link service and another add-in.

90 Chapter 4. A Dynamically Extensible Cross-Document Link Service

In order to illustrate the difference between the exchanged messages,
assume that the HTML and PDF document formats are integrated in
the link service via their external document viewers (e.g. Google Chrome
and Adobe Acrobat Reader). HTML and PDF document formats have
different representations of their selectors (e.g. XPointer-like expression
for an HTML selector and a 2D rectangular shape as well as a page
index for a PDF selector) and thereby a message exchanged between the
link service and Google Chrome about the creation of a selector in an
HTML document is different than a message exchanged between the link
service and Adobe Acrobat Reader about the creation of a selector in
a PDF document. In order to cater for this challenge, we believe that
a mediator component should form an integral part of the link service
in order to abstract the messages exchanged between the link service and
third-party document viewers. This allows the link service to understand
message types and structures from any add-in and perform the required
actions. Add-ins further should be able to understand the type and
structure of any message sent by the link service in order to perform the
required task. We therefore propose a gateway component in order to
facilitate the integration of third-party document viewers. The gateway
component is the most essential component for integrating existing as
well as emerging third-party document viewers. We have defined a list of
functionality (detailed in Section 4.6.2) that is necessary to translate any
message exchanged with a third-party document viewer add-in. All this
functionality is abstracted in the gateway component. For every third-
party document viewer to be supported in our link service, a gateway
plug-in has to be introduced that extends the gateway component in
order to translate the messages communicated between its corresponding
document viewer add-in and the link service.

There is no doubt that our approach for integrating third-party docu-
ment viewers is totally different from the one used in Sun’s Link Service
described earlier in Section 2.6.1, where third-party document viewers
have to be rewritten in order to benefit from the link service. Moreover,
in contrast to Microcosm [73], our approach for integrating third-party
document viewers does not restrict the link service to a specific family
of third-party document viewers. Any document viewer with an API or
a dedicated SDK that allows access to its supported document formats,
the development of new visual handles and the communication with other
systems (i.e. our link service) can be integrated with our link service.

4.1. Proposed Solution 91

4.1.4.1 Communication Between the Link Service and Add-ins

In order to illustrate the communication between the link service and
document viewer add-ins, we present two different scenarios for creat-
ing hyperlinks. In the first scenario, we explain the creation of the
hyperlink depicted in Figure 4.5. In the second scenario, we explain
the creation of a hyperlink between two different documents visualised
in different third-party document viewers. In both scenarios, the user
can confirm the creation of the hyperlinks using the Create Link but-
ton or use the hyperlink overview menu introduced earlier and shown
in Figure 4.3 for editing and confirming the creation of the hyperlinks.
The hyperlink illustrated in Figure 4.5 can be created in a few simple
steps. Assume that the user is working simultaneously with the PDF
document visualised in the link browser and the HTML document visu-
alised in the Google Chrome web browser. The user selects ETH Zurich

from the PDF document and chooses the option to create a selector from
the link browser’s supported CRUD actions. The selected PDF selector
will be listed under the Hyperlink Sources in the hyperlink overview
menu. Note that the user is given the flexibility to edit the hyperlink
sources and targets and can for example move the PDF selector to the
hyperlink targets. As illustrated in Figure 4.6, the user then selects ETH

Zurich from the HTML document and chooses the option to create a
selector from the GUI actions supported by Google Chrome add-in. The
add-in then sends a request (in a platform-independent data interchange
format) to the link service with information about the document and
the selector. The link service asks the corresponding HTML gateway
to translate the received message. In other words, the HTML gateway
should transform the information about the HTML document into an
RSL resource presenting the HTML document. Furthermore, the HTML
gateway should also transform the information about the HTML selector
into an RSL selector presenting the HTML selector. This means that
the HTML gateway communicates with the HTML data plug-in in or-
der to transform part of the received message into an HTML resource
or selector. The link service then adds the HTML selector to the act-
ive hyperlink (the hyperlink being created). The HTML selector will
be automatically listed under the Hyperlink Targets in the hyperlink
overview menu. The hyperlink will be stored after confirmation by the
user. When the hyperlink is saved, the link service asks both the PDF
visual plug-in and Google Chrome add-in to update their documents in
order to visualise the new hyperlink.

92 Chapter 4. A Dynamically Extensible Cross-Document Link Service

Figure 4.6: Creating a selector in an HTML document using a Google
Chrome Add-in

In a similar way as described in the previous scenario, a user can
also create a hyperlink between documents visualised in different docu-
ment viewers. Suppose that besides Google Chrome also Adobe Acrobat
Reader is supported by the link service. The user wants to create a hy-
perlink between a PDF document visualised in Adobe Acrobat Reader
and an HTML document visualised in Google Chrome. They select parts
of the PDF document and choose the option to create a selector from the
GUI actions supported by Adobe Acrobat Reader add-in. The Acrobat
Reader add-in then sends a request to the link service with information
about the document and the selector. The PDF gateway is then asked to
return the PDF resource and selector from the received message. The link
service then lists the returned selector under the Hyperlink Sources in
the hyperlink overview menu. The user then selects parts of the HTML
document and chooses the option to create a selector from the GUI ac-
tions supported by Google Chrome add-in. In a similar way, the HTML
gateway returns the HTML resource and selector from the message com-
ing from its corresponding add-in and the HTML selector is listed under

4.1. Proposed Solution 93

the Hyperlink Targets in the hyperlink overview menu. After a con-
firmation by the user, a hyperlink between the two documents is created.

4.1.5 Plug-in Metadata

As mentioned before, data and visual plug-ins have to be provided for
document formats to be visualised in the link browser, wheras data and
gateway plug-ins are necessary for document formats to be visualised
with their third-party document viewers (in addition to the add-ins). The
multiple types of document format plug-ins that exist in the link service
require a mechanism to differentiate between them in order to correctly
use them in the link service. We have defined a list of key/value metadata
that should be included in the plug-ins. As detailed in Section 4.4.1,
based on the type of the plug-in (i.e. data, visual or gateway) different
metadata keys and values should be included in the plug-in. Document
format plug-ins must provide this metadata to be a valid extension for
the link service. The plug-in tracking component exploits the plug-in
metadata in order to identify them and correctly inject a plug-in in the
link service. Furthermore, the plug-in tracking component will prevent
any plug-in with invalid metadata to exist in the link service.

4.1.6 Users of the Link Service

4.1.6.1 End Users

End users can use the link service to visualise arbitrary document formats
as well as to create, navigate and edit hyperlinks. They can also create
hyperlinks between documents that are visualised in the link browser and
documents visualised via their third-party document viewers. Further-
more, the link service is designed to allow end users to extend the link
service on demand (R5). In order to facilitate the dynamic extensibility
of the link service, an online plug-in repository that stores and man-
ages the different types of plug-ins can be accessed by end users in order
to search and download the different types of plug-ins for the different
document formats (R1, R2 and R5). The online repository provides a
RESTful API enabling the plug-in tracking component to keep track of
available plug-ins and add-ins. In order to illustrate the link service’s
dynamic extensibility let us have a look at an example where the link
service is extended to support a new document format.

94 Chapter 4. A Dynamically Extensible Cross-Document Link Service

The end user can install the link service in a few steps. The link
service comes with support for a minimal set of document formats. Let us
assume that the user wants to extend the link service to support the Word
document format. In that case, the user can either open a web page of the
online repository to search for plug-ins for the Word document format or
use a simple user interface provided by the plug-in tracking component
to search for them. The user finds that there are two options for the
Word document format. The first option is an extension which visualises
documents and their selectors in the link browser. This means that the
extension consists of only two plug-ins, a data plug-in as well as a visual
plug-in. Further, there exists an extension with visualisation support for
the Microsoft Word application (R3). This implies that this extension
consists of a data and a gateway plug-in as well as the Microsoft Word
application add-in. In both cases, the user must install the data plug-in
which has some metadata in order to be correctly identified and used by
the link service components. The plug-in tracking component reads the
data plug-in’s metadata and the plug-in is downloaded via a secure shell
protocol2. The plug-in tracking component then does the necessary work
to inject the plug-in into the running link service (R5). If the user wishes
to visualise their documents with the link browser, the visual plug-in for
the Word document format has to be installed. Similar to the data plug-
in, the visual plug-in contains specific metadata and will be installed and
injected into the link service based on the same mechanism (R5). After
successfully installing the data and visual plug-ins, the user will see the
Word document format appear in the list of supported document formats
and can start visualising and creating hyperlinks between the different
supported documents.

In the case that the user wishes to visualise their documents in Mi-
crosoft Word, they have to install the gateway plug-in and follow the
instructions provided for the Microsoft Word add-in in order to extend
Microsoft Word. The gateway plug-in is installed based on the same
mechanism used for data and visual plug-ins (R5). When the data and
gateway plug-ins as well as the Microsoft Word add-in have been success-
fully installed, the user should be able to create hyperlinks in their Word
documents and link them to any arbitrary supported document format.

2https://en.wikipedia.org/wiki/Secure Shell

4.2. Architecture Overview 95

4.1.6.2 Third-Party Developers

In most design decisions, we took into account that our link service should
be extensible to support existing and emerging document formats not
only by us but also by third-party developers. Therefore, we have strived
to design our link service in a way that allows any third-party developer
to easily develop the different plug-ins or add-ins required for integrating
a new document format into the link service. First of all, third-party
developers are not required to understand the communication between
the different components of the link service. Second, the abstracted func-
tionality for visual as well as gateway plug-ins consists of a minimal set of
methods which are well documented. Developers are provided technical
explanations as well as examples in order to help them in implementing
the required plug-ins for integrating a new document format. Last but
not least, we assume that most SDKs for third-party document viewers
are documented and publicly available. A developer is expected to de-
velop a data as well as a visual plug-in for documents that should be
visualised in the link browser, whereas they have to develop a data, a
gateway and a third-party document viewer add-in for documents that
should be visualised in their third-party document viewer. When the
development of the required plug-ins is completed, the developer should
upload the different plug-ins to the online plug-in repository.

4.2 Architecture Overview

The general architecture of our open cross-document link service is il-
lustrated in Figure 4.7. In contrast to most existing linking solutions
that have been built as monolithic components, our link service offers a
plug-in architecture for integrating different document formats as well as
third-party document viewers. From a software engineering perspective,
the plug-in architecture is well-known for its support of system extens-
ibility (R1), modularisation, as well as configuration (R5) [92, 32, 97]. A
more detailed discussion about the choice of the plug-in architecture and
its benefits is presented in Section 4.4. In the following we briefly elabor-
ate on the different link service components and a detailed explanation
of each component is given in the following sections.

Most of the link service components are flexible and extensible to sup-
port the general goal of integrating existing as well as emerging document

96 Chapter 4. A Dynamically Extensible Cross-Document Link Service

Visual Plug-ins

Visualisation

Third-Party Applications

V
is

ua
lis

at
io

n
D

oc
Fo

rm
at

1

V
is

ua
lis

at
io

n
D

oc
Fo

rm
at

2

Browser

Plug-in Tracker Update Manager

Plug-in Tracking

Data Plug-insVisual Plug-insGateways

Online Repository

Gateways

Gateway

DocFormat4

DocFormat4
Application

DocFormat3
Application

WebSockets

Communication

Message Pool

Database

Database Manager

RSL

DocFormat4

DocFormat3DocFormat2

DocFormat1

REST API TCP Sockets

DocFormat3DocFormat2DocFormat1

Data Plug-ins

Core

Data Layer

Add-ins
REST API

Figure 4.7: General open cross-document link service architecture

formats (R1). The core link service is extensible to support arbitrary
document formats. The use of RSL as a core link model overcomes a
number of limitations exposed by most existing linking solutions presen-
ted in Chapter 2 such as the limited set of supported document formats.
The RSL metamodel provides the general abstractions that help the link
service to address parts of any document format (DI1). As mentioned
in Section 2.4.2, RSL supports bi- and multidirectional hyperlinks (DI2).
As discussed earlier, for any document format that should be supported
by the link service and visualised internally (in the link browser) or via its
third-party document viewer, a data plug-in extending the RSL resource
and selector has to be provided. The link service architecture further
consists of a data layer that is in charge of storing any RSL metadata
such resources, selectors or hyperlinks. The data layer is flexible to sup-
port different database management systems for the persistent storage of
documents and hyperlink data. In the current implementation of the link
service, the db4o3 object database is used for storing the system objects.

The visualisation component of our link service consists of a link
browser to visualise the supported document formats side by side (DI3).
In general, any visual plug-in extending the link browser has two main
responsibilities. First, it has to render a specific document format and

3http://www.db4o.com

4.3. Communication Between Link Service Components 97

visualise any selectors that have been defined. Second, it should provide
a visual handle for the basic create, read, update and delete operations
for a specific document selectors.

The gateway and communication components play a major role in in-
tegrating third-party document viewers (R3). A document format gate-
way is responsible for launching the corresponding document viewer and
handling the messages with the document viewer add-in. Messages are
exchanged via any communication channel provided by the communica-
tion component (R4) and are managed via the message pool component.
Similar to the visual plug-ins, a document viewer add-in should provide
visual handles for the CRUD operations on document selectors.

The plug-in tracking component consists of a plug-in tracker and an
update manager. These two components are responsible for keeping track
of the installed plug-ins and for installing new plug-ins on demand (R5)
by communicating with the online plug-in repository that manages data,
visual and gateway plug-ins as well as different third-party document
viewer add-ins.

4.3 Communication Between Link Service
Components

In order to understand how the different components are communicating
with each other and how the link service is actually working, we illustrate
three main scenarios of interacting with the link service (i.e. the opening
of a document, the navigation of a hyperlink as well as the creation of a
hyperlink) as illustrated in the sequence diagram depicted in Figure 4.8.
We explain the opening of a document and the navigation of a link scen-
ario. Please refer to Section 4.1.1 and 4.1.4 for explanations of the third
scenario; the creation of a hyperlink.

The end user can open any document in a format that is suppor-
ted by the link service. Thereby, documents can either be stored in the
link service database or in the local file system. When a document is
selected to be opened, the browser retrieves supplementary metadata
for the given document from the database via the core RSL component.
The retrieved data contains information about the format of the docu-
ment as well as its associated anchors. Note that an anchor in our link
service contains information about a hyperlink source which is either

98 Chapter 4. A Dynamically Extensible Cross-Document Link Service

Figure 4.8: Communication among different cross-document link service
components

a selector in a document or a complete document. It further contains
information about all other sources and targets participating in the hy-
perlink. The browser then checks the type of plug-in that is installed
for the given document format via a registry in the plug-in tracker com-
ponent. The browser forwards a request to the corresponding visual or
gateway plug-in in order to visualise the document in the link browser or
to show it externally in a third-party document viewer. If the intended
plug-in is a visual plug-in (DocFormat1 in our example), it visualises the

4.3. Communication Between Link Service Components 99

document and its anchors in a panel within the link browser. On the
other hand, if the intended plug-in is a gateway (Gateway DocFormat3

in our example), the gateway is asked to launch the corresponding doc-
ument viewer. When a specific document viewer is launched, its add-in
(DocFormat3 in our example) should instantiate the connection with the
link service via the supported communication channels. The link service
then passes the document and its anchors to the gateway. The gateway
transforms the data (i.e. RSL resource and selectors) into a message to be
sent to its corresponding add-in. The message is represented in a data
interchange format and contains information about the document and
its anchors. The message further contains other essential information in
order to inform the corresponding add-in to visualise the document. If
the add-in communicates with the link service via a full-duplex commu-
nication channel (e.g. TCP sockets), the link service sends the message
formed by the gateway to the add-in via the active communication ses-
sion. Otherwise the add-in should pull the message from the link service.
The add-in then asks its associated third-party document viewer to open
the document and render existing anchors. The question is what should
happen if a user opens a document with a supported third-party docu-
ment viewer rather than with the link browser? In this case, the add-in
forms a message containing information about the document and asks
the link service to retrieve potentially stored data (i.e. anchors) about
the currently visualised document. The link service communicates with
the corresponding gateway in order to transform parts of the message
(i.e. the data about the document) into an RSL resource. If any anchors
have been defined for the currently opened document, the link service
passes its anchors to the gateway. The gateway is expected to form a
message containing information about the retrieved anchors. The mes-
sage is then sent to the add-in and in this case, the add-in should update
the currently opened document and visualise its anchors.

When a user clicks on a specific hyperlink target in a document that
is visualised in the link service browser, the browser communicates with
the core RSL component to retrieve the target document and its anchors
including the exact target selector of the target document. The target
document is then visualised with its anchors and the target selector of the
followed hyperlink is highlighted in a different colour than the other se-
lectors. The two documents can, for example, be visualised next to each
other in the browser (DocFormat1 and DocFormat2) (DI3) or one in the
browser while the other document is rendered in a third-party document

100 Chapter 4. A Dynamically Extensible Cross-Document Link Service

viewer (DocFormat1 and DocFormat3). In the case that a hyperlink is se-
lected in a document that is visualised in a third-party document viewer,
the add-in sends a message containing minimal information about the
target (i.e. its ID) and requesting the link service to visualise the tar-
get document. The link service communicates with the corresponding
gateway in order to retrieve the target ID from the received message.
From there on the browser handles the request in the same way as in the
previous scenario to either visualise the hyperlink target in the browser
or in a third-party document viewer.

4.4 Dynamic Link Service Extensibility

As mentioned before, the link service has a plug-in architecture which
is suitable for applications that should be extended by third-party de-
velopers [143, 33]. The plug-in architecture is nowadays one of the most
widely used architectures for extensible and complex systems such as
server applications, web browsers, integrated development environments
(IDEs) and embedded systems [63]. The link service plug-in architecture
is further supported by the use of an object-oriented programming lan-
guage as well as the extensive use of design patterns that facilitate the
evolution of systems [15].

We have used the Open Service Gateway initiative (OSGi) [72] for
the development of the link service and realising its dynamic extens-
ibility. The OSGi specification defines a dynamic modular system for
the Java programming language and was originally designed for embed-
ded systems. Various service applications (e.g. IBM Websphere) make
use of OSGi and also the Eclipse IDE uses OSGi to enable the mod-
ularisation of its components and to support dynamic extensions via
plug-ins. Conceptually, the OSGi framework consists of three layers, in-
cluding the module layer, the life-cycle layer and a service layer. Each
of these layers has a specific role in modularising an application. The
module layer is responsible for packaging and sharing the application
code. Each module of an application is called a bundle and is the same
as a Java JAR file with some extra metadata in the form of a manifest
file. Listing 4.1 illustrates some metadata contained in a manifest file
of an OSGi bundle. The Bundle-Name and Bundle-Version provide in-
formation about the name of the OSGi bundle and its version, whereas
the Bundle-ManifestVersion specifies the OSGi specification version

4.4. Dynamic Link Service Extensibility 101

used to build the system. The Import-Package and Export-Package

metadata explicitly define the exported and required packages for execut-
ing the bundle. The life-cycle layer is responsible for the management of
specific modules at execution time. It controls when to install, resolve,
start, activate, stop or uninstall a module. Finally, the service layer is re-
sponsible for the interaction and communication among an application’s
installed modules. Most of the components depicted in the link service
architecture in Figure 4.7 are bundles. All document format plug-ins in-
cluding the data, gateway and visual plug-ins are OSGi bundles but with
extra metadata. Note that the life-cycle layer is extensively used by the
plug-in tracker of the link service for achieving the link service’s dynamic
extensibility by controlling the life cycle of any document format plug-in.

1 Manifest−Version: 1.0
2 Bundle−ManifestVersion: 2
3 Bundle−Name: Core
4 Bundle−Version: 1.0
5 Import−Package: org.associations.collections, org.sigtec.exception
6 Export−Package: org.rsl.core, org.rsl.util

Listing 4.1: Some metadata in an OSGi bundle’s manifest file

We decided to use OSGi for several reasons. First of all, a plug-
in architecture does not necessarily guarantee the dynamic extensibil-
ity of a system. An extra mechanism is needed to provide and ensure
the dynamic extensibility of any plug-in architecture. Fortunately, the
OSGi specification supports the implementation of dynamic extensibility
of the applications. That is one of the main features acquired by Eclipse
and other well-known server applications from the use of OSGi. Second,
OSGi enhances the modularisation of our link service. Aside from re-
ducing the application complexity, OSGi offers a good mechanism for
code sharing between different modules. OSGi modules do not arbitrar-
ily share code as with Java JAR files but rather explicitly define export
packages they want to share and import packages to be used. By this
clear definition of exported functionality, an OSGi module cannot “mis-
use” any code of other modules. In other words, third-party developers of
different document formats plug-ins cannot misuse any plug-in or com-
ponent in the link service. Last but not least, our link service might
provide different plug-ins (e.g. visual or gateway) for the same docu-
ment format. Managing different versions of a module in a pure Java
application often causes the so-called “JAR hell” problem [131], while
the OSGi framework offers a mechanism for the versioning of modules
and dependency resolution.

102 Chapter 4. A Dynamically Extensible Cross-Document Link Service

It is worth mentioning that before choosing the OSGi framework and
the Java-based implementation of the link service architecture, we have
considered to realise our link service based on the Open Web Platform4.
The Open Web Platform implies the use of the plug-in architecture and
the scripting approach [111] which produces extensible systems via the
customisation of scripts [99]. Google Chrome and Firefox, for example,
follow this approach of extensibility. For a number of reasons we did not
realise the link service based on the Open Web Platform. There are cur-
rently only a few web-based open source libraries available for different
document formats and most of them do not support the interaction with
documents (i.e. violation of R1 and R2). Furthermore, most web browsers
offer only limited support for communicating with third-party applica-
tions (e.g. only WebSockets) which violates the requirements R3 and R4
for an extensible link service.

4.4.1 Metadata and Online Repository

We have exploited the OSGi manifest file to correctly identify each docu-
ment format plug-in. Aside from the specific OSGi metadata required by
any OSGi bundle (Listing 4.1), different document format plug-ins must
contain specific metadata to be a valid extension for the link service and
to be correctly identified by the plug-in tracking component.

The Extension-Name, Extension-Mime and Extension-Type meta-
data is required for all types of plug-ins. This metadata provides informa-
tion about the media type (e.g. text/html or application/pdf) supported
by the plug-in, its name and its type (i.e. either a visual, a data or a gate-
way plug-in). A plug-in developer should maintain the consistency of the
media type provided in a document format plug-in. In other words, a
data plug-in and a visual plug-in for a given document format must have
the same value for the media type. The same holds for data and gateway
plug-ins in the case of a third-party document viewer integration.

The Extension-Class metadata should be included in visual and
gateway plug-ins. As mentioned before, a visual plug-in for a specific
document format must extend the abstract class provided by the link
service visualisation component. Furthermore, each gateway has to im-
plement the gateway interface. The link service can communicate with
a visual plug-in in order to visualise documents or for the CRUD op-

4https://www.w3.org/wiki/Open Web Platform

4.4. Dynamic Link Service Extensibility 103

erations on a link by instantiating the class that extends the abstract
class in the visualisation component. On the other hand, the link ser-
vice can communicate with a gateway plug-in to translate the exchanged
messages by instantiating the class that implements the gateway inter-
face. In order to correctly instantiate these classes, each class name
combined with its corresponding package name (class location in its pack-
age) should be the value of the Extension-Class metadata included in
the corresponding visual or gateway plug-in. Listing 4.2 shows some
metadata of a visual PDF plug-in that is stored in its OSGi manifest
file. In the visual PDF plug-in, the Java class Pdf with a class path
org.rsl.pdf.visual.Pdf is the class extending the visualisation com-
ponent of the link service. As also shown, the visual PDF plug-in makes
use of some other modules (bundles or plug-ins) by importing their pack-
ages (e.g. importing the package org.rsl.pdf.data from its correspond-
ing PDF data plug-in).

1 Manifest−Version: 1.0
2 Bundle−ManifestVersion: 2
3 Bundle−Name: Visual
4 Bundle−SymbolicName: org.rsl.pdf.visual
5 Bundle−Version: 1.0.0.qualifier
6 Import−Package: org.rsl.core, org.rsl.userInterface.util, org.userinterface.localvisualplugins,
7 org.rsl.pdf.data
8 Extension−Name: pdf
9 Extension−Mime: application/pdf

10 Extension−Class: org.rsl.pdf.visual.Pdf
11 Extension−Type: visual

Listing 4.2: PDF Visual Plug-in Manifest’ Metadata

The online repository is responsible for storing the different docu-
ment format plug-ins as well as third-party document viewer add-ins.
It provides a simple user interface for end users to search for the plug-
ins. Furthermore, as illustrated in Figure 4.9, it provides an interface for
third-party developers to upload the different document format plug-ins.
The developer has to fill in the provided form by writing the plug-name,
its version, the supported media type and the plug-in type (i.e. data,
visual, gateway or an add-in). The online repository further provides
a RESTful API to enable the link service to query information about
the available plug-ins and add-ins. The RESTful API can be used to
retrieve the plug-ins of a specific document format or a third-party doc-
ument viewer. The plug-in tracking component of the link service uses
the RESTful API of the online repository in order to give users with
an overview of the available plug-ins and to install or update existing
plug-ins.

