
Vrije Universiteit Brussel
Faculty of Sciences and Bioengineering Sciences

Department of Computer Science

eSPACE

Conceptual Foundations for End-User Authoring of
Cross-Device and Internet of Things Applications

PhD Candidate:
Audrey Sanctorum

Promoter:
Prof. Dr. Beat Signer

Dissertation presented in fulfilment of the
requirements for the degree of Doctor of Sciences

Jury:
Prof. Dr. Olga De Troyer Vrije Universiteit Brussel (Chair)
Prof. Dr. Johan Loeckx Vrije Universiteit Brussel (Secretary)
Prof. Dr. Beat Signer Vrije Universiteit Brussel (Promoter)
Prof. Dr. Bart Jansen Vrije Universiteit Brussel
Prof. Dr. Gaëlle Calvary Grenoble Institute of Technology
Prof. Dr. Jean Vanderdonckt Université catholique de Louvain

July 2020

ii

Abstract

Over the last few decades we have witnessed an increasing number of smart de-
vices, ranging from smartphones and tablets to wearable devices such as smartbands,
smartwatches and smart glasses. Despite the fact that people start using multiple
smart devices simultaneously and perform some of their tasks by navigating from one
device to another, it is still a challenge to support these kind of interactions between
devices. Interaction between devices is often limited to data synchronisation via the
cloud or restricted to dedicated applications only running on devices from the same
manufacturer. Therefore, various research has been carried out to explore different
solutions for facilitating cross-device interaction (XDI) and the distribution of data
or user interfaces (UIs) across multiple devices.

Next to smart devices, in recent years we observe the rise of Internet of Things (IoT)
solutions, allowing digital user interfaces to communicate with enhanced everyday
objects. These so-called IoT objects or things are equipped with some hardware
allowing them to communicate using different wireless protocols. Popular IoT devices
are smart light bulbs, thermostats as well as speakers. The plethora of new devices
lead to additional challenges including (but not limited to) interoperability, privacy
and security of IoT devices. Further, since most of these IoT devices come with
their own dedicated application, people end up with a fragmentation of control where
many different applications are necessary to manage their devices.

While existing research has mainly focused on either cross-device solutions or the In-
ternet of Things, the unification of these two closely related research domains is often
neglected, resulting in solutions designed only for smart devices and systems specif-
ically developed for IoT objects only. However, with the pool of smart technologies
that users have to deal with in the present day, they need solutions that can communi-
cate, manage, and control all these different types of devices and things. Additionally,
since the users’ needs are difficult to anticipate in advance due to their complex and
evolving nature (together with technological advances), developers cannot satisfy the
diverse and frequently changing user needs. Therefore, we see emerging end-user

iii

development solutions, which allow so-called end users without programming experi-
ence to tailor or create new software artefacts according to their specific needs.

In this dissertation, we aim to improve end users’ control over their smart environ-
ments that include smart devices as well as IoT devices, by developing a solution
that unifies the advantages of both the XDI and IoT research domains, and provides
the appropriate abstractions based on the users’ mental models of cross-device and
IoT interactions. Thereby, we enable end users to create and modify their own XD and
IoT applications based on their existing knowledge. The unification of XDI and IoT
further allows users to manage all their devices in a single place rather than having a
fragmented control over multiple applications, while the appropriate abstractions will
help them to more easily become familiar with our solution. In order to develop the
necessary conceptual foundations, we investigated related work on end-user develop-
ment in the domains of cross-device interaction and the Internet of Things. Based on
this detailed analysis we derived a number of requirements for the end-user authoring
of XD and IoT applications, which have been augmented with additional requirements
resulting from a number of use case scenarios involving XD and IoT interactions.

Since our goal is to allow end users to create their own applications and user interfaces,
we opted for a model-based approach to facilitate the UI development process. We
analysed existing model-based approaches, helping us to finalise our requirements,
and design a reference framework and conceptual model. Our eSPACE reference
framework structures the UI development process for user-defined applications while
the conceptual model introduces all the necessary components for this development
process. In order to get a better understanding of end users’ mental models when it
comes to cross-device and IoT interactions, we performed an elicitation study to ex-
plore which metaphors are most used by people to visualise these interactions. Based
on related work and our study, we then developed a set of design guidelines for the cre-
ation of cross-device and IoT end-user authoring solutions. Given the requirements,
our reference framework, the conceptual model and design guidelines, we finally came
up with the design of a cross-device and IoT end-user authoring solution that allows
end users to create and modify their XD and IoT applications and user interfaces.
The resulting eSPACE authoring tool fulfils most of the presented requirements, uses
the concepts introduced by our model, follows the UI development process of our
reference framework to construct user-defined applications and complies to all our
design guidelines.

iv

Acknowledgements
Thanks !

First and foremost, I would like to thank my promoter Prof. Dr. Beat Signer, for
supporting and guiding me during my PhD. Throughout this process you have given
me endless feedback and taught me valuable lessons that I will carry along the rest of
my academic career. I would also like to express my gratitude towards Prof. Dr. Olga
De Troyer without whom this research could not have been completed.

Next, I would like to thank all members of the jury, Prof. Dr. Olga De Troyer,
Prof. Dr. Johan Loeckx, Prof. Dr. Bart Jansen, Prof. Dr. Gaëlle Calvary and Prof. Dr.
Jean Vanderdonckt, for their efforts, input and validation. Their participation led to
fruitful discussions which positively contributed to the final version of this disserta-
tion. The research described in this dissertation has been funded by the Research
Foundation of Flanders (FWO), whom I also thank.

I further thank my colleagues and friends for helping me during my PhD; their coding
advice and brainstorming sessions were very valuable to me, thank you Reinout, Renny
and Jan. Moreover, I would also like to thank Jon and Suzanne for assisting me during
the elicitation study, as well as all participants who volunteered for my user studies.
During my PhD I had the opportunity to supervise six master thesis students, whom
I thank for having given me new perspectives on the topic.

Without some healthy distractions my PhD days would not have been the same,
therefore I want to thank all my friends. The list is too long to mention each one of
you, many thanks to all my friends from the AI lab, secretariat, IAESTE, Infogroep,
high school and friends I met during my studies at the university. Thank you all for
the game nights, the fun ladies at the