104 Chapter 4. A Dynamically Extensible Cross-Document Link Service

Figure 4.9: The interface used for uploading plug-ins and add-ins to the
online repository

4.4.2 Plug-in Tracking

The plug-in tracker component makes use of the OSGi life cycle layer in
order to extend the link service with new plug-ins. In brief, the plug-in
tracker listens for any OSGi bundles (plug-ins) being started or stopped
in the link service. The plug-in tracker will not allow a plug-in with
missing or invalid metadata to be existent in the link service. Therefore,
before extending the link service with a new plug-in, the tracker checks
whether it is an extension based on our predefined metadata described in
the previous section. If the plug-in is an extension, the tracker performs
the necessary operations to integrate it in the link service.

In the case of a data plug-in, the tracker adds the media type to the
list of document formats supported by the link model. In the case of
a visual plug-in, the plug-in tracker checks whether the data plug-in of
the same document format (media type) is already installed. If the data
plug-in is missing, it communicates with the update manager to check
if there is a data plug-in available in the online repository. If a positive
reply is received from the update manager, the plug-in tracker asks the
user a confirmation for installing the data plug-in. In the case that the
data plug-in is missing or the user does not confirm the installation of the
data plug-in, the visual plug-in will not be installed. If the data plug-in
is already installed or installed after a user’s confirmation, the plug-in
tracker notifies the visualisation component that a new visual plug-in
exists which in turn injects the new plug-in into the link browser. As a
result, the user can see that the new document format has successfully
been integrated in the link service and can start using it. Finally, if the
plug-in is a gateway plug-in, the plug-in tracker will maintain the avail-
ability of its data plug-in with the same mechanism used when installing
a visual plug-in and add it to the list of supported gateways.

4.5. Integration of Document Formats 105

In order to enable the dynamic loading and the discovery of valid
document format plug-ins, the plug-in tracker component defines the
different plug-in metadata as constants in a standalone Java class as
illustrated in Listing 4.3. The plug-in tracker verifies the metadata for
any (valid or non-valid) plug-in wishing to extend the link service. In
order to do so, it first retrieves the plug-in metadata from its manifest
file. If the plug-in failed to include one of the three required metadata
(i.e. Extension-Name, Extension-Mime or Extension-Type), the plug-
in will be rejected. If the plug-in is a visual or a gateway plug-in, the
plug-in tracker ensures that the Extension-Class metadata is defined
in the plug-in manifest file. Based on the plug-in type, each plug-in will
be added to the registry with other plug-ins of the same type.

1 public static final String NAME PROPERTY = ”Extension−Name”;
2 public static final String MIME PROPERTY = ”Extension−Mime”;
3 public static final String CLASS PROPERTY =”Extension−Class”;
4 public static final String PLUGINTYPE PROPERTY =”Extension−Type”;
5 public static final String VISUAL PLUGIN =”visual”;
6 public static final String GATEWAY PLUGIN =”gateway”;

Listing 4.3: Plug-in metadata defined as String constants

4.5 Integration of Document Formats

In this section, we discuss the integration of document formats in the
link browser, while in the next section we elaborate on the integration
of third-party document viewers. We start by discussing the data plug-
ins required for integrating any document format that is visualised in our
link browser or via its third-party document viewer. We further motivate
the use of the RSL hypermedia metamodel. After discussing the visual
plug-ins required for integrating document formats in our link browser,
we conclude this section with a concrete example for integrating the plain
text document format.

4.5.1 Data Plug-ins

We have chosen the RSL metamodel presented in Section 2.4.2 to be
the link model of our cross-document link service. The RSL metamodel
overcomes a number of limitations exposed by the well-known XLink

106 Chapter 4. A Dynamically Extensible Cross-Document Link Service

standard presented in Section 2.4.1. RSL has proven its flexibility and
extensibility in linking to a wide range of media types, whereas XLink is
limited to a specific set of XML-based document formats. Thereby, we
believe that the RSL abstractions (i.e. resource and selector concepts)
are sufficient to integrate existing as well as emerging document formats.
Furthermore, in contrast to the XLink standard, RSL supports overlap-
ping hyperlinks. Last but not least, RSL goes beyond XLink by support-
ing user access rights for the different hypermedia application resources
(e.g. documents, anchors, hyperlinks). It is worth mentioning that our
link service currently supports user access rights on the hyperlinks.

For every document format that should be supported within our cross-
document link service (i.e. visualised in the link browser or via a third-
party document viewer), a data plug-in extending the RSL resource and
selector concepts and defining how to address selectors and resources of
the document format has to be provided. The data plug-in for a spe-
cific document format must provide the definition of its logical structure
by providing an implementation of the RSL Resource and must further
define how to create selectors within its structure by offereing a spe-
cific implementation of an RSL Selector. Figure 4.10 illustrates four
different PDF, HTML, plain text and XML data plug-ins for four dif-
ferent document formats. The PDF data plug-in defines its resource as
a file path in the file system while its selector has been defined as a 2D
shape. The HTML data plug-in defines its resources and selectors to
be web URLs and XPointer-like expressions (e.g. Rangy5 selections) re-
spectively. A selector for the plain text document format is defined as
a tuple containing a start and end index (e.g. (s,e)) while its resources
have been defined as in the PDF data plug-in. Finally, web URLs and
XPointer expressions define XML resources and selectors respectively in
the XML data plug-in.

4.5.2 Visual Plug-ins

As mentioned before, we ask for a visual plug-in extending the link
browser for every document format to be integrated in the link browser.
A visual plug-in for a document format must enable users to do all pos-
sible interactions (e.g. visualise a document, create a hyperlink or navig-
ate a hyperlink). Therefore, in order to offer an extensible link browser as
well as powerful visual plug-ins that help users in achieving their desired
goals, in the visual component abstracted methods we take into account

5https://github.com/timdown/rangy

4.5. Integration of Document Formats 107

Figure 4.10: Different data plug-ins for different document formats

all possible end-user interactions with the link browser, including the
following operations:

1. Open a document A user opens a document for

(a) Reading: They want to read the document in a reading mode
(i.e. without the visualisation of the document anchors which
is more suitable for reading activity [108], or as a result of

(b) Hyperlink navigation: in this case the user is “probably”
interested in the specific hyperlink target contained in the doc-
ument.

2. Highlight document anchors A user might be interested in read-
ing a document without the highlighting of its anchors. However,
they might be interested in visualising document anchors in order
to navigate to other documents.

3. Close a document A user closes a document.

4. Create selectors A user selects parts of a document in order to
create hyperlink sources or targets.

5. Navigate to a hyperlink target A user navigates to a specific
hyperlink target.

108 Chapter 4. A Dynamically Extensible Cross-Document Link Service

6. Update a selector A user updates a specific document selector.

7. Delete a selector A user deletes a specific document selector.

8. Update a document A user updates a document (e.g. changes
its URL or its file path).

9. Delete a document A user deletes a document (i.e. deleting an
RSL resource).

The aforementioned interactions are abstracted in the visualisation
component of the link browser. Listing 4.4 illustrates a number of ab-
stract methods whereas the entire abstract class is included in full in
Appendix B. The abstract openDocument() method enables the opening
of a document in all the different scenarios (e.g. reading mode or as a
result of a hyperlink navigation). The first parameter (Object o) of the
openDocument() method enables a visual plug-in to visualise documents
that are stored or not yet stored in the link service database. In a case
where a document has to be visualised for the first time using the link
service, the parameter o represents the document location (file) in the
user’s local storage. On the other hand, the parameter o represents a
specific document format’s resource when the document to be visualised
is already stored in the link service database. In order to illustrate the
difference between these two cases, Listing 4.5 shows the implementa-
tion of the openDocument() method in a PDF visual plug-in. The PDF
visual plug-in checks whether the received object (PDF document) is an
instance of File or if it is already stored in the link service database and
being an instance of PDFResource (i.e. the class contained in the PDF
data plug-in and extending the RSL resource to define PDF resources).
In both cases, the visual plug-in visualises the document.

The second parameter of the openDocument() method is the set of
anchors contained within a document. As discussed earlier, the anchor
object in our link service contains information about a hyperlink source
which is either a selector in a document or a complete document. It
further contains information about all the other sources and targets par-
ticipating in the hyperlink. Listing 4.6 presents the definition of the
anchor object in the link service. The targets and other sources can also
be either documents or selectors in other documents. The anchor object
contains enough information about each target or other sources such as
its media type, its ID in the system as well as the contained document

4.5. Integration of Document Formats 109

in the case of a selector. This provides developers the flexibility to build
rich visual plug-ins. As illustrated in Figure 4.11, multidirectional hy-
perlinks can be presented with a pop-up menu in order to give the user
the flexibility to navigate to any hyperlink source or target.

1 public abstract boolean openDocument(Object o, HashSet <Anchor> anchors, Anchor
anchor);

2 public abstract void highlightAnchors();
3 public abstract HashMap <Entity, String> getSelections();

Listing 4.4: A number of the abstract methods in the visualisation
component

The third optional parameter of the openDocument() method con-
tains a specific anchor to be highlighted in the case that the document has
to be visualised as a result of navigating a hyperlink. We recommend that
a visual plug-in should not automatically highlight a document’s selectors
but rather wait for a user request to do so. The highlightAnchors()

method has been proposed in order to give the users the flexibility in
visualising the document selectors. The getSelections() method is
intended to retrieve new selectors created by the user in a document
visualised via a visual plug-in.

Figure 4.11: A rich visualisation of a multidirectional hyperlink by the
plain text visual plug-in

110 Chapter 4. A Dynamically Extensible Cross-Document Link Service

Visual plug-ins are expected to extend our link browser by providing
a concrete implementation of the abstract methods. The availability of
many open source programming libraries or APIs for some document
formats facilitates the implementation of visual plug-ins for the different
document formats. For example, we have used the ICEpdf6 library to
realise the PDF visual plug-in. The extensibility of our link browser
is similar to the GUI extensibility of the Eclipse IDE where the user
interface logic defines some extension points from some views in the GUI.
Our approach is also similar to the Google Chrome extension mechanism
where a Google Chrome add-in can choose to be either a browser action
or a page action to extend the browser GUI.

1 @Override
2 public boolean openDocument(Object o, HashSet <Anchor> anchors, Anchor anchor) {
3 File file = null;
4 if (o instanceof File) {
5 file = (File) o;
6 this.selectedFile = file;
7 }
8 else if (o instanceof PDFResource) {
9 this.pdfResource = (PDFResource) o;

10 file = new File(pdfResource.getUri());
11 }
12 this.anchors = anchors;
13 this.anchorToHighLight = anchor;
14 return controller.openDocument(file.toString());
15 }

Listing 4.5: The implementation of the openDocument() method in
a PDF visual plug-in

4.5.3 Requirements for Integrating a

Document Format

As discussed, in order to integrate a document format with our link
browser, a data as well as a visual plug-in for the corresponding doc-
ument format have to be provided. Since our link service is based on
the dynamic Java-based OSGi framework, both data and visual plug-ins
must be implemented in Java. The implementation of a data plug-in for
a given document format is not a complicated task since it only defines
how to address the document format’s resources (e.g. URI) and how to
address its selectors (e.g. XPointer expression). The implementation of a

6http://www.icesoft.org/java/projects/ICEpdf/overview.jsf

4.5. Integration of Document Formats 111

visual plug-in for a given document format requires an open source Java-
based library or a Java API for the document format in order to correctly
visualise the document format. In the case that there is no available open
source Java-based library or a Java API for a given document format,
it is still possible to implement a Java library to visualise the document
format from scratch. Nevertheless, we believe that the implementation
of a Java library for a given document format is a complex and tedious
task.

1 /∗∗
2 ∗ @param en : the selector or the entire document forming part of a link sources
3 ∗ @param sources : other sources of the same link
4 ∗ @param targets : targets of the selector, they are also targets of the sources
5 ∗/
6 public Anchor(Entity en, HashSet <Entity> sources, HashSet <Entity> targets){
7 this.entity = en;
8 this.sources = sources;
9 this.targets = targets;

10 }

Listing 4.6: The definition of the anchor object in the link service

In order to successfully implement a visual plug-in for a given doc-
ument format, its Java-based library or Java API should adhere to two
different requirements. First, they must enable third-party developers
to manipulate documents of the document format (e.g. create selectors
or get selections). In the case that the open source Java-based library
does not support document manipulation, it should be possible to extend
the library to support this feature. Second, they must enable third-party
developers to extend and customise the user interface that visualises doc-
uments of the document format. For example, a third-party developer
should be able to add an item to the existing context menu enabling end
users to navigate to hyperlink sources or targets. This feature should
also facilitate the highlighting of a document’s selectors. In the case that
the open source Java-based library does not support the customisation
of the user interface, it should then be possible to extend the library to
support this feature.

4.5.4 Supported Document Formats

Our link browser currently supports the XML, plain text and PDF doc-
ument formats as well as general multimedia content such as images via
the corresponding data and visual plug-ins. Figure 4.12 illustrates the
visualisation of a PDF and a text document as well as a bidirectional

112 Chapter 4. A Dynamically Extensible Cross-Document Link Service

hyperlink between them. We now elaborate on the plug-ins for the plain
text document format. Please refer to Section 5.1 for more information
about the integration of other document formats and multimedia content
in our link browser.

Figure 4.12: A bidirectional hyperlink between a PDF and a text docu-
ment that are visualised in the link browser

The data plug-in for text documents defines its resources via the
path and name of the documents in the user’s local storage. Thereby, a
user should be able to create bi- and multidirectional hyperlinks in text
documents stored in their local storage. The selector within a text doc-
ument is defined by a start and end index. In its manifest file illustrated
in Listing 4.7, the text data plug-in declares its name, type and media
type. It further exports its main package org.rsl.text.data to enable
the corresponding visual plug-in to deal with text resources and selectors.

1 Import−Package: org.rsl.core
2 Export−Package: org.rsl.text.data
3 Extension−Name: text
4 Extension−Mime: text/plain
5 Extension−Type: data

Listing 4.7: Metadata in the manifest of the plain text data plug-in

4.6. Integration of Third-Party Document Viewers 113

As illustrated in Listing 4.8, the visual plug-in for text documents
imports the main package of the data plug-in and defines the same
value for its media type as the corresponding data plug-in. Using the
Extension-Class metadata, it declares the Java class extending our link
browser. The visual plug-in for text document relies on the Java Swing
library. It uses a TextPane component to visualise arbitrary text docu-
ments. By using the TextPane API, the text visual plug-in creates and
retrieves selectors. It further uses the DefaultHighlighter component
of the swing.text package to highlight the selectors of text documents.
Last but not least, as previously illustrated in Figure 4.11, the visual
plug-in provides a context menu enabling users to navigate to hyperlink
sources and targets.

1 Import−Package: org.rsl.core, org.rsl.userInterface.util, org.userinterface.localvisualplugins,
2 org.rsl.text.data
3 Export−Package: org.rsl.text.visual
4 Extension−Name: text
5 Extension−Mime: text/plain
6 Extension−Class: org.rsl.text.visual.TextPanel
7 Extension−Type: visual

Listing 4.8: Metadata in the manifest of the plain text visual plug-in

4.6 Integration of Third-Party Document
Viewers

As discussed earlier, three things are required for integrating a third-
party document viewer with our link service: a data plug-in for the
corresponding document format, a gateway plug-in and an add-in for
the third-party document viewer. The data plug-ins have been already
presented in Section 4.5.1. In this section we elaborate on the add-ins,
gateways and the communication between them. We end this section
with a concrete example of integrating the Google Chrome web browser
with our link service.

4.6.1 Third-Party Document Viewer Add-ins

The integration of documents visualised in their third-party document
viewers in our link service asks for a mechanism that enables users to in-
teract with the visualised documents in order to create, update, navigate

114 Chapter 4. A Dynamically Extensible Cross-Document Link Service

or search hyperlinks. The fact that different third-party document view-
ers have been developed in different programming languages for different
platforms resulted in different SDKs and APIs for these applications.
This also means that their add-ins have different architectural designs,
programming languages or deployment procedures. Therefore, we only
outline a number of guidelines for developers who wish to develop add-
ins for third-party document viewers in order to integrate them with our
link service. These guidelines are mainly concerned with the interactions
required for the CRUD operations and the messages that have to be
exchanged with the link service.

First of all, an add-in should provide a user interface that enables
users to create, update as well as delete selectors. Furthermore, a doc-
ument selectors should be visualised with a different colour than the
document’s original hyperlinks (e.g. HTML hyperlinks authored by the
web page developer). Moreover, if a document is visualised as a result
of a hyperlink navigation, the target selector has to be visualised with a
different colour than the other document selectors. This enables users to
easily spot and recognise the exact target of the navigated hyperlink. Fur-
thermore, an end user should be able to enable/disable the visualisation
(highlighting) of a document’s selectors. In addition, enough informa-
tion should be visualised about every selector’s targets (e.g. name of the
target document and its media type) as well as other hyperlink sources
(e.g. name of the document and its media type). As mentioned earlier,
targets of a selector as well as other hyperlink sources can be visualised
with a pop-up menu in order to give the user the flexibility to navigate
to any target document. Moreover, we recommend that an add-in should
provide some search functionality for selectors and their targets. For ex-
ample, a user might use a Google Chrome add-in to search for selectors in
an HTML document that have targets to only other HTML documents.

Last but not least, an add-in should communicate with our link ser-
vice through any communication channel provided by the link service.
The JavaScript Object Notation (JSON)7 format has been chosen to
represent the messages exchanged between the link service and add-ins.
The JSON data interchange format facilitates the integration of any doc-
ument viewer in a platform-independent manner. It is worth mentioning
that other data interchange formats such as XML could be used in the
link service. A developer of a third-party document viewer add-in should
provide handles to marshal and unmarshal the JSON messages exchanged

7http://www.json.org

4.6. Integration of Third-Party Document Viewers 115

with the link service. The structure of the different messages and their
essential parts are further detailed in Section 4.6.3.1.

4.6.2 Gateway Plug-ins

The gateway component contains an interface that provides the abstract
methods needed to translate any message exchanged with a third-party
document viewer add-in. Message translation simply means the mar-
shalling and unmarshalling of Java objects. JSON messages sent by an
external third-party document viewer add-in are unmarshalled into Java
objects by the corresponding gateway and Java objects are marshalled
to JSON objects by the gateway to be sent to its corresponding external
third-party document viewer add-in. For a document format that has to
be integrated with its third-party document viewer, a gateway extending
the gateway component has to be provided. In a gateway plug-in, the
developer has to provide a class that implements the gateway interface.

Two things are worth mentioning here. First, the gateway component
can easily be extended by any document format gateway since third-party
developers are not required to understand the different communication
channels and processes among the link service components. Second, the
link service does not provide a general JSON representation for messages
that should be exchanged with external third-party document viewer
add-ins, but it rather asks developers to form these objects. For multiple
reasons, we provide developers the freedom to marshal and unmarshal
the objects and send as much information (in JSON objects) as they
want from the link service to third-party document viewers. First of
all, the objects to be marshalled or unmarshalled represent information
about documents and selectors in a specific document format. This in-
formation is introduced by the data plug-in of the document format and
we cannot anticipate what information the object contains. Therefore,
it is impossible to provide a general JSON object that is valid for all
document formats. The link service treats all objects as entities which
is the general representation of RSL resources and selectors. Neverthe-
less, third-party developers are aware that entity objects received by the
gateway from other link service components must be instances of the
document format. Therefore, they are able to retrieve any information
they want from the different objects. Second, it enables developers to
send any information to external third-party document viewer add-ins to
provide rich hyperlink visualisations.

116 Chapter 4. A Dynamically Extensible Cross-Document Link Service

The gateway interface methods support all possible end-user inter-
actions with third-party document viewer documents as well as other
important functionality that is required by the link service. The possible
end-user interactions are the following:

1. Open a document in a third-party document viewer A user
wants to visualise a document in its third-party document viewer.
The user can choose the document from the stored documents in
the link service or follow a hyperlink in another document (i.e. in
this case, the document is the target of the hyperlink). The user
probably wants to visualise a document in a reading mode or with
highlights.

2. Create selector(s) in a document A user selects parts of a
document in order to create hyperlink sources or targets.

3. Navigate to a hyperlink target A user follows a hyperlink in a
document visualised in its third-party document viewer.

4. Update a selector A user updates a specific document selector.

5. Delete a selector A user deletes a specific document selector.

6. Update a document A user updates a document (e.g. changes
its URL or its file path).

7. Delete a document A user deletes a document.

Listing 4.9 illustrates a number of abstract gateway methods. The
entire Gateway interface is included in Appendix C. The openDocument()
method should enable the opening of a document in all the different
scenarios. The first parameter of the function presents the document to
be opened. Note that the first parameter of this method is different from
the first parameter of the openDocument() method of the visual plug-ins.
A user will use visual plug-ins to visualise documents that are not yet
stored in the link service in order to create hyperlinks. As previously
shown in Listing 4.5, the openDocument() method of a visual plug-in
should accept a general parameter (i.e. Java Object) to deal with new
documents (objects) and documents that are already stored in the link
service (i.e. RSL resources). This is not the case with external documents
visualised in their own third-party document viewers. The user does not

4.6. Integration of Third-Party Document Viewers 117

need the link service to visualise documents that are not yet stored in the
link service (i.e. documents having no hyperlinks). A document that is
stored in the link service is an instance of the RSL resource and thereby
the openDocument() method of the gateway should only deal with RSL
resources. The second and the third parameters of the openDocument()

method are similar to those in the openDocument() method of the visual
plug-ins. The openDocument() method should return a JSON message to
be sent to the corresponding add-in. The JSON message should contain
enough information about the document and its anchors.

1 public abstract JSONObject openDocument(Resource res, HashSet <Anchor> anchors,
2 Anchor entityToHighLight);
3 public abstract Resource getResoucre(JSONObject command);
4 public abstract long getTargetEntityID(JSONObject command);
5 public abstract void launchApp();

Listing 4.9: Some of the abstract gateway methods

In most cases, JSON messages sent by a third-party document viewer
add-in contain information about the document being interacted with.
Therefore, the link service asks the corresponding gateway to transform
the JSON data about the document to a Java object (i.e. RSL resource).
The getResource() method takes a JSON message coming from the cor-
responding add-in and returns the exact RSL Resource (document). Let
us illustrate the use of the getResource() method with an example. A
user opens an HTML document in the Google Chrome browser. They se-
lect a button in the Google Chrome add-in in order to retrieve the defined
anchors (if any) from the link service for the document. The add-in sends
a JSON message with information about the document (e.g. its URI) to
the link service requiring its anchors. The link service can only deal
with RSL resources and therefore it passes the JSON message to the
getResource() method of the corresponding gateway. The developer of
the gateway knows the exact JSON message structure sent by the cor-
responding Google Chrome add-in. Thereby, they can easily unmarshal
(part of) the JSON message to an RSL Resource. The link service then
checks whether there are any anchors defined for the document. Using
the openDocument() method, the link service passes the document and
its retrieved anchors to the gateway. The returned JSON message is
then forwarded to the Google Chrome add-in. The add-in should finally
update the document being opened and visualise its anchors.

When a gateway constructs a JSON message for opening a document
in the corresponding third-party document viewer, it must send the ID of
each selector’s target or other hyperlink sources. It should send enough

118 Chapter 4. A Dynamically Extensible Cross-Document Link Service

information about each of them such as their media type or the contained
documents (in the case of selectors) in order to provide rich hyperlink
visualisation. When the user navigates to any hyperlink source or target,
the add-in will use its ID value to form a JSON message. The add-in
sends a request (i.e. the JSON message containing the target ID) to the
link service. The link service then asks the corresponding gateway to re-
trieve the ID value of the intended target via the getTargetEntityID()

method. The link service uses the returned ID in order to retrieve the
target document and then visualises it.

4.6.3 Communication Channels

In order to support a large range of third-party document viewers, our
link service communication component supports various communication
protocols (R4). Full duplex communication protocols are the optimal
communication channels for our link service since the link service and
third-party document viewer add-ins both send (push) messages to each
other. Thereby, the communication component of the link service offers
two channels for the full duplex communication; TCP sockets as well as
WebSockets. A RESTful API is further offered by the communication
component in order to be used as a fallback solution for third-party
document viewer SDKs not offering full duplex communication. JSON
messages coming from third-party document viewers through different
communication protocols are managed centrally via the message pool
component. The message pool also keeps track of all active third-party
document viewer add-ins and their sessions in order to forward the JSON
messages produced by different gateways to the correct communication
protocol.

Messages coming from third-party document viewer add-ins are for-
warded to the user interface component via the message pool. Before
this can happen, the messages have to be unmarshalled to Java objects.
Therefore, the message pool asks the document format gateway to un-
marshal the message. The message pool can identify the correct gateway
by using the media type defined by the communication session in the
handshake process. Moreover, when a message has to be sent from the
link service to the external document viewer add-in, the message pool
asks the document format gateway to marshal the message (Java object)
to a JSON message before forwarding it to the correct communication
protocol with the active session. Thereby, the communication protocols

4.6. Integration of Third-Party Document Viewers 119

are only responsible for sending and receiving messages without any fur-
ther processing.

4.6.3.1 Messages

As mentioned before, there are various types of interactions with the
link service as well as the third-party add-ins (e.g. creating a selector,
navigating to a hyperlink target or opening a document). In order to
correctly execute these interactions, each message exchanged between the
link service and add-ins must specify the type of action expected to be
executed. For instance, a user might have clicked on a specific hyperlink
target visualised in the third-party document viewer and is waiting for
visualising the target document or a user might have updated a selector
in the third-party document viewer and is waiting for a confirmation from
the link service.

Each JSON message coming from an add-in must contain a command

key with one of the predefined request values. These predefined re-
quest values are updateResource, updateSelector, deleteResource,
deleteSelector, addLinkAnchors, isOpen and showTarget. The last
request value (i.e. showTarget) must be contained in JSON messages
that inform the link service that a user clicked on a hyperlink target
in a document visualised in the third-party document viewer. As men-
tioned earlier, the JSON message containing the showTarget request
value should also include the ID value of the intended hyperlink tar-
get. When a user opens a document in its third-party document viewer
and asks the add-in to retrieve the document anchors from the link ser-
vice, the add-in must include the command key with the isOpen value
in the JSON message. The isOpen value informs the link service to re-
trieve the document anchors and returns them back to the add-in. The
addLinkAnchors informs the link service that a user selected one or more
selectors in a document. The link service then asks the corresponding
gateway to return the selector(s) contained in the JSON message. The
selector(s) will be added to the hyperlink overview menu shown earlier
in Figure 4.3. The rest of the request values inform the link service that
a user updated or deleted a document or a selector. The link service
communicates with the corresponding gateway plug-in to return the RSL

Resource or RSL Selector. The link service then updates or deletes the
document or the selector and sends a notification to the add-in.

120 Chapter 4. A Dynamically Extensible Cross-Document Link Service

Communication channels are responsible for checking the request val-
ues coming from add-ins. Based on a request value, a communication
channel forwards the message along with the add-in media type to the
message pool component which in turn handles the request by commu-
nicating with the corresponding gateway.

Messages formed by a gateway and sent to its corresponding add-
in should also contain request values. However, we do not force de-
velopers to use a specific key and value since the link service will not
process these messages. Developers are given some flexibility in nam-
ing their request keys and values. For instance, a JSON message re-
turned by the openDocument method of a Microsoft Word gateway can
contain Wordcommand:openWordDocument while another JSON message
returned by the same method of a Google Chrome gateway can contain
command:openWebpage. The important thing that developers should as-
sure is that their corresponding add-ins understand the requests and can
process the messages. In our example, this means that the Microsoft
Word add-in has to know that Wordcommand:openWordDocument is a re-
quest for visualising a document with its anchors while the Google chrome
add-in must know that command:openWebpage is a request for visualising
an HTML document with its anchors.

4.6.4 Requirements for Integrating a Document

Viewer

As discussed, in order to integrate a third-party document viewer with
our link service, a data plug-in, a gateway plug-in and an add-in for the
third-party document viewer have to be provided. With our proposed ap-
proach for integrating third-party document viewers, a given third-party
document viewer can be integrated with our link service when four con-
ditions are met. First of all, the third-party document viewer should be
extensible via add-ins (sometimes called add-ons or plug-ins). Second,
the SDK of the third-party document viewer must enable third-party
developers to manipulate documents in order to create or get selectors
within its supported documents. Third, the SDK of the third-party docu-
ment viewer must enable third-party developers to extend and customise
the third-party document viewer’s user interface. This feature should
enable third-party developers to provide visual handles in the developed
add-ins. For example, a developed add-in can customise the context
menu of the third-party document viewer by adding a new item (icon)

4.6. Integration of Third-Party Document Viewers 121

that enables end users to navigate to hyperlink sources or targets. In
addition, this feature should facilitate the highlighting of a document’s
selectors. Finally, the SDK of the third-party document viewer must sup-
port the communication to other third-party applications (i.e. our link
service).

4.6.5 Supported Document Viewers

Our link service currently supports three different document viewers in-
cluding Google Chrome, Microsoft Word and Microsoft PowerPoint. Two
add-ins have been developed for Google Chrome. The first add-in en-
ables the linking to arbitrary web pages (i.e. HTML selectors) while the
second add-in enables the linking to timespans in YouTube videos. As
explained in Section 5.1, the second add-in illustrates the flexibility of
our link service in supporting not only document formats but also other
media types. We elaborate on the different plug-ins developed for the in-
tegration of the HTML document format. Please refer to Section 5.1 for
more information about the integration of the other document viewers.

4.6.5.1 Google Chrome Add-in

Google Chrome is extensible via add-ins. It provides a powerful API for
developing add-ins using the HTML5, CSS and JavaScript web techno-
logies. A Google Chrome add-in is a zipped file containing JavaScript,
HTML, CSS, images and any other essential files needed to add extra
functionality to the Google Chrome web browser. An add-in must con-
tain a manifest file that provides information about the extension such as
its name, version and the Google Chrome browser capabilities (e.g. per-
missions to access specific websites) that it might use.

The developed add-in for Google Chrome is written using a combin-
ation of HTML5, CSS3 and JavaScript. HTML5 and CSS3 are used
to realise the add-in user interface visualised on the right hand-side of
the Google Chrome web browser as previously illustrated in Figure 4.6,
whereas JavaScript is used to implement the logic of the add-in and
to communicate with our link service. The add-in makes use of the
WebSocket JavaScript object in order to connect to our link service. It
further uses Rangy8, a cross-browser JavaScript library, to create, get and

8https://github.com/timdown/rangy

122 Chapter 4. A Dynamically Extensible Cross-Document Link Service

highlight selectors within web pages. The add-in customises the Google
Chrome context menu by adding new commands for creating selectors
and navigating to hyperlink sources and targets.

4.6.5.2 HTML Document Format Plug-ins

Two different plug-ins have been developed for the HTML document
format, a data and a gateway plug-in. The HTML data plug-in defines its
resources with URIs. The selector within an HTML document is defined
with an XPointer-like expression as implemented by the Rangy library.
On the other hand, the gateway plug-in implements all the methods
of the gateway interface. It forms JSON messages to be sent to the
corresponding Google Chrome add-in. It also unmarshalled the JSON
messages coming from the corresponding add-in to HTML resources and
selectors.

4.7 Discussion

The presented cross-document link service goes beyond the simple an-
notation concept offered by most annotation tools where only the read-
ing, creating, saving, updating and retrieving of annotations is supported
while support for bi- and multidirectional hyperlinks between document
content is missing. Furthermore, existing as well as emerging document
formats can be integrated in our link service regardless of their docu-
ment models. Moreover, in contrast to some existing link services, our
link service offers a flexible mechanism for integrating third-party docu-
ment viewers. To the best of our knowledge, the presented link service is
the first prototype to introduce flexibility and extensibility on the model
as well as the information visualisation layer as proposed by Signer and
Norrie [126, 125]. We believe that our extensible cross-document link
service is a future-proof linking solution for arbitrary document formats
and multimedia content types. Its dynamic extensibility further allows
third-party developers and end users to support any document format
and multimedia content types without the intervention of the link ser-
vice provider. To address the preferences of end users, the integration of
different document formats and multimedia content types can either hap-
pen within the link browser or in their preferred third-party document
viewers. The presented dynamically extensible link service further deals

4.7. Discussion 123

with updates for document format specifications or third-party document
viewers by providing a mechanism for maintaining different versions of
the same document format plug-in. We believe that the presented cross-
document link service forms an ideal platform for investigating innovative
forms of cross-media linking.

Five features were essential in achieving the presented prototype of a
cross-document link service. First, our cross-document link service uses
an external link representation and storage like early hypermedia systems
such as Sun’s Link Service [112] and Microcosm [73]. This implies that
there are no changes necessary to the specification of existing document
formats in order to integrate them with our link service. Second, through
generalisation and the treatment of hyperlinks as first-class objects in the
core link service (RSL), each document format to be supported can ex-
tend the RSL resource for its own logical document model definition and
specialise the RSL selector with a definition of its selector. Third, the
proposed visual plug-in extensibility of the link browser enables the in-
tegration of existing as well as emerging document formats in the link
browser. Fourth, the proposed mechanism for integrating third-party
document viewers enables the integration of extensible third-party doc-
ument viewers without any required changes to its core. Finally, the
dynamic modular OSGi framework enables the dynamic extensibility of
the link service via the plug-in tracking mechanism as well as the plug-in
metadata.

The presented link service overcomes the limitations of existing link
services since it takes into account the requirements for an ideal link
service discussed earlier in Section 2.8. Moreover, we believe that our
link service meets end-user requirements since it takes into account most
of the design implications outlined in Section 3.5. In the following, we
discuss how our link service meets the different requirements and design
implications.

1. Requirements for an ideal link service

(a) R1 flexible and extensible link service architecture Most
of the link service components are extensible to integrate exist-
ing and emerging document formats as well as third-party docu-
ment viewers. The link service’s link model is based on the RSL
metamodel which is flexible and extensible to support any media
type. The link browser is also extensible via visual plug-ins.

124 Chapter 4. A Dynamically Extensible Cross-Document Link Service

(b) R2 support multiple document formats Due to the flexibil-
ity and extensibility of our link service, we have already suppor-
ted the linking across six different document formats. Thanks
the extensibility of the link browser via visual plug-ins and the
extensibility of the gateway component.

(c) R3 easy integration of third-party document viewers We
have proposed a simple mechanism to integrate extensible third-
party document viewers in our link service. No changes are re-
quired to the core of extensible third-party document viewers
willing to benefit from our link service features. By using the
SDKs of third-party document viewers, add-ins that communic-
ate with our link service via their corresponding gateways about
selectors to be created or highlighted can easily be developed. We
have already integrated three different document viewers with our
link service.

(d) R4 flexible communication channels The link service has
a flexible and extensible communication component which cur-
rently supports three different communication channels. Web-
Sockets and TCP sockets can be used for full duplex communica-
tion channels whereas a RESTful API can be used as a fall back
solution for third-party document viewer SDKs not offering full
duplex communication.

(e) R5 customisable link service An online repository managing
the different plug-ins has been developed. End users are able to
customise the link service by installing only the document formats
that are really needed.

(f) R6 plug-in versioning The plug-in tracking component keeps
track of any updates to the already installed plug-ins by commu-
nicating with the online repository. The plug-in tracking allows
end users to update any existing document format plug-in by
installing a new version of the plug-in.

2. Design implications for a linking solution

(a) DI1 granularity of the associations The link model (RSL)
of our link service enables to the linking between documents at
any level of granularity. A data plug-in of a specific document
format can define its selectors to be a paragraph while another
can define its selectors to be single words. Currently most of the

4.8. Summary 125

link service’s supported document formats allow users to estab-
lish hyperlinks in their documents at any level of granularity. For
example, the data plug-in for plain text defines its selectors as
start and end indices. In other words, a user can establish hyper-
links in the supported text documents at any level of granularity
(e.g. at character, word, sentence, paragraph or document level).

(b) DI2 bidirectional associations Thanks to the RSL hyperme-
dia metamdodel, the link service not only supports birdirectional
hyperlinks but also multidirectional hyperlinks.

(c) DI3 documents side by side Our link browser visualises docu-
ments side by side. It also gives the user the flexibility to disable
this feature and visualise only one document on the entire user
interface.

(d) DI5: management of the associations Currently the link
service provides users some simple search features enabling them
to search for specific hyperlink targets and sources.

4.8 Summary

In this chapter, we presented a dynamically extensible cross-document
link service which overcomes the shortcomings of existing link services
and meets end-user requirements for a linking solution. The link service
offers a plug-in architecture where different document formats as well as
third-party document viewers can be integrated via a plug-in mechan-
ism. The link model of our link service is based on the RSL hypermedia
metamodel. The RSL metamodel has been introduced to overcome some
limitations of existing hypermedia models and systems and to be general
and flexible enough to be used in evolving hypermedia systems. RSL sup-
ports advanced hyperlinks such as bi- and multidirectional hyperlinks. In
our link service, new document formats are supported by implementing
data plug-ins that extend the RSL resource and selector concepts and
contain information on how to address resources (documents) as well
as selectors attached to documents in a given document format. The
visualisation component of our link service consists of a link browser for
visualising the supported document formats. The user interface further
offers the necessary GUI actions to perform the basic CRUD operations
on hyperlinks. For each document format to be visualised in the link
browser, a visual plug-in has to be implemented. A visual plug-in for

126 Chapter 4. A Dynamically Extensible Cross-Document Link Service

a given document format needs to visualise documents as well as their
selectors and has to provide the necessary functionality to create, delete
and update selectors. Our link service’s link browser currently supports
the visualisation of three different document formats including plain text,
PDF and XML.

The presented link service further addresses the challenge of seam-
lessly integrating third-party document viewers in order to enable users
to continue using their preferred third-party document viewers while be-
ing able to link the different documents. The concept of an extensible
gateway component that facilitates the communication between our link
service and third-party document viewers has been introduced. For every
document format to integrated via its third-party document viewer, a
specific document format gateway extending the gateway component has
to be provided. Moreover, an add-in for the third-party document viewer
needs to be developed in order to enable users to highlight and create
selectors in documents visualised in the third-party document viewer.
The add-in should communicate with the link service about selectors to
be created or highlighted via the corresponding gateway. A data plug-
in extending the RSL metamodel and containing information on how
to address resources and selectors of the documents visualised in the
third-party document viewer also has to be provided. An add-in of a
third-party document viewer can communicate with the link service by
using any communication channel provided by the flexible and extensible
communication component of our link service. The link service currently
supports the linking to documents visualised in three different third-party
document viewers including Microsoft Word, Microsoft PowerPoint and
Google Chrome.

The presented link service allows third-party developers to support
any document format or third-party document viewer by developing the
required plug-ins. Moreover, it allows end users to support any docu-
ment format by installing the required plug-ins from an online reposit-
ory, without the intervention of the link service provider or third-party
developers. Last but not least, the presented link service exploits the
dynamic modular framework (OSGi) for its dynamic extensibility as well
as the management and tracking of different plug-ins.

5
Evaluation

In this chapter we present three evaluations of our link service. In a
first technical evaluation, we validate the extensibility of our link service
by discussing its support for a number of document formats and vari-
ous third-party document viewers. In a second technical evaluation, we
further validate the extensibility of our link service by investigating the
potential for integrating other existing document formats and document
viewers with our link service. In the third evaluation, we investigate the
usability of the presented link service in an end-user study.

The chapter is structured as follows. In Section 5.1 we present our
first evaluation, whereas the second evaluation is presented in Section 5.2.
In Section 5.3, we discuss the results of the end-user study. A conclusion
and a summary of the different evaluations is provided in Section 5.4.

5.1 Supported Document Formats
and Viewers

Our link service’s extensible plug-in architecture allowed us to integrate
a number of document formats and document viewers as well as two mul-
timedia content types. The link service currently supports the linking of
PDF, XML, plain text, HTML, Word and PowerPoint document formats

127

128 Chapter 5. Evaluation

as well as images and YouTube videos. The link browser is further able to
visualise PDF, XML and plain text documents as well as images via visual
plug-ins. The HTML document format as well as YouTube videos have
been supported by developing two different add-ins for Google Chrome.
The integration of Microsoft Word and Microsoft PowerPoint with the
link service via two different add-ins allows the linking to Word and
PowerPoint documents. In the remainder of this section we elaborate on
the integration of the different document formats, document viewers and
multimedia content types.

5.1.1 PDF Document Format

The data plug-in for PDF documents specifies its resource via the path
and name of the document in the user’s local storage. The selector within
a PDF document is defined by a page index and a rectangular area within
a page. The PDF data plug-in defines its media type application/pdf

in its manifest file.

The visual plug-in for PDF documents relies on the existing ICEpdf1

open source Java library for visualising PDF documents in the link
browser. Normally, the ICEpdf library visualises PDF documents in
a JFrame. Therefore, we had to customise the ICEpdf library in order
to be able to extend the link browser and visualise the PDF documents
within a JPanel. The visual plug-in further uses the ICEpdf library API
to get and create selections of rectangular areas in PDF documents. It
is also worth mentioning that we have customised some methods in the
ICEpdf library in order to be able to create interactive hyperlinks. The
visual plug-in successfully implements all the abstract methods provided
by the link service visualisation component.

5.1.2 XML Document Format

Similar to the PDF data plug-in, the XML data plug-in defines its re-
source via the path and name of the document in the user’s local storage.
A selector within an XML document is defined via DOM ranges. Note
that there are also some libraries such as XInclude2 that use XPointer,
but these libraries are targeting XML inclusions. The XML visual plug-in

1http://www.icesoft.org/java/projects/ICEpdf/overview.jsf
2https://www.w3.org/TR/xinclude

5.1. Supported Document Formats and Viewers 129

extends the StyleEditorKit that forms part of the javax.swing.text

library for a better visualisation of XML documents. Furthermore, it
uses the javax.xml.parsers library for reading XML documents. Last
but not least, the XML visual plug-in applies the org.w3c.dom library
to retrieve and highlight nodes and ranges within an XML document.

5.1.3 Images

In order to illustrate the flexibility and extensibility of our link service, we
support the linking to areas within general multimedia content types such
as images and YouTube videos. We support the visualisation of images
within our link browser by using a visual plug-in. Figure 5.1 illustrates
a bidirectional hyperlink between a PDF document and a JPEG image.
The visual plug-in for images makes use of the Java Swing library in
order to render the images. The visual plug-in further extends the Swing
JComponent object in order to enable users to create rectangular shapes
within images. The data plug-in for images defines an image resource
via its path and name in the user’s local storage. A selector within an
image is defined as rectangular shape.

Figure 5.1: Bidirectional hyperlink between a PDF document on the left
and a JPEG image on the right

130 Chapter 5. Evaluation

5.1.4 Microsoft Word

Microsoft office applications (e.g. Microsoft Word) are extensible via add-
ins. Add-ins can be developed either by using C# or JavaScript API. In
contrast to the former C# API, JavaScript-based add-ins are platform
independent. In the beginning, we have developed a JavaScript-based
add-in. Even though the add-in provides most of the required function-
ality, it had a number of limitations (e.g. cannot customise Microsoft
Word context menu) due to the limited capabilities of the JavaScript-
based API. Therefore, we had to develop another add-in using the C#
API. In the following, we elaborate on the JavaScript-based add-in and
its limitations before describing the second C# add-in.

5.1.4.1 JavaScript-based Add-in

A JavaScript add-in can either be a content or a task pane application. A
content application implies that the add-in, including its UI, will reside in
the document itself, whereas a task pane application resides next to the
document in a sidebar. The add-in for integrating Microsoft Word should
not hinder a user’s interactions with their Word documents. Therefore,
we have chosen for the less obtrusive add-in by using the task pane ap-
plication.

Normally, a simple JavaScript-based add-in includes two basic com-
ponents, an XML manifest file and a web page. The XML file contains
various required settings while the web page implements the logic of the
add-in. The JavaScript API allows a developed task pane add-in to in-
teract with a Word document’s content to, for example, retrieve any
selections. In order to preserve the privacy of users as well as the se-
curity of the host office application, a JavaScript-based add-in runs in a
sandboxed web browser instance. Moreover, the runtime environment of
the JavaScript-based add-ins facilitates their installation and uninstalla-
tion process since they do not require any executable file or dynamic link
library (.dll).

The add-in is written using a combination of HTML5, CSS3 and
JavaScript. HTML5 and CSS3 are used to realise the add-in user in-
terface visualised in the task pane, whereas JavaScript is used to imple-
ment the logic of the add-in and to communicate with the link service.
The JavaScript logic is heavily based on the asynchronous programming
paradigm. The add-in user interface, shown in Figure 5.2, allows the

5.1. Supported Document Formats and Viewers 131

user to connect with the link service. The user can also list the available
anchors and navigate to any specific hyperlink target.

Figure 5.2: Microsoft Word user interface of the JavaScript add-in

The add-in makes use of the WebSocket JavaScript object in order
to connect to the link service. Once the connection with the link service
is successfully established, the selectors of the visualised document are
retrieved which enables the user to update, navigate and delete them. It
is worth mentioning that a selector in a Word document is represented
by using the Office bindings which can be used in Word as well as Excel
applications to reference a text selection in a document. In order to
correctly position a selector with a Word document, a save operation has
to be performed after the creation of a new selector.

As mentioned earlier, the add-in has a number of limitations. First of
all, the highlighting of selectors is not possible with the current JavaScript
API. When a user navigates to a specific selector, the add-in forwards
the cursor next to the target selector without being able to highlight
it. Furthermore, with the JavaScript API is not possible to customise
the context menu of Microsoft Word. One last drawback is that the
add-in cannot be loaded in Microsoft Word unless there is a document
opened. This limitation prevents any request from the link service to
open a document in Microsoft Word when Microsoft Word is closed.

132 Chapter 5. Evaluation

5.1.4.2 C# Add-in

The C# API enables add-ins to customise almost every aspect of Mi-
crosoft Word. A developed add-in can customise the context menu,
create selections, highlight selections, create toolbar menus and create
multiple new windows within Microsoft Word. Using the API, we were
able to develop a rich add-in that overcomes all the limitations of the
previously described JavaScript add-in. As illustrated in Figure 5.3, the
add-in provides a user interface on the right-hand side of the visualised
documents. It enables users to connect to the link service via a TCP
socket connection as well as to highlight or disable the highlighting of
selectors. The add-in further allows users to create selectors by custom-
ising the context menu of Microsoft Word and adding the Add Selector

command to it. By using the customised context menu, users can further
navigate to hyperlink sources or targets.

Figure 5.3: Microsoft Word user interface of the C# add-in

5.1. Supported Document Formats and Viewers 133

5.1.4.3 Word Document Format Plug-ins

Two different plug-ins are installed in the link service for the Word doc-
ument format; a data and a gateway plug-in. The data plug-in defines
its resources via the document name and path in the user’s local stor-
age. The selector within a Word document is defined as an XPointer-like
expression. On the other hand, the gateway plug-in implements all the
methods of the gateway interface. It forms JSON messages to be sent
to the corresponding add-in. It also unmarshalled the JSON messages
coming from the corresponding add-in to Word resources and selectors.

5.1.5 Microsoft PowerPoint

5.1.5.1 Microsoft PowerPoint Add-in

We have integrated Microsoft PowerPoint with a JavaScript-based add-in
which has the same limitations of the Microsoft Word JavaScript-based
add-in. The interface of the add-in is further identical to the Microsoft
Word add-in interface illustrated in Figure 5.2. One thing that should be
noted is that the Office bindings which reference text selections cannot
be used in Microsoft PowerPoint. We gave the user the possibility to link
to a specific slide or a range of slides (e.g. from slide 1 to slide 4).

5.1.5.2 PowerPoint Document Format Plug-ins

The data plug-in for PowerPoint identifies a PowerPoint resource via
its path and name. It further defines a PowerPoint selector through an
XPointer-like expression. The gateway plug-in for PowerPoint imple-
ments all the methods of the gateway interface. It forms JSON messages
to be sent to the corresponding add-in. It also unmarshalled the JSON
messages coming from the corresponding add-in to PowerPoint resources
and selectors.

5.1.6 Google Chrome

In Section 4.6.5, we have already discussed the integration of the HTML
document format that is visualised in Google Chrome. In this section,
we discuss the integration of YouTube videos visualised with Google
Chrome. We support the linking to timespans within YouTube videos

134 Chapter 5. Evaluation

based on a simple add-in for Google Chrome as well as a data and gate-
way plug-in for our link service.

5.1.6.1 Google Chrome Add-in

Figure 5.4 illustrates the user interface of the add-in. The add-in com-
municates with our link service via WebSockets. The developed add-in
only works if the YouTube website is completely loaded. After a YouTube
page is loaded, the add-in calls the YouTube player which is embedded in
an HTML div element called player-api. After grabbing the YouTube
player, the add-in is able to access the HTML5 <video> object which
offers several functions and attributes. Using these functions our add-in
is able to create and play timespans within YouTube videos.

Figure 5.4: Google Chrome add-in enabling the linking to timespans
within YouTube videos

5.1. Supported Document Formats and Viewers 135

5.1.6.2 YouTube Video Plug-ins

As mentioned, we have developed two different plug-ins for YouTube
videos; a data and a gateway plug-in. The data plug-in defines a YouTube
resource via its URI while the selector is defined using a start and end
time. On the other hand, the gateway plug-in implements all the methods
of the gateway interface. It forms JSON messages to be sent to the
corresponding add-in. It also unmarshalled the JSON messages coming
from the corresponding add-in to YouTube resources and selectors.

5.1.7 Discussion

The integration of a number of document formats and third-party doc-
ument viewers serves as an assessment of our link service’s extensibility.
The flexibility of RSL enabled us to define a wide range of different
resource-specific selectors such as timespans, XPointer-like expressions
or rectangular shapes. The Java Swing library further allowed us to in-
tegrate some document formats and multimedia content types such as
XML and images. We believe that by using the Java Swing as well as
other existing Java libraries we can also integrate other document formats
such as the HTML document format in the link browser. In contrast to
XML and plain text which have been integrated based on the Java Swing
library, the integration of the PDF document format was achieved by us-
ing the ICEpdf open source Java library. Even though the used library
was not sufficient to integrate the PDF document format and support
the required functionality, we were able to extend the library in order to
develop a rich visual plug-in for the PDF document format.

Our proposed approach for integrating third-party document viewers
proved its flexibility and extensibility for integrating third-party docu-
ment viewers. For example, the flexible communication channels of our
link service allowed Google Chrome to communicate via the WebSocket
communication channel. On the other hand, it enabled the C# add-in for
Microsoft Word to communicate with the link service via TCP sockets.
The development of add-ins for the different third-party document view-
ers depends on the available SDKs for the third-party document viewers.
For instance, we managed to develop two different add-ins for Microsoft
Word by using the two available APIs.

136 Chapter 5. Evaluation

5.2 Integration of Existing Document
Formats and Third-Party Viewers

We now present a technical evaluation regarding the extensibility of our
link service. In this evaluation, we investigate whether a number of
existing document formats and third-party document viewers can be in-
tegrated with our link service.

5.2.1 Methodology

As discussed in Section 4.6.4, a given third-party document viewer can
be integrated with our link service when four different requirements are
met. The document viewer must be extensible via add-ins. Further-
more, its SDK must enable document manipulation in order to facilitate
the creation of selectors. Moreover, its SDK must enable the customisa-
tion of the user interface of the third-party document viewer in order to
enable the introduction of new GUI actions or the highlighting of a doc-
ument selectors. Finally, its SDK must enable the communication with
our link service. In the light of these four requirements, we investigate
seven different third-party document viewers including Adobe Acrobat
Reader, Foxit Reader, OpenOffice, the Opera web browser, the Firefox
web browser, iBook Author and Sumatra PDF.

As discussed in Section 4.5.3, a given document format can be integ-
rated and visualised in our link service by using an open source library
or a Java API for the document format. In the absence of libraries for
the document format, one can develop an entire library for the document
format. In order to successfully integrate a document format in our link
service, its open source library or Java API must meet two requirements.
First, it must enable the manipulation of documents in order to facilitate
the creation of selectors within documents. Furthermore, it must enable
the customisation of the user interface in order to enable the introduction
of GUI actions or the highlighting of selectors. In the light of these two
requirements, we investigate whether OOXML, ODF, EPUB and IBA
can be integrated and visualised in our link service. Please note that
we only investigate existing libraries for the aforementioned document
formats. In the case where there are no available libraries for an invest-
igated document format, we will not discuss the development of libraries
to support its integration in our link service.

5.2. Integration of Existing Document Formats and Viewers 137

5.2.2 Results

5.2.2.1 Third-Party Document Viewers

Table 5.1 summarises the results of our investigation of different third-
party document viewers. In the table, we use the 4 symbol to illustrate
that a feature is supported or that the third-party document viewer
can be integrated with our link service. As shown, most investigated
third-party document viewers can potentially be integrated with our link
service. Adobe Acrobat Reader is extensible via plug-ins using its Ac-
robat SDK3. Plug-ins for Adobe Acrobat Reader can be developed using
either C, C++ or the JavaScript programming language. The Acrobat
SDK allows developers to build rich and interactive plug-ins for Adobe
Acrobat Reader. It further allows them to manipulate PDF documents
and extend or modify Adobe Acrobat Reader toolbars and enables the
communication with other third-party applications (e.g. our link service)
via TCP sockets or WebSockets when C++ is used or via WebSockets
when JavaScript is used.

Similar to Adobe Acrobat Reader, Foxit Reader is also extensible via
plug-ins that are developed using the Foxit PhantomPDF SDK4. Foxit
PhantomPDF plug-ins are based on the C++ programming language.
Foxit PhantomPDF enables developers to modify and extend the existing
Foxit Reader user interface. It further offers two different modules for
manipulating and adding extra annotations to PDF documents. The
communication with third-party applications can be realised by using
TCP sockets or WebSockets.

OpenOffice5 or Apache OpenOffice is a well-known open source of-
fice suite that was mainly developed for reading and manipulating the
OpenDocument Format (ODF). OpenOffice is extensible via add-ins that
can be developed using many programming languages such as Python,
C++ and Java. A third-party developer can create a rich OpenOffice
add-ins that manipulates a document’s content, modifies the existing
OpenOffice user interface and communicates with other third-party ap-
plications using various communication channels (e.g. TCP sockets and
WebSockets).

3http://www.adobe.com/devnet/acrobat/sdk/eula.html
4https://www.foxitsoftware.com/products/sdk/phantompdf-plugin
5https://www.openoffice.org

138 Chapter 5. Evaluation

Document Viewer Extensible
Document

Manipulation

User Interface

Customisation
Communication

Possible

Integration

Adobe Acrobat

Reader
4 4 4 4 4

Foxit Reader 4 4 4 4 4

OpenOffice 4 4 4 4 4

Opera 4 4 4 4 4

Firefox 4 4 4 4 4

Sumatra PDF 7 7 7 7 7

iBook Author 7 7 7 7 7

Table 5.1: Investigating the integration of seven third-party document
viewers with our link service

Similar to Google Chrome, most web browsers such as Opera6 and
Firefox are extensible via add-ins. The Opera web browser can easily
be extended via add-ins7. In general, the structure and development
of its add-ins is similar to Google Chrome add-ins. Using a JavaScript
background page, an Opera add-in can communicate with our link service
via a WebSocket communication channel. Furthermore, the developer
can manipulate HTML documents and modify the existing Opera user
interface menus (e.g. context menu).

By using the Firefox add-ons SDK8, a third-party developer can de-
velop rich add-ons for Firefox. A Firefox add-on is created based on
various web technologies such as JavaScript, HTML5 and CSS3. Fire-
fox add-ons can manipulate HTML documents or modify and enrich the
existing Firefox user interface. Using HTML5 WebSockets, an add-on
should be able to communicate with our link service.

Most existing EPUB readers such as Sumatra PDF9, a free PDF and
EPUB reader, are not extensible via plug-ins or add-ins. As discussed in
Section 2.5, IBA is based on the EPUB standard but offers more interact-
ive features. iBook Author which is the reader for IBA documents offers
a nice feature for extensibility. It allows end users as well as developers to
build rich and interactive HTML widgets that can be embedded within
IBA documents. For example, a user can create a widget to render a
sequence of images and interact with them using a swipe gesture. Nev-
ertheless, iBook Author does not allow the development of plug-ins or

6http://www.opera.com
7https://dev.opera.com/extensions
8https://developer.mozilla.org/en-US/Add-ons/SDK
9http://www.sumatrapdfreader.org/free-pdf-reader.html

5.2. Integration of Existing Document Formats and Viewers 139

add-ins to manipulate documents or communicate with third-party ap-
plications.

5.2.2.2 Document Formats

Table 5.2 summarises the results of our investigation regarding four dif-
ferent document formats. In the table, we use the 4 symbol to illustrate
that a feature is supported or that the document format can be integrated
in our link browser. The (4) symbol means that there is only limited
support for a given feature or that the document format can be integ-
rated in our link browser after some enhancements to its programming
library. As shown, there are no Java-based libraries available for the IBA
document format. Therefore, it is only possible to integrate IBA in our
link browser after the development of a Java library for the IBA docu-
ment format. In contrast to IBA, there exist many Java-based libraries
for the OOXML document format. Apache POI10 and doxc4j11 are the
most well-known open source Java libraries for creating and manipulat-
ing OOXML documents. Even though both libraries do not support user
interface customisation, they can be extended to support this feature.
Therefore, we are convinced that these libraries can be used to develop
a rich visual plug-in for OOXML for our link browser.

Document Format Java Library
Document

Manipulation
User Interface
Customisation

Possible
Integration

Apache POI (4) (4) (4)
OOXML

doxc4j (4) (4) (4)

Apache ODF 7 7 7

jOpenDocument 7 7 7ODF
Odf4j 7 7 7

EPUB Epublib 7 7 (4)

IBA — — — 7

Table 5.2: Investigating the integration of four different document
formats with our link browser

The Apache ODF Toolkit12 is a well-known and documented Java
library providing an easy-to-use API for reading and creating ODF doc-
uments. For many reasons we believe that this library is not suitable
for developing a visual plug-in for the ODF document format for our

10https://poi.apache.org
11http://www.docx4java.org/trac/docx4j
12https://incubator.apache.org/odftoolkit/odfdom/index.html

140 Chapter 5. Evaluation

link browser. The library does not provide an API to create annotations
(i.e. selectors) within ODF documents. Furthermore, it does not provide
handles to create GUI actions. Similar to the Apache ODF Toolkit, the
jOpenDocument13 Java library for ODF enables only the reading and
creation of ODF documents. Nevertheless, it is not possible to create
selectors inside ODF documents or to add new GUI actions. Odf4j14 is
another library that is written in the Java programming language and
provides functionality for reading and manipulating ODF documents.
Unfortunately, Odf4j does not support the customisation of the user in-
terface or the creation of selectors within documents.

Epublib15 is a well-known open source Java library for reading and
creating EPUB documents. The current version of the library does not
support the manipulation of EPUB documents (i.e. adding selectors) or
adding custom GUI actions. Nevertheless, we believe that it can be
extended to support the missing features and that it can potentially be
used to create a visual plug-in for the EPUB document format.

5.2.3 Discussion

The presented evaluation shows that besides our supported document
formats and document viewers, other existing document formats and
document viewers can be integrated with our link service. Unfortunately,
changes are required for most existing open source Java libraries in or-
der to develop visual plug-ins for their corresponding document formats.
Moreover, recent document formats such as the proprietary IBA docu-
ment format owned by Apple Inc.16 cannot be integrated with our link
service. In contrast to the open source Java libraries that require en-
hancements, most existing third-party document viewers can seamlessly
be integrated with our link service. Unfortunately, a few recent docu-
ment readers for recent document formats (e.g. EPUB and IBA) cannot
be integrated with our link service. The reader for IBA is a propriet-
ary document format reader while EPUB readers are not yet powerful
enough to offer extensibility features via SDKs.

In this evaluation we did not discuss the effort and time required for
integrating a given document format or a third-party document viewer.

13http://www.jopendocument.org
14https://wiki.openoffice.org/wiki/Odf4j
15https://github.com/psiegman/epublib
16http://www.apple.com

5.3. End-User Evaluation 141

The time required to integrate a given document format or a third-party
document viewer with our link service depends on the used library or
SDK. A visual plug-in for a document format might be developed in a
week while another visual plug-in for another document format might
take up to a month if changes are required to the used library. The same
holds for developing add-ins. For example, we were able to realise the
JavaScript-based add-in for Microsoft Word within a week, whereas it
took us three weeks to realise the C# add-in for Microsoft Word.

5.3 End-User Evaluation

5.3.1 Goal

The main goal of our third evaluation was to evaluate the usability of
the link service in terms of ease of use, satisfaction and the quality of the
interactions.

5.3.2 Methodology

We evaluated the usability of our link service by means of both qualitat-
ive and quantitative evaluations in order to get a better understanding
of the end-users experience and to gain more feedback [28]. According
to previous research [62, 91], using a mixed-method approach is more ef-
fective than using a single-method approach. The qualitative evaluation
consists of semi-structured interviews with the participants of the eval-
uation. On the other hand, in the quantitative evaluation we have used
the well-known Computer System Usability Questionnaire (CSUQ) [88]
which measures the end-user satisfaction with the usability of computer
systems. CSUQ is included in Appendix D and it contains 19 different
questions relying on a 7 point Likert scale (1 = strongly disagree, 7 =
strongly agree). The 19 questions evaluate four different usability as-
pects. Questions 1 to 8 evaluate the ease of use (SYSUSE). Questions
9 to 15 evaluate the information quality (INFOQUAL) such as error
messages or the documentation on how to use the system. Questions
16 to 18 evaluate the interface quality (INTERQUAL). The last ques-
tion (19) evaluates the overall satisfaction (OVERALL). We have chosen
the CSUQ questionnaire in our usability evaluation due of its accepted
reliability. An alpha coefficient exceeding 0.89 has been proven for all

142 Chapter 5. Evaluation

the four different parts (i.e. SYSUSE, INFOQUAL, INTERQUAL and
OVERALL).

5.3.3 Population

We were mainly interested in knowledge workers’ (researchers) point of
view and experience when using our link service. Fourteen researchers
working either on their Master’s or PhD theses have participated in our
usability evaluation. The participants’ age ranged from 23 to 37 years
(M=27), including 7 males and 7 females to keep gender balance. We
have intentionally selected all participants from non-Computer Science
specialisations in order to avoid any biased results. All participants are
studying at the Vrije Universiteit Brussel17 (VUB) and were recruited
through the “VUB experiment participant pool”18 Facebook page which
was mainly created for recruiting students to participate in research ex-
periments and evaluations conducted at the VUB.

5.3.4 Setup

Before conducting our study, we have prepared the link service and sup-
ported only one document format (i.e. plain text) and one third-party
document viewer (i.e. Microsoft Word). In the online repository, we have
uploaded plug-ins for the PDF document format as well as plug-ins and
an add-in for Google Chrome. Note that the Google Chrome add-in was
not uploaded (published) to the Google Chrome Web Store19 since it re-
quires special validation from Google. We have further prepared some
documents (i.e. two ‘plain text’, two PDF and two Word documents)
in order to be used by the participants for creating and editing hyper-
links. Each document contained at least two pages. Moreover, the set of
available documents consisted of two online Wikipedia articles (HTML
documents). We started our evaluation by briefly explaining the con-
text of our research and the objectives of the study to the participants,
including the concept of a hyperlink, hyperlink sources and targets and
the integration of document formats and third-party document viewers
with our link service. We further explained the different functionality
supported by the link service. After the explanations, the participants

17http://www.vub.ac.be/en
18https://www.facebook.com/groups/VUB.participant.pool
19https://chrome.google.com/webstore/category/extensions

5.3. End-User Evaluation 143

were asked to use the link service and to perform a number of tasks. Each
participant had to create, navigate and delete a number of bi- and multi-
directional hyperlinks between text and Word documents. Furthermore,
they had to enable and disable the highlighting of document selectors.
The participants also had to extend the link browser to support the PDF
document format and to integrate Google Chrome. They then have been
asked to create and navigate a number of bi- and multidirectional hyper-
links between all the supported document formats. The average time for
completing their tasks was 15 minutes. After finishing their tasks, the
participants had to answer some demographic questions and to fill in the
CSUQ questionnaires. This was followed by a semi-structured interview
focusing on their perception and subjective satisfaction.

5.3.5 Results

In general, we received promising feedback about the usability of our
link service as illustrated in Figure 5.5. Table 5.3 summarises the overall
sample CSUQ and shows that the overall user satisfaction (OVERALL)
was assessed very positively with a high mean and a small deviation.
Nine of the participants provided us some encouraging comments about
our link service such as: “It is very easy to use”, “This application will
definitely help me in doing my literature review” and “I do not know how
it [the link service user interface] could be simpler”.

Despite the fact that most participants had no knowledge about the
concept of bi- and multidirectional hyperlinks in advance, the collected
data from both the questionnaire and the interviews confirms the ease of
creating and navigating both types of hyperlinks. Nevertheless, six par-
ticipants were confused about the concept of navigating to a hyperlink’s
sources and targets. For them, if they want to navigate a hyperlink that
exists in a document then all other documents participating in the hyper-
link (regardless of being in the hyperlink’s sources or targets) are targets
of that hyperlink. Out of these six participants, four participants sug-
gested to remove the navigate to Source button from the supported
actions in the link browser and from the different add-ins of third-party
document viewers. According to their suggestions, all hyperlink sources
and targets have then to be listed under navigate to Target. Out of
the total population, four of the participants were not satisfied with the
hyperlink overview menu illustrated earlier in Figure 4.3 when editing

144 Chapter 5. Evaluation

1.00

2.00

3.00

4.00

5.00

6.00

7.00

SYSUSE INFOQUAL INTERQUAL OVERALL

Figure 5.5: Results of the CSUQ questionnaire

their hyperlinks. All of these four participants mentioned that the used
descriptions of the different selectors (e.g. XPointer-like expressions or
start and end indices) are too technical. Instead of using an XPointer-like
expressions for selectors within web pages they, for example, suggested
to show (part of) the selected paragraph or statement.

One participant complained about installing Google Chrome add-in.
According to this participant, they are not a Google Chrome user and
therefore not aware that it can be extended via add-ins. Moreover, for
this participant it was not easy to see the main menu in Google Chrome
and to do the required steps for installing the add-in. The rest of the
participants (thirteen) confirmed that it was very easy to extend the
link service to support a new document format (PDF) and a new third-
party document viewer (Google Chrome). “It was only one single click
to support the PDF document format; it is very easy to do it”, one par-
ticipant mentioned. All these thirteen participants emphasised the ease
of extending Google Chrome with its add-in by following the provided
guidelines illustrated in Figure 5.6. It is worth mentioning, that all of
these thirteen participants had prior knowledge on how to extend Google
Chrome with new add-ins from its online repository.

5.3. End-User Evaluation 145

Statistical Indices
Subscale

Mean Median Std deviation
SYSUSE 5.37 5.5 1.11
INFOQUAL 5.03 5 1.18
INTERQUAL 5.07 5 1.24
OVERALL 5.79 6 0.70

Table 5.3: Summary of overall sample CSUQ

Out of the fourteen participants, ten participants have confirmed that
the link service functionality is very intuitive and that they could be-
come experts in using it after the creation of the first hyperlinks. All the
participants indicated that the interactions provided by the link service
are simple, easy to use and effectively helped them to perform all the
required tasks. Moreover, most of the participants (twelve participants)
have confirmed that the naming of the interactions were consistent across
the different user interfaces (i.e. link browser, Google Chrome add-in and
Microsoft Word add-in). One thing to note is that we noticed that some
users (four participants) were confused while using the context menu of
Microsoft Word to search for our add-in’s command for creating a new se-
lector in Word documents. By default, the Microsoft Word context menu
has a command named Hyperlink which enables user to establish hyper-
links to external entire third-party documents. Some of the users initially
thought that the Hyperlink command is the one that they should use to
create the selector. After using the Hyperlink command, they noticed
that the link service did not react by adding the intended selector to the
hyperlink sources or targets and therefore they had to try again to cre-
ate the selector by searching for the right command (i.e. Add Selector

command).

Figure 5.6: Guidelines for extending Google Chrome with its add-in

146 Chapter 5. Evaluation

Out of the fourteen participants, ten participants have confirmed that
the link service functionality is very intuitive and that they could be-
come experts in using it after the creation of the first hyperlinks. All the
participants indicated that the interactions provided by the link service
are simple, easy to use and effectively helped them to perform all the
required tasks. Moreover, most of the participants (twelve participants)
have confirmed that the naming of the interactions were consistent across
the different user interfaces (i.e. link browser, Google Chrome add-in and
Microsoft Word add-in). One thing to note is that we noticed that some
users (four participants) were confused while using the context menu of
Microsoft Word to search for our add-in’s command for creating a new se-
lector in Word documents. By default, the Microsoft Word context menu
has a command named Hyperlink which enables user to establish hyper-
links to external entire third-party documents. Some of the users initially
thought that the Hyperlink command is the one that they should use to
create the selector. After using the Hyperlink command, they noticed
that the link service did not react by adding the intended selector to the
hyperlink sources or targets and therefore they had to try again to cre-
ate the selector by searching for the right command (i.e. Add Selector

command).

Most of the participants (eleven participants) have confirmed that the
information provided by the system (e.g. explanations for buttons for the
mouseover events or the detailed examples provided in the Help menu)
was clear and helpful. Some of the participants (three) who prefer ex-
planations via videos, suggested to provide a two-to-three minutes demo
explaining the different link service features. Two of the four participants
who were confused about the command for creating selectors in Microsoft
Word suggested to add some extra information in the Microsoft Word
add-in guiding users when creating their first selectors in Word docu-
ments.

5.3.6 Discussion

The presented user study revealed that end users were satisfied with our
link service. However, we must take into account their valuable remarks
regarding the technical naming used in our link service such as hyperlink
sources and XPointer expressions. In a future revision of the link service,
we will consider listing the hyperlink sources under the hyperlink targets

5.4. Summary 147

as suggested by some of the participants. Moreover, we plan to create a
demo in order to help beginners in using our link service.

We preferred to do this user study in order to get some general feed-
back helping us in enhancing the usability of our link service. In the
future we might conduct additional studies to evaluate other aspects of
the link service such as the usefulness of our link service as well as the
efficiency of the hyperlink management using our link service.

5.4 Summary

In this chapter we have evaluated the extensibility of our link service
in two different technical evaluations. In the first evaluation, we have
integrated a number of document formats with the link browser via the
corresponding data and visual plug-ins. Furthermore, we have integrated
the general image multimedia content type in the link browser through
the necessary data and visual plug-ins. We have further integrated three
third-party document viewers in our link service. In a second evaluation,
we have further validated the extensibility of our link service by invest-
igating whether a number of existing document formats and third-party
document viewers could be integrated with our link service. The evalu-
ation revealed that our link service is flexible and extensible to integrate
various existing document formats and third-party document viewers.

We have then evaluated the usability of our link service in an end-user
study. By using quantitative and qualitative methods, we have collected
data from fourteen knowledge workers who had the chance to use our link
service. The collected data revealed that participants were satisfied with
the usability of our link service user interface. We have further received a
number of constructive remarks from the participants which might help
us to further enhance the usability of the presented link service.

6
Use Case

In this chapter we further illustrate the usefulness of the hyperlinks cre-
ated between different digital documents using our link service. We
present a document discovery and retrieval framework that exploits the
implicit relationships between documents based on the similarity of their
content and metadata in order to improve the retrieval process. An innov-
ative aspect of our framework is the combination of implicit and explicit
hyperlinks between documents in the retrieval as well as in the visual-
isation process. As discussed, the visualisation of implicit and explicit
hyperlinks in the document discovery tasks might further encourage users
to create explicit hyperlinks. Please note that the purpose for presenting
this case study is to present a potential application that benefits from our
link service’s hyperlinks. Furthermore, our case study discusses end-user
feedback regarding the benefit of using our link service’s hyperlinks in
the document discovery tasks. Note that we were neither interested in
developing developing new clustering algorithms for exploiting the im-
plicit relationships between documents nor discussing new visualisation
techniques for document retrieval tasks.

We start by providing an overview of different existing document dis-
covery and retrieval systems. We then present our framework and briefly
discuss some of its features, architecture and implementation. We fur-
ther elaborate on the use of implicit and explicit hyperlinks in document

149

150 Chapter 6. Use Case

discovery tasks. Finally, we elaborate on some end users feedback that
we got for the presented framework.

6.1 Document Retrieval Systems

As mentioned in Section 2.2, Bush proposed his visionary system in
order to overcome the shortcomings of hierarchical classification struc-
tures. Bush’s trails (associative hyperlinks) mimic the working of the
human mind. Nowadays, web hyperlinks which were mainly inspired by
Bush’s trails are instrumental for document discovery and retrieval on the
Web. In fact, Google’s original document search was mainly based on the
PageRank algorithm [87] which ranks documents based on incoming and
outgoing hyperlinks. Unfortunately, the most common tool that we use
for managing our documents is still the traditional desktop file explorer.
Despite the underlying architectural differences between operating sys-
tems, the traversal of hierarchically nested folders is the standard way
of locating documents. While this method is easy to follow, there have
been many critical comments about the usability of hierarchical file struc-
tures [61, 54, 14], including the intensive cognitive load for basic tasks
such as the classification and retrieval of documents [18]. A study by
Golemati et al. [61] has demonstrated the profound limitation of hier-
archical folders in desktop environments where users could not recall the
file path of their documents in 17% of the retrieval tasks.

Many approaches for novel user interfaces have been proposed to over-
come some limitations of the traditional desktop file browser. One ap-
proach is the use of 3D visualisations instead of the original 2D visual-
isations. Cone Trees [117] and Data Mountain [116] are good examples
of visualisations that use 3D techniques. The focus+context technique
for visualising large hierarchical structures is another approach for en-
hancing desktop document retrieval. The focus+context technique [16]
provides two kinds of document views; a focus view and a context view.
The former offers a visualisation of documents with a high level of details,
while the latter provides a view of document’s structure at an abstract
level. Flip Zooming [16] and the hyperbolic file browser [85] are based
on the focus+context technique. Another known approach for enhan-
cing desktop document retrieval is the space-filling technique which is
mainly developed to make use of the entire available screen space. Good

6.2. Motivation 151

examples of this approach are Tree-map [80] and Sunburst [130] which
visualise information hierarchies by using nested 2D rectangles.

Besides approaches for novel user interfaces, there are a number of
studies and systems working towards exploiting document metadata for
enhancing the document retrieval. Placeless Documents [48] addressed
the fact that documents usually refer to several topics and should not
belong to only one place. DeFiBro [102] is another recent system that
exploits document metadata for document clustering and delivers an al-
ternative visualisation.

An interesting approach for enhancing the document discovery and
retrieval is the use of the Memex vision. SEMEX [27] is a well-known
PIM system supporting access to different types of information objects
(e.g. documents) based on a repository of objects and their associations.
SEMEX applies a reconciliation algorithm [48] that automatically as-
sociates objects based on their metadata. Nevertheless, users are not
given the possibility to add any association between information objects.
Moreover, SEMEX simply displays the information objects in a nested
list and users have to go through long lists when navigating information.
iMapping [74] is another recent system that makes use of an ontology
which supports associative hyperlinks between data objects. iMapping
offers many interesting features such as the associations between differ-
ent data objects and a zoomable user interface. Nevertheless, it is not
evident how different documents as well as their metadata and content
can be supported in the system.

6.2 Motivation

Existing approaches for document discovery and retrieval show a number
of shortcomings. Systems with novel user interfaces neglect the content of
a document and are limited to a predefined visualisation. Furthermore,
some of them stick to the traditional hierarchical tree representation
(e.g. Flip Zooming). 3D visualisations are less efficient than 2D inter-
faces [40] and document retrieval in a 3D visualisation requires more
time than in a 2D visualisation [39]. There is no doubt that systems
making use of document metadata go beyond the systems with novel
user interfaces. Nevertheless, due to multiple reasons, existing document
metadata is not always sufficient for document discovery and retrieval.
First, system-created metadata contains basic information (e.g. time of

152 Chapter 6. Use Case

creation or media type) that does not add any semantics to different doc-
uments. Second, it is a big burden for users to manually add metadata
to their documents. Last but not least, sometimes users use document
names that reflect the context of the document and barely add semantics
about a document itself. Systems trying to apply the Memex vision have
many limitations. First of all, some of them rely on document metadata
(e.g. SEMEX) to automatically create the associations between inform-
ation objects. Second, they are not flexible enough to allow users to
create their associations between documents. Last but not least, they
are limited to a predefined visualisation (e.g. list).

We believe that an enhanced solution for document discovery and
retrieval should not neglect the fact stated by Bush that documents do
not exist in isolation but that they are related to each other [26]. The
relations might be explicitly established (e.g. using our link service) or be
defined implicitly based on the similarity of content or some metadata.
As discussed, there have been little to no frameworks exploiting expli-
cit hyperlinks to enhance document discovery and retrieval tasks. We
believe that our link service’s hyperlinks would be beneficial and valu-
able in enhancing the retrieval and discovery of digital documents. The
link service’s bi- and multidirectional hyperlinks would enable the easy
retrieval of all linked documents regardless of whether they have been
defined as a source or target of a hyperlink.

Furthermore, while some previous research has exploited implicit hy-
perlinks between documents using document metadata in order to en-
hance the document discovery and retrieval, to the best of our knowledge
there are no desktop document discovery and retrieval solutions that ex-
ploit implicit hyperlinks in a document’s content by, for example, using
clustering algorithms.

6.3 Enhanced Document Retrieval
and Discovery

Our proposed framework for document retrieval and discovery is unique
in the sense that it overcomes a number of limitations of current docu-
ment retrieval systems. An overview of the most important features of
our framework is provided in Table 6.1. Next to each feature, we men-
tion the document and/or framework components that have been used
to realise the feature. The strength of our framework is that it exploits

6.3. Enhanced Document Retrieval and Discovery 153

the combination of implicit and explicit hyperlinks between documents.
In contrast to previous research that only used document metadata to
discover the implicit links between documents [102], we are using both
a document’s content and metadata in order to discover implicit links
based on a clustering algorithm. The content of a document should
tell us everything about a document and how it can be distinguished
or related to other documents. It is worth mentioning that we also ex-
ploited the a document’s content and metadata to support important
features such as synonym-based search and word stems. Moreover, we
make use of explicit document hyperlinks that have been created via our
cross-document link service. Further, our framework offers an extens-
ible architecture that not only supports multiple visualisations, but also
enables the integration of arbitrary document formats at a later stage.

Search Feature Document or Framework Component

Exact keyword matching
Index of metadata (title and filename) and

content

Synonym-based search
Index of metadata (title and filename),
content and WordNet lexical database

Multiple search criteria Advanced search engine

Implicit linking via clustering
Clustering based on document content and

metadata
Suggesting relevant documents Clustering engine and explicit link engine

Multiple visualisations of a search
result

Extensible visualisation engine

Table 6.1: Important features offered by the framework

6.3.1 Use of a Document’s Content and Metadata

In our framework for enhanced document retrieval, a document’s con-
tent and metadata serve three main purposes. First, they are used to
build an inverted index to support full-text search. The inverted index is
normally stored as a hashmap which enables a fast lookup for a word, a
document or a document page. A second purpose for using the content
and metadata is to discover the implicit links between different docu-
ments. In order to do so, we use a clustering mechanism to group similar
documents into the same category (cluster). Figure 6.1 illustrates how
our approach can visualise documents in distinct clusters with different
colours using a schemaball visualisation. The effectiveness of document

154 Chapter 6. Use Case

clustering reduces time and effort in search tasks as has been proven in
previous research [118]. Moreover, the clustering of documents based on
their similarity is appealing since it minimises the scale of search results
by organising documents into different categories rather than having the
user to scroll through a long list of documents. Thereby, users can have
a broad overview of the search results, which is beneficial in terms of
reducing search time when retrieving and finding documents. Cluster-
ing helps the user in typical scenarios, for example when they encounter
documents with the same name, since they can easily distinguish them
by selecting the category. We use the k-means algorithm [89] and the
number of clusters is determined by using the rule of the thumb.

The third purpose for using the content and the metadata is to sup-
port search based on synonym matches as well as keyword stems. By
doing so, not only documents that contain the search keyword or its
stems can be returned but also documents that contain keywords with
the same meaning as the original search keyword. For example, if the
user searches for documents with the keyword “computer”, documents
containing the keyword “calculator” will be returned in addition to doc-
uments containing any form of the keyword “computer” (e.g. computa-
tion or computing). We make use of the well-known WordNet lexical
database [101] from which we query a list of synonyms for every search
keyword and then execute the search with the generated list of keywords.

6.3.2 The Use of Explicit Hyperlinks

As described earlier, apart from a document’s content and metadata,
our framework makes use of the explicit hyperlinks created by users via
our link service. These explicit hyperlinks are an excellent resource for
enhancing the document retrieval and discovery. The existence of an
explicit hyperlink between two documents A and B literally means that
to some extent these two documents are related to each other. Therefore,
if document A belongs to the result of a given search query, it is likely
that document B may also be of interest to the user. As illustrated
in Figure 6.2, we use this assumption to enhance our search results by
adding document B to the preliminary search result if it is not already
forming part of it.

In our framework, an explicit link engine has been implemented in
order to query the explicit hyperlink metadata from our cross-document
link service. This has been done via an RSL API offered by our cross-

6.3. Enhanced Document Retrieval and Discovery 155

Figure 6.1: Schemaball visualisation of a search result, based on [136]

document link service. Listing 6.1 illustrates a number of methods of the
RSL API that can be used to retrieve resources (documents) and linked
documents. The explicit link exploiter enquires explicit hyperlinks for
every document contained within the preliminary search result. The ex-
plicit link exploiter then augments the search results with retrieved doc-
uments that have explicit hyperlinks to any document in the preliminary
search result.

1 public Entity getEntity(String name);
2 public Resource getResource(String name);
3 public Resource getResourceByURI(String uri);
4 public HashSet<Resource> getLinkedDocuments(Resource res);
5 public HashSet<Resource> getLinkedDocuments(String uri);

Listing 6.1: A number of methods offered by the RSL API

156 Chapter 6. Use Case

Document A and B which have an explicit hyperlink between them
do not necessarily have to belong to the same cluster. According to the
cluster hypothesis [137], documents that are similar to each other tend
to belong to the same cluster. In unsupervised clustering algorithms
(e.g. k-means algorithm), documents are grouped in clusters based on
the document vector similarity (i.e. textual values as well as metadata).
It is possible that the explicit hyperlink between document A and B is
established in a specific context but they are content-wise not similar to
each other. The clustering of documents in our framework is therefore
done after augmenting the search result with documents having explicit
hyperlinks with any document in the preliminary search result.

When visualising the search results, we take into account the existing
explicit hyperlinks between the documents. In the schemaball visual-
isaiton shown in Figure 6.1, the explicit hyperlinks between documents
are visualised as connected curves. In an ordinary list visualisation (see
Figure 6.4), a document’s explicit hyperlinks are shown next to Have

links to at the end of each search entry.

Figure 6.2: Document B which has an explicit hyperlink to document A
is added to the search result if it is not already forming part of it, based
on [136]

6.3.3 Support for Multiple Visualisations

Our framework is extensible to support different visualisations. Every
visualisation has its strengths and weaknesses and we did not want to
restrict our framework to a single visualisation. Normally each visualisa-
tion provides a different perspective of the documents, and hence, users

6.3. Enhanced Document Retrieval and Discovery 157

can switch between various visualisations according to their needs. Cur-
rently, we have implemented two different visualisations; a schemaball
visualisation and an ordinary list visualisation. In the schemaball visu-
alisation, we have the chance to minimise the necessary space as well as
to demonstrate the explicit hyperlinks and document clusters on a single
plane as shown in Figure 6.1. Users can view some information about
the document including a text snippet that contains the matching res-
ults and some metadata by hovering over the document name. Moreover,
they can filter documents by clicking on one of the cluster names shown
in the left panel. Figure 6.3 illustrates the filtering of documents using
the “digital” cluster name.

Figure 6.3: Search result filtered by cluster name, based on [136]

In our second visualisation, we can show richer textual information
than in the schemaball, including the file name, snippets of the document
and the target document of an existing explicit hyperlink. Moreover,
users do not need any extra interaction (e.g. hovering) to see such de-
tails. Figure 6.4 shows a search result using the ordinary list visualisation.
Please note that, in both visualisations we visualise the cluster name in
the left panel as shown in Figure 6.1 and Figure 6.4. When a user clicks

158 Chapter 6. Use Case

on a cluster name, only the documents in the corresponding cluster will
either be highlighted in the schemaball visualisation or listed in the list
visualisation. It is worth mentioning that we automatically name the
clusters by using the name of the document that is closest to the centroid.

Alternatively, we can use the most important keyword in the cluster
to define the name of the cluster

Figure 6.4: Ordinary list visualisation of a search result, based on [136]

6.3.4 System Architecture

The general architecture of our document retrieval framework is illus-
trated in Figure 6.5. The architecture consists of three main compon-
ents. The first component is responsible for handling the search queries
entered by the user. A second component is responsible for the document
clustering. The third component collects the documents returned by a
search query and publishes the results in a neutral data representation
which can then be further processed by any visualisation engine.

In order to illustrate the communication between the different com-
ponents, we present a scenario of a user who would like to search for a
document. Note that we refer to the numbers depicted in Figure 6.5. The
user can enter a search query using the provided search interface (1). The
search interface which is shown in Figure 6.6 enables the user to query

6.3. Enhanced Document Retrieval and Discovery 159

Figure 6.5: General architecture of the document retrieval framework,
based on [136]

documents based on multiple search criteria. A user can search with
keyword synonyms or any form of a keyword contained in a document’s
metadata or content. Furthermore, the user can retrieve documents via
the name of the author or the date of creation. In contrast to existing
systems (e.g. Mac Finder) that enforce a logical AND operator between
the different search criteria, we give the user the freedom to use logical
AND as well as OR operators between different search criteria. For ex-
ample, a user can search for a document which is authored by “Ted
Nelson” OR contains any form of the word “compute” in its filename.
Furthermore, the user can search by using the wildcard operator. The
keyword “comput*” can for example be used to search for documents
that contain “computer” or “computing” in the filename.

The search query is forwarded to the searching module in order to
be parsed (2). If the user opts for a search using synonyms, the search
module will communicate with the WordNet database in order to retrieve
all the synonyms of the original keywords. Both the keywords entered
by the user and the retrieved synonyms are combined to search over all
documents in the file system. The index of the document’s metadata and

160 Chapter 6. Use Case

Figure 6.6: Enhanced search form, based on [136]

content only contains word stems. Therefore, we take the stems of the
search keywords in order to be able to search over the index. It is worth
mentioning that searching with author name or creation date stems does
not make sense and the stemming algorithm is not used in this case. The
search module searches over the index and a list of matching documents is
returned based on the user query (3). The search result is then passed to
the explicit hyperlink exploiter engine. As described earlier, the explicit
hyperlink engine retrieves other documents that have any relationships
with documents contained in the search result (4) by querying the explicit
link metadata via the API offered by our cross-document link service.
The search result is augmented with any additional retrieved documents
and forwarded to the clustering module. The vector extractor component
of the clustering module returns matching vectors based on the list from
the vector repository (5). The matching vectors are read and text mining
is performed in order to cluster the documents (6). When the module
finishes its task, it returns the final clustering results. Both the search
result (7b) as well as the clustering results (7a) are then passed to the
publishing module where the search result is finally formatted in JSON
and ready to be processed for further visualisations.

6.3.5 Implementation

The browser (user interface) of our document retrieval framework has
been realised based on the latest web technologies in order to provide a
platform-independent solution. The powerful D3.js1 visualisation library
has been used to visualise the document search results. An advantage of

1http://d3js.org

6.4. User Evaluation 161

the D3.js library is that it can run on most web browsers without any
configurations.

The core logic of our framework is mainly based on the cross-platform
Java programming language. We have used a number of open source
libraries such as Apache Tika2, Apache Lucene3 and Apache Mahout4.
The Apache Tika library is the de facto open source document parsing
library that supports text extraction of a large number of document
formats. The indexing of documents as well as the support of search
queries over the index have been mainly realised via Apache Lucene.
Last but not least, the Apache Mahout library has been used for the
data mining and clustering of documents.

A last thing we have to emphasise is the publishing module. In order
to support as many visualisations as possible, the publishing module
provides a RESTful API which produces JSON data that can be further
processed by different visualisation engines in order to properly present
the search results.

6.4 User Evaluation

The presented framework has been evaluated in an end-user study. The
main goal of the evaluation was to evaluate the usability of the applica-
tion in terms of ease of use, satisfaction and usefulness. We were mainly
interested in getting feedback about the use of implicit and explicit hy-
perlinks as well as the multiple visualisations. In the evaluation, we were
not planning to make any comparasion with existing document retrieval
systems (e.g. Windows search system or Mac Finder) in terms of time
performance. However, we have intentionally chosen participants with
different operating systems preferences (5 Mac users and 5 Windows
users). This was done to avoid biased results, especially if users are sat-
isfied with the document retrieval mechanism offered by their operating
system. We were mainly interested in knowledge workers’ point of view
who are working with documents as part of their daily tasks. Hence,
all of our 10 participants (5 female) were researchers working either on
their Master’s or PhD theses. Since the main goal of our evaluation
was usability testing, it was not necessary to use the personal document

2https://tika.apache.org
3https://lucene.apache.org/core/
4http://mahout.apache.org

162 Chapter 6. Use Case

collections of our participants. Instead, we prepared a larg document
collection beforehand. We decided to choose the ‘For Dummies’5 book
series as test data. These books cover a wide range of topics from ac-
counting, photography, computing to blogging. Moreover, the content
of the book collection is not too abstract and users will have the free-
dom and flexibility to easily discover the collection. The collection of
the books was categorised in multiple folders and sub-folders. Moreover,
in order to minimise the required time for the evaluation, we have used
the cross-document link service to establish various explicit hyperlinks
between documents that are distributed in the folders of the collection.
Last but not least, for our evaluation we turned the synonyms-based
search feature off.

We started our evaluation by briefly explaining the objectives of the
study to the participants, including the concept of explicit and implicit
document linking. We further introduced the book collection to the user
and gave them approximately ten minutes to explore the data. After
the participants felt familiar with the dataset, we told them about the
explicit hyperlinks that we had already created between the documents
beforehand. We then introduced our document retrieval framework and
asked them to perform different document retrieval tasks by using the
framework. After finishing their tasks, the participants had to complete
a questionnaire followed by a semi-structured interview. The question-
naire contained closed 5- point Likert scale questions to assess different
usability criteria (e.g. ease of use) for the application in general, the im-
plicit linking and the explicit hyperlinks.

In general, we received promising feedback about our document re-
trieval framework as illustrated by the results shown in Figure 6.7. We
below elaborate on some the feedback we received about implicit and
explicit hyperlinks but for detailed explanations about the results of the
user evaluation please refer to [136]. Participants were delighted to see
the relationships between documents in terms of the explicit and implicit
hyperlinks. Most of them normally deal with many journal and confer-
ence papers that are distributed over various folders, making it difficult
for them to organise and classify their documents. One user commen-
ted: “It is really a great application because I can find the relationships
between documents, especially when you have to do your thesis. You have
read a lot of papers and you want to make an integrated literature review.

5http://www.dummies.com

6.4. User Evaluation 163

0

1

2

3

4

5

Application Explicit Hyperlinks Clustering

Usefulness Satisfaction Ease of Use

Figure 6.7: Some results of the user evaluation

Suggesting related documents as well as showing me what documents I
linked with each other makes my life much easier. You do not have any
application that does that ”. Some participants have emphasised the use-
fulness of suggesting relevant documents via the implicit and explicit
hyperlinks. One participant said: “I download a lot of papers and I do
not memorise the titles. This feature [flexible search over content and
metadata] combined with suggesting relevant documents would definitely
help me to find my documents”.

Despite the fact that all participants had no knowledge about the
concept of explicit hyperlinks in advance, the collected data confirms the
contribution of the explicit hyperlinks to document retrieval. Whereas
the score of the usefulness (see Figure 6.7) indicates that explicit hyper-
links are very much beneficial to all participants, the score of the ease
of use and satisfaction gives us a hint about the unfamiliarity with the
concept. One user mentioned: “It is very beneficial for doing literature
review”. Another participant explained: “The link visualisation is very
interesting. It shows me the connections between the documents that I
would probably create over time. Normally, I had to write annotations
to link documents or memorise the relations between documents by heart.
Creating and visualising the links will help me to quickly remember the
relation between documents and their content”. Nevertheless, because we

164 Chapter 6. Use Case

had created the explicit hyperlinks by ourselves, one user expressed their
confusion about the explicit hyperlinks and another participant commen-
ted: “I do not know if these links are useful. I did not create them myself.
Probably, I will be glad to see them when I create them”. Another user
wondered about the scalability of the explicit link visualisation. In fact,
the scalability of the visualisation is an issue for any large data set, but
for a future version of the visualisation we foresee some advanced settings
where users can choose to visualise the explicit hyperlinks for a specific
document, cluster or all the documents.

6.5 Summary

We have presented a framework for enhancing the retrieval and discov-
ery of documents. The presented framework has showed the importance
of the explicit hyperlinks created by our cross-document link service.
Based on a clustering algorithm in combination with our link service,
our document retrieval framework exploits implicit as well as explicit
document relationships in order to improve the retrieval and discovery
process. While we currently support two different search result visual-
isations, the framework might be extended with arbitrary third-party
visualisations. An initial end-user evaluation of the presented framework
has further revealed that users are keen on exploiting the implicit and ex-
plicit relationships between documents as part of the document retrieval
process. The framework can further be extended to suggest new “explicit
hyperlinks” between documents for the users based on the results of the
document clustering (i.e. the implicit hyperlinks).

7
Conclusions and

Future Work

In this final chapter we summarise and discuss the results of this dis-
sertation. We further discuss our research contributions as well as some
limitations of the presented work. We finally present some future work
and new research directions. This chapter is structured as follows. The
presented work is summarised in Section 7.1. In Section 7.2 we discuss
our answers to our research questions, our contributions as well as the
limitations of our work. We conclude the chapter by presenting potential
future work in Section 7.3.

7.1 Summary

In this dissertation we have presented a user study that explores the
user behaviour in associating information within and across digital as
well as physical documents. We have further introduced a dynamically
extensible cross-document link service which enables the linking across
existing and emerging document formats as well as third-party document
viewers.

165

166 Chapter 7. Conclusions and Future Work

7.1.1 User Study

The presented user study has a multi-case design that consists of an
online survey combined with interviews with participants of the online
survey. In the online survey, we have collected data from 238 participants
and afterwards 12 participants out of the 238 participants have been in-
terviewed. Our study revealed a number of interesting findings. First
of all, it showed that most knowledge workers are associating informa-
tion within and across digital and physical documents. Furthermore, it
revealed a number of association mechanisms applied by participants to
associate information within and across documents. These mechanisms
include but are not limited to the use of physical folders, post-it notes, di-
gital folders and line drawings. Moreover, we found some characteristics
of the different types of associations created by users using the different
association mechanisms.

Our study further showed that most users are not satisfied with their
currently used mechanisms for associating information across documents.
We have critically analysed and discussed the participants’ criticism and
complaints regarding their currently used linking mechanisms. Most of
the participants who are engaged in information association activities
have indicated the need for a cross-document linking solution to facilitate
the creation and management of associations. Based on the participants’
criticism and their suggestions, we formulated a number of design implic-
ations for an extensible information and cross-document linking solution.

7.1.2 A Dynamically Extensible Cross-Document

Link Service

The presented link service meets the user needs and requirements for an
efficient cross-document linking solution. It overcomes the limitations of
existing linking solutions (e.g. support for only a predefined set of docu-
ment formats). Our link service provides end users with a link browser
enabling them to visualise documents and create as well as edit hyper-
links. It allows users to create advanced hyperlinks in the form of bi-
and multidirectional hyperlinks between snippets of information in the
supported document formats. Our link service takes into account that
users use third-party document viewers for editing and reading different
document formats. Therefore, it addresses the challenge of seamlessly in-
tegrating third-party document viewers. For any document format that

7.1. Summary 167

should be supported by the link service —either visualised in the link
browser or externally in its third-party document viewer— a data plug-
in extending the link service link model (RSL metamodel) has to be
provided. The data plug-in for a document format must contain inform-
ation on how to address its resources (documents) as well as selectors
(anchors) attached to its documents. For every document format to be
integrated and rendered in the link browser, a visual plug-in extending
the link browser has to be provided. A visual plug-in for a given doc-
ument format has to render its documents and visualise any selectors
that have been defined. For each document format to be integrated via a
third-party document viewer, a specific document format gateway as well
as an add-in for the third-party document viewer have to be provided.
A gateway for a specific document format extends the link service and is
responsible for launching the corresponding third-party document viewer
and handling messages with the third-party document viewer add-in. A
third-party document viewer add-in should enable users to create and
edit selectors within a document and communicate with the link service
via its corresponding gateway about selectors to be selected, deleted or
updated.

Most of the presented link service components are flexible and extens-
ible to support the general goal of integrating existing as well as emerging
document formats. For instance, the link service supports multiple com-
munication channels (i.e. TCP sockets, WebSockets or a RESTful API)
and is flexible to support other communication channels in order to sup-
port a wide range of third-party document viewers. The link service’s
dynamic extensibility further allows third-party developers and end users
to support any document format and multimedia content type (e.g. im-
ages and videos) without the intervention of the link service provider.

The link service currently supports the linking across six different doc-
ument formats including XML, plain text, PDF, HTML, Microsoft Word
and Microsoft PowerPoint. The XML, PDF and plain text document
formats have been integrated using visual plug-ins for the link browser
while HTML, Microsoft Word and Microsoft PowerPoint have been in-
tegrated via Google Chrome, Microsoft Word and Microsoft PowerPoint
third-party document viewers. Furthermore, the link service supports the
linking to general multimedia types (i.e. images and YouTube videos).
Advanced hyperlinks can be created between (parts of) documents and
(parts of) multimedia types.

168 Chapter 7. Conclusions and Future Work

Our link service has been evaluated in three different evaluations.
In a first evaluation, we assessed the extensibility of the link service by
integrating different document formats, general multimedia types and
third-party document viewers. In a second evaluation, we investigated
whether a number of existing document formats can be integrated in
the link browser by analysing their corresponding programming librar-
ies. In the same evaluation, we analysed whether a number of existing
third-party document viewers can be integrated with our link service
by investigating their SDKs. In a last evaluation, the usability of the
link service has been evaluated in an end-user study. In this user study,
14 participants had the chance to use the link service and perform a
number of tasks. After performing their tasks, each participant has been
asked to fill in a questionnaire which was followed by a semi-structured
interview.

We have further illustrated the usefulness of the hyperlinks created
by our link service by presenting a framework for enhanced desktop docu-
ment retrieval and discovery which makes use of these hyperlinks. Besides
our link service’s hyperlinks, the presented framework applies a cluster-
ing algorithm in order to discover implicit relationships between desktop
documents. The framework then exploits the link service’s hyperlinks as
well as the discovered implicit relationships to deliver different visualisa-
tions of document search queries.

7.2 Discussion

Throughout this dissertation we have presented answers to the research
questions formulated in Section 1.4. The presented user study provides
answers to the first research question (RQ1) and is the first user study
that mainly investigates the user behaviour in associating information
within and across digital and physical documents. The user study also
provides some answers to RQ2.1 by outlining a number of design implica-
tions for a suitable information and cross-document linking solution. Our
review and critical analysis of existing linking approaches provides the
remaining answers to RQ2.1 by outlining six fundamental requirements
for an ideal cross-document link service. The presented link service ar-
chitecture, prototype and technical evaluations offer answers to research
question RQ2.2. While developing our link service we have taken into
account the answers for RQ2.1, the design implications for a suitable in-

7.2. Discussion 169

formation and cross-document linking solution as well as the fundamental
requirements for an ideal cross-document link service. The end-user us-
ability evaluation of the presented link service goes beyond answering
RQ2.2 by presenting the end user feedback regarding the usability of the
presented link service.

Our user study has made a number of contributions and revealed
a number of important findings such as the discovery of different asso-
ciation mechanisms that are used by users, their characteristics or the
user need for an efficient linking tool. Due to the exploratory nature
of our user study, we believe that its findings open new horizons for in-
depth exploration of user behaviour in associating information within and
across documents. Our user study has shown the need for efficient linking
solutions in order to enable knowledge workers to associate information
during their reading and writing activities. Unfortunately, most exist-
ing linking solutions as well as bibliography reference managers are not
sufficient to help users in creating and managing their associations. The
proposed design implications should help developers and researchers in
realising efficient and usable cross-document linking solutions.

We have taken the initiative by presenting a first cross-document
link service that takes into account end-user needs and requirements.
The presented cross-document link service also addresses other import-
ant requirements in order to overcome the limitations of existing linking
solutions (e.g. extensibility or support for third-party document view-
ers). The conducted end-user evaluation revealed that our approach is
accepted by end users, whereas the two technical evaluations confirmed
that our link service excels existing link services in terms of extensibility
and its support for third-party document viewers. We think that one
main reason for the success of our link service is the use of a powerful
link metamodel (i.e. RSL) and the adoption of the general architecture
for open cross-media annotation and link services originally proposed by
Signer and Norrie [126, 125].

Our answers to the formulated research questions make a number of
important contributions. Furthermore, as any research effort, the presen-
ted research also shows some shortcomings. In the following we elaborate
on our contributions and highlight the limitations of the presented work.

170 Chapter 7. Conclusions and Future Work

7.2.1 Contributions

1. Our user study makes a number of important contributions:

(a) Our user study is the first study that is mainly investigat-
ing the user behaviour in associating information within and
across physical and digital documents. The study has con-
firmed previous research findings [2, 109, 81] by showing that
knowledge workers are associating information across docu-
ments while reading and writing. Our user study further
showed that most users are either occasionally or frequently
associating information across documents. The study also
showed that knowledge workers are associating information
within a single document more frequently than across differ-
ent documents. Our study further revealed 12 different as-
sociation mechanisms that are adopted by participants when
associating information in digital as well as physical docu-
ments. The study also analysed how frequently these asso-
ciation mechanisms are used in the different information as-
sociation scenarios (i.e. SP1, SP2, SD1, SD2, SD3 and SDP)
described in Section 3.3. Furthermore, our study revealed
some general characteristics of the different types of associ-
ation mechanisms. For every association mechanism, we de-
scribe the directionality of the resulting association (e.g. uni-
or bidirectional) as well the granularity of the associated in-
formation.

(b) Our user study revealed some general findings about the users’
appreciation and criticism about their currently used associ-
ation mechanisms. Furthermore, it has demonstrated that
there is a need for an efficient and suitable information and
cross-document linking solution in order to help users in cre-
ating and finding their associations.

(c) Based on the users’ criticism about their used mechanisms for
associating information, their suggestions for a better solu-
tion and our interpretations of the collected data, we have
formulated a set of design implications for information and
cross-document linking solutions.

2. We have critically analysed and compared existing linking solutions
in Chapter 2. Based on this critical analysis and our own expert-

7.2. Discussion 171

ise, we have outlined six fundamental requirements for an ideal
cross-document link service. These requirements have further been
disseminated in our publication entitled “A Dynamically Extens-
ible Open Cross-Document Link Service” [135] which was presented
at the WISE 2015 conference.

3. Our link service which has been described in two publications [134,
135] also makes a number of important contributions:

(a) We have proposed an architecture for a dynamically extens-
ible link service. In contrast to most existing link services that
have been built as monolithic components, our link service has
proven its flexibility and extensibility in two different technical
evaluations. As a result and in contrast to most existing link
services, our link service can be extended by third-party de-
velopers and end users in order to support any existing as
well as emerging document formats without the need for any
intervention by the link service provider.

(b) By using a visual plug-in mechanism, our link browser can
support the visualisation of any document format. Therefore
in contrast to existing link services that support the linking
across a predefined set of document formats, our link service is
able to support the linking across existing as well as emerging
document formats.

(c) Our link service addresses the challenge of seamlessly integrat-
ing existing third-party document viewers by providing flex-
ible communication channels as well as a gateway component
that mediates the communication between the link service and
third-party document viewers. In contrast to existing link ser-
vices, third-party document viewers do not need to be rewrit-
ten in order to benefit from our link service.

(d) We support advanced linking in the form of bi- and multidirec-
tional hyperlinks across six different document formats. Three
of the supported document formats are visualised within their
third-party document viewers. We further illustrated the use-
fulness of the hyperlinks created between different documents
by presenting the use case of a novel document discovery and
retrieval framework that overcomes some of the limitations of
existing document retrieval frameworks.

172 Chapter 7. Conclusions and Future Work

7.2.2 Limitations

Our sample of totally 238 researchers can be considered as a represent-
ative sample of the research community. However, our subsamples of
23 Master’s students, 169 PhD students and 46 researchers holding an
PhD degree are not large enough to be representatives of their corres-
ponding populations. We believe that the Master’s community (people
who are doing some Master’s studies) is much larger than the PhD com-
munity (people who are doing PhD). Therefore, we believe that if the
number of Master’s students would be a representative of their corres-
ponding population, we could analyse and compare the information asso-
ciation behaviour between the different subsamples. Moreover, we think
that the sample of female participants (82) is not representative for their
corresponding population (female researchers) and therefore, we were
not able not analyse and compare the information association behaviour
between female and male researchers.

The manageability and maintainability of hyperlinks has always been
an issue in any hypermedia system. This includes broken hyperlinks,
the consistency of hyperlinks when the linked documents evolve or the
management of hyperlink metadata in collaborative environments such
as Google Docs. Since these issues were not part of the goal of our
work, we have adopted a simple document archiving solution of linked
documents which also helps to address the broken hyperlink problem in
the case of missing documents. Another important issue that should
always be taken into account, which also was not part of the goal of our
work, is the scalability of any hypermedia solution. Using a document
archiving solution might affect the scalability as well as the performance
of our link service. In fact, the performance of our link service has been
affected while using the archiving solution. Therefore, we believe that
the scalability as well as the performance of our link service should be
more investigated. It is worth mentioning that we have already used our
link service for creating hyperlinks between more than sixty documents
without the archiving solution and we did not notice any problem of of its
performance. Furthermore, during the end-user study we did not receive
any negative comments about the performance of our link service.

The current version of the link service only works on a single com-
puter and does not support the portability of hyperlinks. In order to
illustrate what we mean with hyperlink portability, let us assume that a
document A resides on a computer C1. A user has created a number of

7.3. Future Work 173

hyperlinks in document A by using our link service that is installed on
computer C1. Later, the user transferred their document A from com-
puter C1 to another computer C2. Unfortunately, even if the user has our
link service installed on his computer C2, document A will be transferred
without its hyperlinks. There are different ways how this issue can be
addressed. First of all, our link service can be used in a shared repository
where hyperlinks are stored in a shared database and are visible to all
users of the shared repository. However, as we discussed earlier in Sec-
tion 4.1, using our link service in a shared repository might trigger many
challenging issues such as privacy and the collaborative editing of hyper-
links that were out of the scope of this thesis. Another solution might
be to track documents that have to be transferred to other computers.
A user should then be given the flexibility to transfer a document along
with its metadata (i.e. hyperlinks) as well as other documents sharing
hyperlinks with the document to avoid the problem of broken hyper-
links. For example, when the user wants to transfer document A from
computer C1 to computer C2, the tracking component of computer C1
will extract the metadata from the link service and give the user the
possibility to transfer the document along with its metadata as well as
all documents sharing hyperlinks with document A. The tracking com-
ponent on the other computer (i.e. computer C2), should notify the link
service that is installed on the same machine about the new document
and its metadata.

We got encouraging feedback from most of the participants of the end-
user usability evaluation. Nevertheless, we believe that this evaluation
is not sufficient enough to evaluate the usefulness of our link service. In
order to get more accurate and precise results, the link service would
have to be evaluated in a long-term end-user evaluation where users use
the link service in their daily reading and writing activities over a long
time period. Users should keep daily diaries of their reading and writing
activities as well as their interaction with our link service.

7.3 Future Work

The work presented in this dissertation offers multiple opportunities for
future work. Some of these opportunities are related to the previously
discussed limitations. Other opportunities are improvements to our link
service or extensions to our work into other research domains. In the

174 Chapter 7. Conclusions and Future Work

following, we discuss some future work regarding the presented research.

We are planning to integrate more document formats in the link
browser and to support additional third-party document viewers such
as Adobe Acrobat Reader, Foxit Reader and Mozilla Firefox. Further-
more, we are planning to evaluate the ease of extending the link service
in a user study with third-party developers. Moreover, we would like to
investigate some mechanisms for enhancing the manageability and main-
tainability of the link service’s hyperlinks.

We are further interested in conducting a long-term end-user study
in order to evaluate the presented link service’s efficiency, effectiveness
and usefulness. We are planning to give a number of end users the op-
portunity to use the link service for a period of four months starting
from February 2017. End users will be asked to keep diary notes on their
interactions with the link service. A number of interviews would also be
planned during and at the end of the study.

Besides the aforementioned opportunities, the presented dynamically
extensible cross-document linking solution serves as a research platform
for investigating document and link management as well as maintain-
ability in so-called cross-media information spaces. Our solution might
inspire other link service providers to reconsider the dynamic extensibility
of their approaches. It further presents an ideal platform for investigat-
ing innovative forms of cross-document linking and transclusion using
the bidirectional RSL hyperlinks.

Appendices

175

A
Survey on

Cross-Document
Associations

177

178 Chapter A. Survey on Cross-Document Associations

8/1/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 1/15

Survey on Cross­Document Associations
This survey takes place in the context of research on an extensible and scalable authoring approach for open cross­media information spaces. The survey
investigates users behaviours in associating information across digital and physical documents. It should take about 10 to 15 minutes to answer the questions of this
survey.

We would like to thank you for your participation!

Ahmed A. O. Tayeh, PhD Candidate

Web Information System Engineering (WISE) Lab

Computer Science Department

Vrije Universiteit Brussel

For additional information, please feel free to contact Ahmed A. O. Tayeh (Ahmed.Tayeh@vub.ac.be)

There are 34 questions in this survey

General Information

[]What is your age? *

Please choose only one of the following:

 Younger than 18 years

 18­24 years old

 25­34 years old

 35­44 years old

 Older than 45 years

[]What is your gender? *

Please choose only one of the following:

 Female

 Male

[]What is your current country of residence? *

Please write your answer here:

179

8/1/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 2/15

[]What is the highest level of education that you have achieved? *

Please choose only one of the following:

 Secondary school

 High school or equivalent

 Bachelor’s degree

 Master’s degree

 Doctoral degree (PhD)

 Other

180 Chapter A. Survey on Cross-Document Associations

8/7/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 3/15

Associating Information in Physical Documents

The following questions investigate a user's behaviour in associating information inphysical documents (e.g. printed books or papers).
We differentiate between two scenarios; 1) associating information in a single physical document and 2) associating information in
different physical documents.

[]

Have you ever felt the need to make an association

between different parts of a physical
document

(e.g. between different paragraphs or
sections)?

*

Please choose only one of the following:

 Yes

 No

The association between different pieces of information can, for example, be indicated with a comment, a note or an arrow between the different parts as
shown in the figure on the right. The association should contain references to one or all the associated (parts of) documents.

[]How often do you feel the need to associate different parts of a physical document? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '5 [1]' (Have you ever felt the need to make an association between different parts of a physical document (e.g. between
different paragraphs or sections)?)

Please choose only one of the following:

 Very frequently

 Frequently

 Occasionally

 Rarely

 Very rarely

[]How do you create associations between the corresponding parts of a physical document? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '5 [1]' (Have you ever felt the need to make an association between different parts of a physical document (e.g. between
different paragraphs or sections)?)

Please choose all that apply:

 Sometimes, I highlight the different parts and write annotations next to each part, explicitly indicating the association between the different

parts.

 Sometimes, I highlight the different parts and write an annotation next to only one of the parts, explicitly indicating the association between

the different parts.

 Sometimes, I write annotations next to each part, explicitly indicating the association between the different parts.

 Sometimes, I write an annotation next to only one of the parts, explicitly indicating the association between the different parts.

Other:

An annotation should contain a reference to the other associated part.

181

8/7/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 4/15

[]Have you ever felt the need to make an association between different parts of different physical
documents (e.g. between paragraphs of different documents)? *

Please choose only one of the following:

 Yes

 No

The association between different pieces of information can, for example, be indicated with a comment or a note. The association should contain references
to one or all the associated (parts of) documents.

[]How often do you feel the need to associate parts of different physical documents (e.g. between
paragraphs of different documents)? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '8 [2]' (Have you ever felt the need to make an association between different parts of different physical documents (e.g. between
paragraphs of different documents)?)

Please choose only one of the following:

 Very frequently

 Frequently

 Occasionally

 Rarely

 Very rarely

[]How do you create associations between the corresponding parts of different physical documents? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '8 [2]' (Have you ever felt the need to make an association between different parts of different physical documents (e.g. between
paragraphs of different documents)?)

Please choose all that apply:

 Sometimes, I highlight the different parts and write annotations next to each part, explicitly indicating the association between the different

parts.

 Sometimes, I highlight the different parts and write an annotation next to only one of the parts, explicitly indicating the association between

the different parts.

 Sometimes, I write annotations next to each of the parts, explicitly indicating the association between the different parts.

 Sometimes, I write an annotation next to one of the parts, explicitly indicating the association between the different parts.

Other:

An annotation in a document should contain a reference to the other associated (part of) document.

182 Chapter A. Survey on Cross-Document Associations

8/1/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 5/15

Associating Information in Digital Documents
The following questions investigate a user's behaviour in associating information in digital documents. We differentiate between the three different
scenarios shown in Figure 1.

 .

Examples of associating information in digital documents are shown in Figure 2 (screenshot of a PDF document). 1 and 2 are examples of associating information in
"Scenario A: Single Document" . 3 is an example of associating information in "Scenario B: Same Document Type". 4 and5 are examples of associating information
in "Scenario C: Multiple Document Types".

[]Have you ever felt the need to associate information (e.g. different paragraphs, sections or arbitrary
parts) in the different scenarios? *

Please choose the appropriate response for each item:

 Yes No
Scenario A [Single
Document]
Scenario B [Same
Document Type]
Scenario C [Multiple
Document Types]

Help: The association between different pieces of information can, for example, be indicated with a comment or a note. The association should contain
references to one or all the associated (parts of) documents.

183

8/1/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 6/15

[]How often do you feel the need to associate information in the different scenarios? *

Please choose the appropriate response for each item:

 Very
frequently Frequently Occasionally Rarely Very rarely Never

Scenario A [Single Document]
Scenario B [Same Document
Type]
Scenario C [Multiple Document
Types]

[]In Scenario A [Single Document], how do you create associations between the corresponding parts of a
single document? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '11 [1]' (Have you ever felt the need to associate information (e.g. different paragraphs, sections or arbitrary parts) in the different
scenarios? (Scenario A [Single Document]))

Please choose only one of the following:

 I cannot create associations.

 I create associations by using some of the document viewer's annotation features (e.g. highlighting or notes) to explicitly associate different

parts of a digital document.

 I create associations in other ways.

[]In Scenario A [Single Document], I cannot create associations because

Only answer this question if the following conditions are met:
Answer was 'I cannot create associations.' at question '13 [71]' (In Scenario A [Single Document], how do you create associations between the corresponding
parts of a single document?)

Please write your answer here:

184 Chapter A. Survey on Cross-Document Associations

8/7/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 7/15

[]In Scenario A [Single Document], I create associations by using some of the document viewer's
annotation features (e.g. highlighting or notes) to explicitly associate different parts of a digital document

Only answer this question if the following conditions are met:
Answer was 'I create associations by using some of the document viewer's annotation features (e.g. highlighting or notes) to explicitly associate different parts
of a digital document. ' at question '13 [71]' (In Scenario A [Single Document], how do you create associations between the corresponding parts of a single
document?)

Please choose all that apply:

 Sometimes, I highlight the different parts and write annotations next to each of the parts, explicitly indicating the association between the

different parts.

 Sometimes, I highlight the different parts and write an annotation next to only one of the parts, explicitly indicating the association between

the different parts.

 Sometimes, I write annotations next to each of the parts, explicitly indicating the association between the different parts.

 Sometimes, I write an annotation next to one of the parts, explicitly indicating the association between the different parts.

Other:

An annotation should contain a reference to the other associated part.

[]In Scenario B [Same Document Type], how do you create associations between documents of the same
document type? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '11 [1]' (Have you ever felt the need to associate information (e.g. different paragraphs, sections or arbitrary parts) in the different
scenarios? (Scenario B [Same Document Type]))

Please choose all that apply:

 Sometimes, I store the documents in the same folder in order to reflect the existence of the association between them.

 Sometimes, I highlight the different parts and write annotations next to each of the parts, explicitly indicating the association between the

different parts.

 Sometimes, I highlight the different parts and write an annotation next to only one of the parts, explicitly indicating the association between

the different parts.

 Sometimes, I write annotations next to each of the parts, explicitly indicating the association between the different parts.

 Sometimes, I write an annotation next to one of the parts, explicitly indicating the association between the different parts.

 Sometimes, I create the association by using another mechanism.

Unfortunately, I cannot create the association between them. Please specify why?:

An annotation in a document should contain a reference to the other associated (part of) document.

[]In Scenario B [Same Document Type] , what mechanism do you use to create associations between
documents of the same document type?

Only answer this question if the following conditions are met:
Answer was at question '16 [81]' (In Scenario B [Same Document Type], how do you create associations between documents of the same document type?)

Please write your answer here:

185

8/7/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 8/15

[]In Scenario B [Same Document Type], I want to create associations between different documents of the
same document type because *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '11 [1]' (Have you ever felt the need to associate information (e.g. different paragraphs, sections or arbitrary parts) in the different
scenarios? (Scenario B [Same Document Type]))

Please choose all that apply:

 Sometimes, parts of these documents are related to each other and therefore should be associated with each other.

 Sometimes, parts of a document are related to an entire other document(s) and therefore should be associated with each other.

 Sometimes, the entire documents are related to each other and should be associated with each other.

Other:

You can choose multiple answers

[]In Scenario C [Multiple Document Types], how do you create associations between documents ofdifferent
document types? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '11 [1]' (Have you ever felt the need to associate information (e.g. different paragraphs, sections or arbitrary parts) in the different
scenarios? (Scenario C [Multiple Document Types]))

Please choose all that apply:

 Sometimes, I store the documents in the same folder in order to reflect the existence of the association between them.

 Sometimes, I highlight the different parts and write annotations next to each of the parts, explicitly indicating the association between the

different parts.

 Sometimes, I highlight the different parts and write an annotation next to only one of the parts, explicitly indicating the association between

the different parts.

 Sometimes, I write annotations next to each of the parts, explicitly indicating the association between the different parts.

 Sometimes, I write an annotation next to one of the parts, explicitly indicating the association between the different parts.

 Sometimes, I create the association by using another mechanism.

Unfortunately, I cannot create the association between them. Please specify why?:

An annotation in a document should contain a reference to the other associated (part of) document.

[]In Scenario C [Multiple Document Types], what mechanism do you use to create associations between
documents of different document types?

Only answer this question if the following conditions are met:
Answer was at question '19 [91]' (In Scenario C [Multiple Document Types], how do you create associations between documents of different document types?)

Please write your answer here:

186 Chapter A. Survey on Cross-Document Associations

8/1/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 9/15

[]In Scenario C [Multiple Document Types], I want to create associations between different documents of
different document types because *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '11 [1]' (Have you ever felt the need to associate information (e.g. different paragraphs, sections or arbitrary parts) in the different
scenarios? (Scenario C [Multiple Document Types]))

Please choose all that apply:

 Sometimes, parts of these documents are related to each other and therefore should be associated with each other.

 Sometimes, parts of a document are related to an entire other document(s) and therefore should be associated with each other.

 Sometimes, the entire documents are related to each other and should be associated with each other.

Other:

You can choose multiple answers

[]Are you satisfied with the way you create associations between different documents in the different
scenarios? *

Please choose the appropriate response for each item:

 Yes Uncertain No
Scenario A [Single Document]
Scenario B [Same Document Type]
Scenario C [Multiple Document Types]

[]For any of the scenarios, could you please mention some reasons why you are not satisfied with the way
you create associations?

Please write your answer here:

[]In any of the scenarios, do you see the need for a linking tool that easily supports the easy creation of
associations between different document parts as well as the easy navigation between these document
parts? *

Please choose only one of the following:

 Yes

 No

187

8/1/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 10/15

[]Do you have any suggestions for a suitable mechanism for creating associations in digital documents?

Please write your answer here:

188 Chapter A. Survey on Cross-Document Associations

8/7/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 11/15

Associating Information Across the Digital and Physical Space

[]Have you ever felt the need to associate parts of a physical document with parts of a digital document
(e.g. paragraph in a printed document with a paragraph in a digital document)? *

Please choose only one of the following:

 Yes

 No

The association should contain references to one or all the associated (parts of) documents.

[]How often do you feel the need to associate parts of physical documents with parts of digital documents?
*

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '26 [c]' (Have you ever felt the need to associate parts of a physical document with parts of a digital document (e.g. paragraph in
a printed document with a paragraph in a digital document)?)

Please choose only one of the following:

 Very frequently

 Frequently

 Occasionally

 Rarely

 Very rarely

[]How do you create associations between the corresponding parts of the physical document and the digital
document? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '26 [c]' (Have you ever felt the need to associate parts of a physical document with parts of a digital document (e.g. paragraph in
a printed document with a paragraph in a digital document)?)

Please choose all that apply:

 Sometimes, I highlight the different parts and write annotations next to each part, explicitly indicating the association between the different

parts.

 Sometimes, I highlight the different parts and write an annotation next to only one of the parts, explicitly indicating the association between

the different parts.

 Sometimes, I write annotations next to each of the parts, explicitly indicating the association between the different parts.

 Sometimes, I write an annotation next to one of the parts, explicitly indicating the association between the different parts.

Other:

An annotation in a document should contain a reference to the other associated (part of) document.

[]Are you satisfied with the way you create associations between physical and digital documents? *

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '26 [c]' (Have you ever felt the need to associate parts of a physical document with parts of a digital document (e.g. paragraph in
a printed document with a paragraph in a digital document)?)

Please choose only one of the following:

 Yes

 No

189

8/1/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 12/15

[]Do you have any suggestions for a mechanism to associate digital and physical documents?

Only answer this question if the following conditions are met:
Answer was 'No' at question '29 [c3]' (Are you satisfied with the way you create associations between physical and digital documents?)

Please write your answer here:

190 Chapter A. Survey on Cross-Document Associations

8/1/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 13/15

Examples of Associated Information
Attach some screenshots or photos of some examples of information association in your documents or send them later if you wish to Ahmed A. O. Tayeh
(Ahmed.Tayeh@vub.ac.be).
[](Optional) Attach a screenshot or a photo of an example of information association between two documents of
different types (e.g. between a PDF and a Word document or between a PDF and a web page)

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '11 [1]' (Have you ever felt the need to associate information (e.g. different paragraphs, sections or arbitrary parts) in the different
scenarios? (Scenario C [Multiple Document Types]))

Kindly attach the aforementioned documents along with the survey

[](Optional) Attach a screenshot or a photo of an example of information association between two documents of
the same type (e.g. between a PDF and another PDF or between a Word document and another Word document)

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '11 [1]' (Have you ever felt the need to associate information (e.g. different paragraphs, sections or arbitrary parts) in the different
scenarios? (Scenario B [Same Document Type]))

Kindly attach the aforementioned documents along with the survey

[](Optional) Attach a screenshot or a photo of an example of information association in a single document
(physical or digital)

Only answer this question if the following conditions are met:
Answer was 'Yes' at question '11 [1]' (Have you ever felt the need to associate information (e.g. different paragraphs, sections or arbitrary parts) in the different
scenarios? (Scenario A [Single Document]))

Kindly attach the aforementioned documents along with the survey

191

8/1/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 14/15

Participating in an Interview Later on

[]If you would not mind participating in an interview later on, please provide us your email address and
particiapte in a lottery for five 30 EUR Amazon vouchers (of course your email will not be given to any third
party).

Please write your answer here:

192 Chapter A. Survey on Cross-Document Associations

8/1/2016 LimeSurvey ­ Survey on Cross­Document Associations

https://www.vub.ac.be/surveys/index.php/admin/printablesurvey/sa/index/surveyid/452266 15/15

Thank you for completing our survey.

For additional information, please feel free to contact Ahmed A. O. Tayeh (Ahmed.Tayeh@vub.ac.be)

01­27­2016 – 16:20

Submit your survey.
Thank you for completing this survey.

B
Abstract

DefaultDocument Class
for Visual Plug-ins

1 package org.userinterface.localvisualplugins;
2
3 import java.awt.GridLayout;
4 import java.util.HashMap;
5 import java.util.HashSet;
6 import javax.swing.JPanel;
7 import org.rsl.core.Entity;
8 import org.rsl.core.Resource;
9 import org.rsl.userInterface.util.Anchor;

10
11
12 /∗∗
13 ∗ Abstract DefaultDocument class for visual plug−ins
14 ∗ @author Ahmed A. O. Tayeh, ahmed.tayeh@vub.ac.be
15 ∗/
16
17 public abstract class DefaultDocument extends JPanel{
18 static HashSet <DefaultDocumentListener> listeners;
19
20 public DefaultDocument (){
21 listeners = new HashSet <DefaultDocumentListener>();
22 this.setLayout(new GridLayout(0,1));
23 }
24
25 /∗∗

193

194 Chapter B. Abstract DefaultDocument Class for Visual Plug-ins

26 ∗ @return: Returns the visualised document
27 ∗/
28 public abstract Resource getResource();
29
30 /∗∗
31 ∗ @param resource: The document to be visualised
32 ∗/
33 public abstract void setResource(Resource resource);
34
35 /∗∗
36 ∗ Update a selector or a resource (document)
37 ∗ @param en: The entity to be updated
38 ∗/
39 public void updateEntity(Entity en){
40 this.fireUpdateEntity(new DefaultDocumentEvent(this), en);
41 }
42
43 /∗∗
44 ∗ Delete a selector or a resource
45 ∗ @param en: The entity to be deleted
46 ∗/
47 public void deleteEntity(Entity en){
48 this.fireDeleteEntity(new DefaultDocumentEvent(this), en);
49 }
50
51 /∗∗
52 ∗ Set the document’s anchors
53 ∗ @param anchors: The document’s anchors
54 ∗/
55 public abstract void setAnchors(HashSet <Anchor> anchors);
56
57 /∗∗
58 ∗ Get the document’s anchors
59 ∗/
60 public abstract HashSet <Anchor> getAnchors();
61
62 /∗∗
63 ∗ Highlight the document’s anchors
64 ∗/
65 public abstract void highlightAnchors();
66
67 /∗∗
68 ∗ Don’t highlight the document’s anchors
69 ∗/
70 public abstract void removeHighlights();
71
72 /∗∗
73 ∗ @param o: The document to be visualised
74 ∗ @param anchors: The document’s anchors
75 ∗ @param anchor: An anchor that should be visualised in a different colour than the other

anchors
76 ∗ @return true if the document is visualised properly otherwise return false
77 ∗/
78 public abstract boolean openDocument(Object o, HashSet <Anchor> anchors, Anchor

anchor);
79

195

80 /∗∗
81 ∗ The link browser calls this method informing the visual plug−in to update a document
82 ∗
83 ∗ @param resource: The document to be updated
84 ∗ @param anchors: The document’s anchors
85 ∗ @param operation: The operation (e.g creation of a new hyperlink or deleting a selector)

that requires the update
86 ∗ @param status: Is the operation was successful? If yes, then update the visualisation

otherwise you can neglect the command.
87 ∗ @return true if the document is updated properly otherwise return false
88 ∗/
89 public abstract boolean updateView(Resource resource, HashSet <Anchor> anchors, String

operation, boolean status);
90
91 /∗∗
92 ∗ @return: Return the entities (e.g. selectors or the entire document) that should be added to a

new hyperlink. The HashMap should contain every entity that will be added to the new
hyperlink as well as one of three predefined values SOURCE, TARGET or
UNIDENTIFIED. These values informs the link browser to list a given entity under the
hyperlink sources or targets.

93 ∗/
94 public abstract HashMap <Entity, String> getSelections();
95
96 /∗∗
97 ∗ This method should be called by a visual plug−in after loading (visualising) a document

properly.
98 ∗/
99 public void setLoaded(){

100 this.fireDocumentLoaded(new DefaultDocumentEvent(this));
101 }
102
103 /∗∗
104 ∗ A plug−in should call this method after a user closes a document.
105 ∗/
106 public void close(){
107 this.fireDocumentClosed(new DefaultDocumentEvent(this));
108 }
109
110 /∗∗
111 ∗ A visual plug−in should call this method when a user starts creating selectors.
112 ∗/
113 public void SetActiveSelection(){
114 this.fireActiveSelection(new DefaultDocumentEvent(this));
115 }
116
117 /∗∗
118 ∗ When a user navigates to a hyperlink source or target, this method has to be called by the

visual plug−in
119 ∗ @param targetEntity: The target entity to be visualised
120 ∗/
121 public void getEntityTarget(Entity targetEntity){
122 this.fireSelectionClicked(new DefaultDocumentEvent(this), targetEntity);
123 }
124
125 /∗∗
126 ∗ Add listeners (e.g. the link browser) to the visualised document

196 Chapter B. Abstract DefaultDocument Class for Visual Plug-ins

127 ∗ @param listener: The listener to be added
128 ∗/
129 public synchronized void addDefaultDocumentListener(DefaultDocumentListener listener){
130 if(listeners != null){
131 listeners.add(listener);
132 }
133 }
134
135 /∗∗
136 ∗ Informs listeners (e.g. the link browser) that a user wants to update an entity
137 ∗ @param e: The event
138 ∗ @param en: The entity to be updated
139 ∗/
140 protected synchronized void fireUpdateEntity(DefaultDocumentEvent e, Entity en){
141 e.setEntityToUpdate(en);
142 for(DefaultDocumentListener listener: listeners){
143 listener.updateRequested(e);
144 }
145 }
146
147 /∗∗
148 ∗ Informs listeners (e.g. the link browser) that a user wants to delete an entity
149 ∗ @param e: The event
150 ∗ @param en: The entity to be deleted
151 ∗/
152 protected synchronized void fireDeleteEntity(DefaultDocumentEvent e, Entity en){
153 e.setEntityToDelete(en);
154 for(DefaultDocumentListener listener: listeners){
155 listener.deleteRequested(e);
156 }
157 }
158
159 /∗∗
160 ∗ Informs listeners (e.g. the link browser) that a user closed a document
161 ∗ @param e: The event
162 ∗/
163 protected synchronized void fireDocumentClosed(DefaultDocumentEvent e){
164 for(DefaultDocumentListener listener: listeners){
165 listener.documentClosed(e);
166 }
167 }
168
169 /∗∗
170 ∗ Informs listeners (e.g. the link browser) that a document is loaded (visualised) properly
171 ∗ @param e: The event
172 ∗/
173 protected synchronized void fireDocumentLoaded(DefaultDocumentEvent e){
174 for(DefaultDocumentListener listener: listeners){
175 listener.documentIsLoaded(e);
176 }
177 }
178
179 /∗∗
180 ∗ Informs listeners (the link browser) that a user is creating a selector
181 ∗ @param e: The event
182 ∗/

197

183 protected synchronized void fireActiveSelection(DefaultDocumentEvent e){
184 for(DefaultDocumentListener listener: listeners){
185 listener.activeSelectionInProcess(e);
186 }
187 }
188
189 }

Listing B.1: The abstract DefaultDocument class for visual plug-ins

C
Gateway Interface

1 package org.userinterface.externalvisualplugins;
2
3 import java.util.HashMap;
4 import java.util.HashSet;
5 import org.rsl.core.Entity;
6 import org.rsl.core.Resource;
7 import org.rsl.core.Selector;
8 import org.rsl.userInterface.util.Anchor;
9 import org.json.∗;

10
11 /∗∗
12 ∗ Gateway interface
13 ∗ @author Ahmed Tayeh, ahmed.tayeh@vub.ac.be
14 ∗
15 ∗/
16
17 public interface Gateway {
18
19 /∗∗
20 ∗ launch the external third−party document viewer
21 ∗/
22 public abstract void launchApp();
23
24 /∗∗
25 ∗ This function should return the resource contained in any JSON message coming from the

corresponding add−in.
26 ∗ @param command: The JSON message received from the corresponding add−in
27 ∗ @return: The resource contained in a JSON message
28 ∗/
29 public abstract Resource getResource(JSONObject command);
30

199

200 Chapter C. Gateway Interface

31 /∗∗
32 ∗ When a corresponding add−in asks the link service about anchors for a given document that

is visualised in a third−party document viewer, the received JSON message will not
contain enough information about the document (resource). The JSON message contains
the URI of the opened document. This function should return the URI of the opened do
cument.

33 ∗ @param command: The JSON message received from the corresponding add−in
34 ∗ @return: The URI of a resource that is contained in a JSON message
35 ∗/
36 public abstract String getURIofOpenedResource(JSONObject command);
37
38 /∗∗
39 ∗ This function should return the resource id.
40 ∗ @param command: The JSON message received from the corresponding add−in
41 ∗ @return: The Id of a resource that is contained in a JSON message
42 ∗/
43 public abstract long getResourceId(JSONObject command);
44
45 /∗∗
46 ∗This function should form a JSON message (with a request value for opening a document) in

order to be sent to the corresponding add−in.
47 ∗ @param res: The resource (document) to be opened
48 ∗ @param anchors: The document’s anchors
49 ∗ @param entityToHighLight: An anchor to be highlighted with a different colour than the

other anchors
50 ∗ @return: The JSON message to be sent to the corresponding add−in via one of the

communication channels
51 ∗/
52 public abstract JSONObject openDocument (Resource res, HashSet <Anchor> anchors,

Anchor entityToHighLight);
53
54 /∗∗
55 ∗ When navigating a hyperlink in a document that is visualised in a third−party document

viewer, the JSON message contains the ID of the target. This function should return the
ID of the target in order to visualise it.

56 ∗ @param command: The JSON message received from the corresponding add−in
57 ∗ @return: The ID of the target document or selector
58 ∗/
59 public abstract long getTargetEntityID(JSONObject command);
60
61 /∗∗
62 ∗ Update the visualisation of a document after executing any request coming from the

corresponding add−in (e.g. deleting a selector or creating a selector).
63 ∗ @param res: The document to be updated
64 ∗ @param anchors: The document’s anchors
65 ∗ @param operation: The operation (e.g creation of a new hyperlink or deleting a selector)

that requires the update
66 ∗ @param status: Is the operation was successful? If yes, then update the visualisation

otherwise you can neglect the command.
67 ∗ @return: The JSON message to be sent to the corresponding add−in via one of the

communication channels
68 ∗/
69 public abstract JSONObject updateView(Resource res, HashSet <Anchor> anchors, String

operation, boolean status);
70
71 /∗∗

201

72 ∗Return the entities (e.g. selectors or the entire document) that should be added to a new
hyperlink. The HashMap should contain every entity that will be added to the new
hyperlink as well as one of three predefined values SOURCE, TARGET or
UNIDENTIFIED. These values informs the link browser to list a given entity under the
hyperlink sources or targets.

73 ∗ @param command: The JSON message received from the corresponding add−in
74 ∗ @return: a HashMap of entities and their roles in a hyperlink
75 ∗/
76 public abstract HashMap <Entity, String> deserialiseSelections(JSONObject command);
77
78 /∗∗
79 ∗ This function should return the id of the entity to be updated or deleted
80 ∗ @param command: The JSON message received from the corresponding add−in
81 ∗ @return: The ID of the entity to be updated to deleted
82 ∗/
83 public abstract long getIdOfEntityToUpdateOrDelete(JSONObject command);
84
85 /∗∗
86 ∗ This function should update an entity. When the previous function is called by the link

service, the link service will use the id in order to retrieve the entity. The entity will be
passed to this function along with the JSON command received from the corresponding
add−in. This function should use the JSON message to update the entity

87 ∗ @param command: The JSON message received from the corresponding add−in
88 ∗ @param en: The entity that has to be updated
89 ∗ @return true if the entity is updated properly otherwise return false
90 ∗/
91 public abstract boolean updateEntity(JSONObject command, Entity en);
92
93 }

Listing C.1: The Gateway interface for integrating document formats
that are visualised via their third-party document viewers

D
Link Service Evaluation

Questionnaire

203

204 Chapter D. Link Service Evaluation Questionnaire

The Link Service Evaluation Questionnaire

General Information:

What is your age?

What is your gender?

What is the highest level of education you have achieved?

What is your field of study?

Usability Evaluation

 (NA=not appropriate)

 1 2 3 4 5 6 7 NA

1. Overall, I am satisfied with how easy it is

to use this system

strongly

disagree
strongly

agree

2. It was simple to use this system strongly

disagree
strongly

agree

3. I can effectively complete my work using

this system

strongly

disagree
strongly

agree

4. I am able to complete my work quickly

using this system

strongly

disagree
strongly

agree

5. I am able to efficiently complete my work

using this system

strongly

disagree
strongly

agree

6. I feel comfortable using this system strongly

disagree
strongly

agree

7. It was easy to learn to use this system strongly

disagree
strongly

agree

8. I believe I became productive quickly

using this system

strongly

disagree
strongly

agree

9. The system gives error messages that

clearly tell me how to fix problems

strongly

disagree
strongly

agree

10. Whenever I make a mistake using the

system, I recover easily and quickly

strongly

disagree
strongly

agree

11. The information (such as labels, icons,

messages, and other documentation)

provided with this system is clear

strongly

disagree
strongly

agree

12. It is easy to find the information I needed strongly

disagree
strongly

agree

13. The information provided for the system is

easy to understand

strongly

disagree
strongly

agree

14. The information is effective in helping me

complete the tasks and scenarios

strongly

disagree
strongly

agree

15. The organization of information on the

system screens is clear

strongly

disagree
strongly

agree

16. The interface of this system is pleasant strongly

disagree
strongly

agree

205

17. I like using the interface of this system strongly

disagree
strongly

agree

18. This system has all the functions and

capabilities I expect it to have

strongly

disagree
strongly

agree

19. Overall, I am satisfied with this system strongly

disagree
strongly

agree

 1 2 3 4 5 6 7 NA

Bibliography

[1] Open eBook Publication Structure 1.2, August 2002.

[2] A. Adler, A. Gujar, B. L. Harrison, K. O’Hara, and A. Sellen. A
Diary Study of Work-Related Reading: Design Implications for Di-
gital Reading Devices. In Proceedings of CHI 1998, ACM SIGCHI
Conference on Human Factors in Computing Systems, Los Angeles,
USA, April 1998.

[3] Adobe Systems Incorporated. Adobe Portable Document Format
Reference, 6th Edition, Version 1.7, November 2006.

[4] M. Agosti, L. Benfante, and N. Orio. IPSA: A Digital Archive
of Herbals to Support Scientific Research. In Proceedings of
ICADL 2003, 16th International Conference on Asian Digital Lib-
raries, Kuala Lumpur, Malaysia, December 2003.

[5] M. Agosti and N. Ferro. Annotations: Enriching a Digital Library.
In Proceedings of ECDL 2003, 7th European Conference on Re-
search and Advanced Technology for Digital Libraries, Trondheim,
Norway, August 2003.

[6] M. Agosti and N. Ferro. A System Architecture as a Support to
a Flexible Annotation Service. In Proceedings of the 6th Thematic
Workshop of the EU Network of Excellence DELOS, Cagliari, Italy,
June 2004.

[7] M. Agosti and N. Ferro. An Information Service Architecture for
Annotations. In Proceedings of the 6th Thematic Workshop of the
EU Network of Excellence DELOS, Cagliari, Italy, June 2004.

[8] M. Agosti and N. Ferro. A Formal Model of Annotation of Digital
Content. ACM Transactions on Information Systems, 26(1):3:1–
3:57, 2007.

207

208 BIBLIOGRAPHY

[9] M. Agosti, N. Ferro, I. Fommoholz, and U. Thiel. Annotations in
Digital Libraries and Collaboraties: Facets, Model and Usage. In
Proceedings of ECDL 2004, 8th European Confernce on Research
and Advanced Technology for Digital Libraries, Bath, UK, Septem-
ber 2004.

[10] D. Allemang and J. Hendler. Semantic Web for the Working Onto-
logist: Effective Modelling in RDFS and OWL. Morgan Kaufmann,
2011.

[11] K. M. Anderson, R. N. Taylor, and E. J. Whitehead Jr. Chi-
mera: Hypermedia for Heterogeneous Software Development Envir-
onments. ACM Transactions on Information Systems, 18(3):211–
245, 2000.

[12] J. Andre, R. Furuta, and V. Quint. Structured Documents, chapter
By Way of an Introduction. Structured Documents: What and
Why?, pages 1–7. Cambridge University Press, 1989.

[13] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Za-
haria. A View of Cloud Computing. Communications of the ACM,
53(4):50–58, 2010.

[14] D. K. Barreau. Context as a Factor in Personal Information Man-
agement. Journal of the American Society for Information Science,
46(5):327–339, 1995.

[15] D. Batory, C. Johanson, B. Macdonald, and D. V. Heeder. Achiev-
ing Extensibility Through Product-Lines and Domain-Specific Lan-
guage: A Case Study. ACM Transactions on Software Engineering
and Methodology, 11(2):191–214, 2002.

[16] S. Björk. Hierarchical Flip Zooming: Enabling Parallel Exploration
of Hierarchical Visualizations. In Proceedings of AVI 2000, Working
Conference on Advanced Visual Interfaces, Palermo, Italy, May
2000.

[17] J.-L. Bloechle. Physical and Logical Structure Recognition of PDF
Documents. PhD thesis, University of Fribourg, Switzerland, 2010.

[18] R. Boardmann, R. Spence, and A. M. Sasse. Too Many Hierarchies?
The Daily Struggle for Control of the Workspace. In Proceedings

BIBLIOGRAPHY 209

of HCI 2003, 10th International Conference on Human-Computer
Interaction, Crete, Greece, June 2003.

[19] P. Bottoni, R. Civia, L. Orso, E. Panizzi, and R. Trinchese. Di-
gital Library Content Annotation with the MADCOW System. In
Proceedings of AVIVDiLib 2005, 7th International Workshop of the
EU Network of Excellence DELOS on Audio-Visual Content and
Information Visualisation in Digital Libraries, Cortona, Italy, May
2005.

[20] P. Bottoni, R. Civica, S. Levialdi, L. Orso, E. Panizzi, and
R. Trinchese. MADCOW: A Multimedia Digital Annotation Sys-
tem. In Proceedings of AVI 2004, Working Conference on Advanced
Visual Interfaces, Gallipoli, Italy, May 2004.

[21] N. O. Bouvin. Unifying Strategies for Web Augmentation. In
Proceedings of Hypertext 1999, 10th ACM Conference on Hypertext
and Hypermedia, Darmstadt, Germany, February 1999.

[22] P. D. Bra, G.-J. Houben, and H. Wu. AHAM: a Dexter-based
Reference Model for Adaptive Hypermedia. In Procceeding of Hy-
pertext 1999, 10th ACM Conference on Hypertext and Hypermedia,
Darmstadt, Germany, February 1999.

[23] P. J. Brown. Interactive Document. Software Practice & Experi-
ence, 16(3):292–299, 1986.

[24] A. J. B. Brush, D. Bargeron, J. Grudin, A. Borning, and A. Gupta.
Supporting Interaction Outside of Class: Anchored Discussion vs.
Discussion Boards. In Proceedings of CSCL 2002, 8th International
Conference on Computer Support for Collaborative, Boulder, USA,
June 2002.

[25] A. J. B. Brush, D. Bargeron, A. Gupta, and J. J. Cadiz. Robust
Annotation Positioning in Digital Documents. In Proceedings of
CHI 2001, ACM SIGCHI Conference on Human Factors in Com-
puting Systems, Seattle, USA, March 2001.

[26] V. Bush. As We May Think. Atlantic Monthly, 176(1):101–108,
1945.

[27] Y. Cai, X. L. Dong, A. Halevy, J. M. Liu, and J. Madhavan. Per-
sonal Information Management with SEMEX. In Proceedings of

210 BIBLIOGRAPHY

SIGMOD 2005, ACM SIGMOD International Conference on Man-
agement of Data, Baltimore, USA, June 2005.

[28] V. J. Caracelli and J. Greene. Crafting Mixed-Method Evaluation
Design. New Directions for Evaluation, 74(19):19–32, 1997.

[29] G. Cardone. An RSL-based Associative Filesystem. Master’s thesis,
Vrije Universiteit Brussel, Brussels, Belgium, 2010.

[30] S. Carmody, W. Gross, T. H. Nelson, D. Rice, and A. van Dam.
A Hypertext Editing System for the /360. In Proceedings of the
Second University of Illinois Confernce on Computer Graphics,
Urbana, USA, January 1969.

[31] L. Carr, D. D. Roure, W. Hall, and G. Hill. The Distributed Link
Service: A Tool for Publishers, Authors and Reader. In Proceedings
of WWW 1995, 4th International World Wide Web Conference,
Beijing, China, September 1995.

[32] R. Chatley, S. Eisenbach, J. Kramer, J. Magee, and S. Uchitel. Pre-
dictable Dynamic Plugin Systems. In Proceedings of FASE 2004,
7th International Conference on Fundamental Approaches to Soft-
ware Engineering, Barcelona, Spain, March 2004.

[33] R. Chatley, S. Eisenbach, and J. Magee. Modelling a Framework for
Plugin. In Proceedings of SAVCBS 2003, Workshop on Specification
and Verification of Component-Based Systems, Helsinki, Finland,
September 2003.

[34] N. Chen, F. Guimbretiere, and A. J. Sellen. Designing a Multi-
Slate Reading Environment to Support Active Reading Activities.
ACM Transactions on Computer-Human Interaction, 19(3):18:1–
18:35, 2012.

[35] N. Chen, F. Guimbretiere, and A. J. Sellen. Graduate Student
Use of a Multi-Slate Reading System. In Proceedings of CHI 2013,
ACM SIGCHI Conference on Human Factors in Computing Sys-
tems, Paris, France, April 2013.

[36] B. G. Christensen, F. A. Hansen, and N. O. Bouvin. Xspect:
Bridging Open Hypermedia and XLink. In Proceedings of
WWW 2003, 12th International World Wide Web Conference,
Budapest, Hungary, May 2003.

BIBLIOGRAPHY 211

[37] P. Ciancarini, F. Folli, D. Rossi, and F. Vitali. XLinkProxy: Ex-
ternal Linkbases with XLink. In Proceedings of DocEng 2002, ACM
Symposium on Document Engineering, McLean, USA, November
2002.

[38] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0.
[online: https://www.w3.org/TR/xpath], November 1999.

[39] A. Cockburn and B. Mckenzie. 3D or Not 3D? Evaluating the Effect
of the Third Dimension in a Document Management System. In
Proceedings of CHI 2001, ACM SIGCHI Conference on Human
Factors in Computing Systems, Seattle, USA, April 2001.

[40] A. Cockburn and B. Mckenzie. Evaluating the Effectiveness of
Spatial Memory in 2D and 3D Physical and Virtual Environments.
In Proceedings of CHI 2002, ACM SIGCHI Conference on Human
Factors in Computing Systems, Minneapolis, USA, April 2002.

[41] G. Conboy, M. Garrish, M. Gylling, W. McCoy, M. Makoto, and
D. Weck. EPUB 3 Overview, Recommended Specification. [on-
line: http://www.idpf.org/epub/301/spec/epub-overview.html],
June 2014.

[42] P. Constantopoulos, M. Doerr, M. Theodoridou, and M. Tzobana-
kis. On Information Organization in Annotation Systems. In Pro-
ceedings of the International Workshop on Intuitive Human Inter-
faces for Organizing and Accessing Intellectual Assest, Saarland,
Germany, March 2004.

[43] O. Cure and G. Blin. RDF Database Systems: Tripels Storage and
SPARGL Query Processing. Morgan Kaufmann, 2014.

[44] J. R. Davis and D. P. Huttenlocher. Shared Annotation for Co-
operative Learning. In Proceedings of CSCL 1995, 1st Interna-
tional Conference on Computer Support for Collaborative Learning,
Bloomington, USA, October 1995.

[45] S. DeRose, E. Maler, and R. Daniel Jr. XML Pointer Language
(XPointer) Version 1.0. [online: https://www.w3.org/TR/WD-
xptr], January 2001.

212 BIBLIOGRAPHY

[46] S. DeRose, E. Maler, and D. Orchard. XML Linking Language
(XLink) Version 1.0. [online: https://www.w3.org/TR/2000/PR-
xlink-20001220], June 2001.

[47] S. DeRose and A. van Dam. Document Structure and Markup
in the FRESS Hypertext System. Markup Languages, 1(1):7–32,
1999.

[48] P. Dourish, W. K. Edwards, A. Lamarca, J. Lamping, K. Petersen,
M. Salisbury, D. B. Terry, and J. Thornton. Extending Document
Management Systems with User-Specific Active Properties. ACM
Transactions on Information Systems, 18(2):140–170, 2000.

[49] M. J. Durst. Internationalized Resource Identifiers: From Specific-
ation to Testing. In Proceedings IUC19, 19th International Unicode
Conference, San Jose, USA, September 2001.

[50] ECMA. Standard ECMA-376: Office Open XML File Formats, 3rd
Edition, ECMA International, June 2011.

[51] D. C. Engelbart and W. K. English. A Reseach Center for Aug-
menting Human Intellect. In Proceedings of the AFIPS Joint Com-
puter Conferences, San Francisco, USA, December 1968.

[52] I. Fommoholz, U. Thiel, and T. Kamps. Annotation-based Doc-
ument Retreival with Four-Valued Probabilistic Datalog. In Pro-
ceedings of WIRD 2004, 1st Workshop on the Integration of In-
formation Retrieval and Databases, Sheffield, UK, July 2004.

[53] E. A. Fox, M. A. Goncalves, and R. Shen. Theoretical Founda-
tions for Digital Libraries: The 5S (Societes, Scenarios, Spaces,
Structures, Streams) Approach. Morgan & Claypoop, 2012.

[54] E. Freeman and D. Gelernter. Beyond the Desktop: Integrated Di-
gital Work Environments, chapter Beyond Lifestreams: The Inev-
itable Demise of the Desktop Metaphor, pages 19–48. MIT Press,
2007.

[55] I. Frommholz, H. Brocks, U. Thiel, E. Neuhold, L. Innone, G. Sem-
eraro, M. Berardi, and M. Ceci. Document-Centered Collabora-
tion for Scholars in the Humanities: The COLLATE System. In
Proceedings of ECDL 2003, 7th European Conference on Rsearch

BIBLIOGRAPHY 213

and Advanced Technology for Digital Libraries, Trondheim, Nor-
way, August 2003.

[56] R. Furuta. An Integrated, but not Exact-Representation, Editor/-
Formatter. PhD thesis, University of Washington, Department of
Computer Science, Seattle, USA, 1986.

[57] R. Furuta. Structured Documents, chapter Concepts and Models for
Structured Documents, pages 7–39. Cambridge University Press,
1989.

[58] C. F. Goldfarb. A Generalized Approach to Document Markup.
In Proceedings of the ACM SIGPLAN SIGOA Symposium on Text
Manipulation, Portland, Oregon, June 1981.

[59] C. F. Goldfarb. The SGML HandBook. Clarendon Press, 1990.

[60] C. F. Goldfarb and P. Paul. The XML Handbook. Prentice Hall
PTR, 1998.

[61] M. Golemati, A. Katifori, E. G. Giannopoulou, I. Daradimos, and
C. Vassilakis. Evaluating the Significance of the Windows Ex-
plorer Visualization in Personal Information Management Brows-
ing Tasks. In Proceedings of IV 2007, 11th International Confernece
on Information Visualisation, Zurich, Switzerland, July 2007.

[62] J. Greene, V. J. Caracelli, and W. F. Graham. Toward a Concep-
tual Framework Mixed-Method Evaluation Design. Educational
Evaluation and Policy Analysis, 11(3):255–274, 1989.

[63] M. Greiler, H.-G. Gross, and A. V. Deursen. Understanding Plug-
in Test Suites from an Extensibility Perspective. Technical report,
Delft University of Technology, 2010.

[64] K. Grønbæk, N. O. Bouvin, and L. Sloth. Designing Dexter-based
Hypermedia Services for the World Wide Web. In Proceedings of
the Hypertext 1997, 8th ACM Conference on Hypertext and Hyper-
media, Southampton, UK, April 1997.

[65] K. Grønbæk, J. A. Hem, O. L. Madsen, and L. Sloth. Cooperative
Hypermedia Systems: A Dexter-based Architecture. Communica-
tions of the ACM, 37(2):64–74, 1994.

214 BIBLIOGRAPHY

[66] K. Grønbæk, L. Sloth, and P. Ørbæk. Webvise: Browser and
Proxy Support for Open Hypermedia Structuring Mechanisms on
the World Wide Web. In Proceedings of WWW 1999, 8th Interna-
tional World Wide Web Conference, Toronto, Canada, May 1999.

[67] K. Grønbæk and R. H. Trigg. Design Issues for a Dexter-based
Hypermedia System. Communication of the ACM, 37(2):40–49,
1994.

[68] B. J. Haan, P. Kahn, V. A. Riley, J. H. Coombs, and N. K.
Meyrowitz. IRIS Hypermedia Services. Comunications of the ACM,
35(1):36–51, 1992.

[69] F. G. Halasz. Reflections on NoteCards: Seven Issues for the Next
Generation of Hypermedia Systems. Communications of the ACM,
31(7):836–852, 2001.

[70] F. G. Halasz, T. P. Moran, and R. H. Trigg. Notecards in a Nut-
shell. In Proceedings of CHI 1987, ACM SIGCHI Conference on
Human Factors in Computing Systems, Toronto, Canada, April
1987.

[71] F. G. Halasz, M. Schwartz, K. Grønbæk, and R. H. Trigg. The
Dexter Hypertext Reference Model. Communications of the ACM,
37(2):30–39, 1994.

[72] R. Hall, K. Pauls, S. McCulloch, and D. Savage. OSGi in Action.
Manning Publications, 2011.

[73] W. Hall, H. Davis, and G. Hutchings. Rethinking Hypermedia: The
Microcosm Approach. Kluwer Academic Publishers, 1996.

[74] H. Haller and A. Abecker. iMapping: A Zooming User Interface
Approach for Personal and Semantic Knowledge Management. In
Proceedings of Hypertext 2010, 21st ACM Conference on Hypertext
and Hypermedia, Toronto, Canada, June 2010.

[75] L. Hardman, D. C. A Bulterman, and G. van Rossum. The Amster-
dam Hypermedia Model: Adding Time and Context to the Dexter
Model. Communications of the ACM, 37(2):50–62, 1994.

[76] T. Heath and C. Bizer. Linked Data: Evolving the Web Into a
Global Data Space. Morgan and Claypool Publishers, 2011.

BIBLIOGRAPHY 215

[77] R. E. Herriott and W. A. Firestone. Multisite Qualitative Policy
Research: Optimizing Description and Generalizability. Educa-
tional Researcher, 12(2):14–19, 1983.

[78] A. D. Iorio, G. Montemari, and F. Vitali. Beyond Proxies: XLink
Support in the Browser. In Proceedings of ITA 2005, International
Conference on Internet Technologies and Applications, Wrexham,
UK, September 2005.

[79] T. Isakowitz, E. A. Stohr, and P. Balasubramanian. RMM: A
Methodology for Structured Hypermedia Design. Communications
of the ACM, 38(8):34–44, 1995.

[80] B. Johnson and B. Shneiderman. Tree-Maps: A Space-Filling Ap-
proach to the Visualization of Hierarchical Information Structures.
In Proceedings of VIS 1991, 2nd Conference on Visualization, San
Diego, USA, October 1991.

[81] W. Jones, A. J. Phuwanartnurak, R. Gill, and H. Bruce. Don’t Take
My Folders Away! Organizing Personal Information to Get Things
Done. In Proceeding of CHI 2005, ACM SIGCHI Conference on
Human Factors in Computing Systems, Portland, USA, April 2005.

[82] B. W. Kernighan, M. E. Lesk, and J. F. Ossanna. UNIX Time-
Sharing System: Document Preparation. The Bell System Tech-
nical Journal, 57(6):2115–2135, July 1978.

[83] M.-R. Koivunen. Semantic Authoring by Tagging with Annotea
Social Bookmarks and Topics. In Proceddings of SAAW 2006, 1st
Semantic Authoring and Annotation Workshop, Athens, Greece,
November 2006.

[84] H. Krottmaier and H. Maurer. Transclusions in the 21st Century.
Universal Computer Science, 7(12):1125–1136, 2001.

[85] J. Lamping, R. Rao, and P. Pirolli. A Focus+Context Technique
Based on Hyperbolic Geometry for Visualizing Large Hierarchies.
In Proceedings of CHI 1995, ACM SIGCHI Conference on Human
Factors in Computing Systems, Denver, USA, May 1995.

[86] L. Lamport. LATEX: A Document Preparation System , User’s
Guide and Reference Manual. Addison-Wesley, 2004.

216 BIBLIOGRAPHY

[87] A. N. Langville and C. D. Meyer. Google’s PageRank and Bey-
ond: The Science of Search Engine Rankings. Princeton University
Press, 2006.

[88] J. R. Lewis. IBM Computer Usability Satisfaction Questionnaires:
Psychometric Evaluation and Instructions for Use. International
Journal of Human-Computer Interaction, 7(1):57–78, 1995.

[89] A. Likas, N. Vlassis, and J. J. Verbeek. The Global K-means Clus-
tering Algorithm. Pattern Recognition, 36(2):451–461, 2003.

[90] T. W. Malone. How People Organize Their Desks? Implications
for the Design of Office Information Systems. ACM Transactions
on Office Information Systems, 1(1):99–112, 1983.

[91] E. B. Mandinach. The Development of Effective Evaluation Meth-
ods for E-Learning: A Concept Paper and Action Plan. The Teach-
ers College Record, 107(8):1814–1836, 2005.

[92] K. Marquardt. Patterns for Plug-Ins. In Proceedings of
EuroPloP 1999, 4th European Conference on Pattern Languages
of Programs, Irsee, Germany, July 1999.

[93] C. C. Marshall. Toward an Ecology of Hypertext Annotation. In
Proceedings of Hypertext 1998, 9th ACM Conference on Hypertext
and Hypermedia, Pittsburgh, USA, June 1998.

[94] D. Martin and H. Ashman. Goate: An Infrastructure for New Web
Linking. In Proceedings of the International Workshop on Open Hy-
permedia Systems at Hypertext 2002 Conference, Maryland, USA,
June 2002.

[95] H. Maurer. Hyper-Gnow Hyperwave: The Next Generation Web
Solution. Longman Group United Kingdom, 1996.

[96] H. Maurer. Hyperwave: The Next Generation Web Solution.
Addison-Wesley, 1996.

[97] J. Mayer, I. Melzer, and F. Schweiggert. Lightweight Plug-In-based
Application Development. In Proceedings of NODe 2002, Interna-
tional Conference NetObjectDays, Erfurt, Germany, October 2002.

[98] N. McKesson and A. Witwer. Publishing with iBook Author: An
Introduction to Creating Ebooks for the iPad. OREILLY, 2012.

BIBLIOGRAPHY 217

[99] A. McVeigh. A Rigorous, Architectural Approach to Extensible Ap-
plications. PhD thesis, Imperial College London, London, UK,
2009.

[100] D. E. Millard, L. H. N. Davis, and S. Reich. FOHM: A Fundamental
Open Hypertext Model for Investigating Interoperability Between
Hypert Domains. In Proceedings of Hypertext 2000, 11th ACM
Conference on Hypertext and Hypermedia, San Antonio, USA, May
2000.

[101] G. A. Miller. Wordnet: A Lexical Database for English. Commu-
nications of the ACM, 38(11):39–41, 1995.

[102] G. Mosweunyane, L. Carr, and N. Gibbins. Digital Information
and Communication Technology and Its Applications, chapter A
Tag-like, Linked Navigation Approach for Retrieval and Discovery
of Desktop Documents, pages 692–706. Springer, 2011.

[103] T. Nelson. Geeks Bearing Gifts: How the Computer World Got
This Way. Mindful Press, 2009.

[104] T. H. Nelson. Complex Information Processing: A File Structure
for the Complex, the Changing and the Indeterminate. In Proceed-
ings of ACM 1965, 20th ACM National Conference, Cleveland,
USA, August 1965.

[105] T. H. Nelson. Literary Machines. Mindful Press, 1982.

[106] T. H. Nelson. Xanalogical Structure, Needed Now More Than Ever:
Parallel Documents, Deep Links to Content, Deep Versioning, and
Deep Re-use. ACM Computing Surveys (CSUR), 31(4):1–32, 1999.

[107] M. C. Norrie, B. Signer, and N. Weibel. General Framework for the
Rapid Development of Interactive Paper Applications. In Proceed-
ings of CoPADD 2006, 1st International Workshop on Collaborat-
ing over Paper and Digital Documents, Banf, Canada, November
2006.

[108] H. Obendorf and H. Weinreich. Comparing Link Marker Visualiz-
ation Techniques: Changes in Reading Behaviour. In Proceedings
of WWW 2003, 12th International World Wide Web Conference,
Budapest, Hungary, May 2003.

218 BIBLIOGRAPHY

[109] K. O’Hara and A. Sellen. A Comparison of Reading Paper and On-
Line Documents. In Proceedings of CHI 1997, ACM SIGCHI Con-
ference on Human Factors in Computing Systems, Atlanta, USA,
March 1997.

[110] K. O’Hara, F. Smith, W. Newman, and A. Sellen. Student Readers’
Use of Library Documents: Implications for Library Technologies.
In Proceedings of CHI 1998, ACM SIGCHI Conference on Human
Factors in Computing Systems, Los Angeles, USA, April 1998.

[111] J. K. Ousterhout. Scripting: Higher-Level Programming for the
21st Century. Comupter, 31(3):23–30, 1998.

[112] A. Pearl. Sun’s Link Service: A Protocol for Open Linking. In
Proceedings of Hypertext 1989, 2nd ACM Conference on Hypertext
and Hypermedia, Pittsburgh, USA, November 1989.

[113] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee.
A Design Science Reseach Methodology for Information Systems
Research. Journal of Management Inforamtion systems, 24(3):45–
78, 2007.

[114] S. Pemberton, D. Austin, J. Axelsson, T. Celik, D. Dominiak,
H. Elenbaas, B. Epperson, M. Ishikawa, S. Matsui, S. McCarron,
A. Navarro, S. Peruvemba, R. Relyea, S. Schnitzenbaumer, and
P. Stark. XHTMLTM 1.0: The Extensible HyperText Markup Lan-
guage (Second Edition): A Reformulation of HTML 4 in XML 1.0.
[online: https://www.w3.org/TR/xhtml1], January 2000.

[115] B. K. Reid. Scribe: A Document Specification Language and Its
Compiler. PhD thesis, Carnegie-Mellon University Computer Sci-
ence Department, Pittsburgh, USA, 1980.

[116] G. Robertson, M. Czerwinski, K. Larson, D. C. Robbins, D. Thiel,
and M. Van Dantzich. Data Mountain: Using Spatial Memory for
Document Management. In Proceedings of UIST 1998, 11th Annual
ACM Symposium on User Interface Software and Technology, San
Francisco, USA, November 1998.

[117] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone Trees: An-
imated 3D Visualizations of Hierarchical Information. In Proceed-
ings of CHI 1991, ACM SIGCHI Conference on Human Factors in
Computing Systems, New Orleans, USA, April 1991.

BIBLIOGRAPHY 219

[118] G. Salton. Search Strategy and the Optimization of Retrieval Ef-
fectiveness. In Proceedings of the FID-IFIP Conference on Mech-
anized Information Storage, Retrieval and Dissemination, Amestr-
dam, Netherlands, June 1967.

[119] J. Saltzer. TYPSET and RUNOFF, Memor-
andum Editor and Type-Out Commands. [online:
http://web.mit.edu/saltzer/www/publications/ctss/CC-
244.html], February 2003.

[120] B. Signer. Fundamental Concepts for Interactive Paper and Cross-
Media Information Mangement. PhD thesis, ETH Zurich, Zurich,
Switzerland, 2005.

[121] B. Signer. Fundamental Concepts for Interactive Paper and Cross-
Media Information Spaces. Books on Demand GmbH, 2008.

[122] B. Signer. What is Wrong with Digital Documents? A Conceptual
Model for Structural Cross Content Composition and Resuse. In
Proceedings of ER 2010, 29th International Conference on Concep-
tual Modeling, Vancouver, Canada, November 2010.

[123] B. Signer and M. C. Norrie. A Framework for Cross-Media Inform-
ation Mangement. In Proceesings of EuroIMSA 2005, International
Conference on Internet and Multimedia Systems and Applications,
Grindelwald, Switzerland, February 2005.

[124] B. Signer and M. C. Norrie. As We May Link: A General
Metamodel for Hypermedia Systems. In Proceedings of ER 2007,
26th International Conference on Conceptual Modelling, Auckland,
New Zealand, November 2007.

[125] B. Signer and M. C. Norrie. An Architecture for Open Cross-
Media Annotation Services. In Proceedings of WISE 2009, 10th
International Conference on Web Information Systems Engineer-
ing, Poznan, Poland, October 2009.

[126] B. Signer and M. C. Norrie. A Model and Architecture for Open
Cross-Media Annotation and Link Services. Information Systems,
6(36):538–550, 2011.

[127] L. Sikos. Mastering Structured Data on the Semantic Web: From
HTML5 Microdata to Linked Open Data. Apress, October 2015.

220 BIBLIOGRAPHY

[128] P. Sorotokin, G. Conboy, B. Duga, J. Rivlin, D. Beaver,
K. Ballard, A. Fettes, and D. Weck. EPUB Canonical Frag-
ment Identifier (epubcfi) Specification, Recommended Specific-
ation. [online: http://www.idpf.org/epub/linking/cfi/epub-cfi-
20140628.html], October 2014.

[129] M. Sporny, S. McCarron, B. Adida, M. Birbeck, and S. Pem-
berton. HTML+RDFa 1.1: Support for RDFa in HTML4 and
HTML5. [online: https://www.w3.org/TR/2014/PER-html-rdfa-
20141216/], March 2014.

[130] J. Stasko and E. Zhang. Focus+Context Display and Navigation
Techniques for Enhancing Radial, Space-Filling Hierarchy Visu-
alizations. In Proceedings of InfoVis 2000, IEEE Symposium on
Information Visualization, Salt Lake, USA, October 2000.

[131] R. Strnǐsa, P. Sewell, and M. Parkinson. The Java Module
System: Core Design and Semantic Definition. In Proceed-
ings of OOPSLA 2007, 22rd ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and Applica-
tions, Amsterdam, Netherlands, October 2007.

[132] M. T. Support. Rich Text Format (RTF) Specification,version 1.6.
[online: http://latex2rtf.sourceforge.net/rtfspec.html], May 1999.

[133] A. A.O. Tayeh. A Metamodel and Prototype for Fluid Cross-Media
Document Formats. Master’s thesis, Vrije Universiteit Brussel,
Brussels, Belgium, 2012.

[134] A. A.O. Tayeh and B. Signer. Open Cross-Document Linking and
Browsing based on A Visual Plug-in Architecture. In Proceedings
of WISE 2014, 15th Web Information System Engineering Confer-
ence, Thessaloniki, Greece, October 2014.

[135] A. A.O. Tayeh and B. Signer. A Dynamically Extensible Open
Cross-Document Link Service. In Proceedings of WISE 2015, 16th
Web Information System Engineering Conference, Miami, USA,
November 2015.

[136] T. N. Tran. Enhanced Retrieval and Discovery of Desktop Doc-
uments. Master’s thesis, Vrije Universiteit Brussel, Brussels, Bel-
gium, 2015.

BIBLIOGRAPHY 221

[137] C. J. Van Rijsbergen. Information Retrieval. Butterworth-
Heinemann, 1979.

[138] N. Walsb. DocBook 5 The Definitive Guide. O’REILLY, 2010.

[139] R. Want and S. Clara. An Introduction to RFID Technology.
Pervsasive Computing, 5(1):25–33, 2006.

[140] R. Weir, M. Brauer, and P. Durusau. Open Document Format
for Office Applications (OpenDocument) Version 1.2. Technical re-
port, Organization for the Advancement of Structured Information
Standards (OASIS), March 2011.

[141] S. Whittaker, L. Terveen, and B. A. Nardi. Let’s Stop Pushing the
Envelope and Start Addressing it: A Reference Task Agenda for
HCI. Human Computer Interaction, 15(2):75–106, 2000.

[142] R. Wieringa. Design Science as Nested Problem Solving. In
Proceedings of DESRIST 2009, 4th International Conference on
Design Science Research in Information Systems and Technology,
Philadelphia, USA, May 2009.

[143] R. Wolfinger and J. Kepler. Plug-in Architecture and Design
Guidelines for Customizable Enterprise Applications. In Pro-
ceedings of OOPSLA 2008, 23rd ACM SIGPLAN Conference on
Object-Oriented Programming Systems Languages and Applica-
tions, Nashville, USA, October 2008.

[144] R. K. Yin. Case Study Research: Desing and Methods. Sage Pub-
lications, 2009.

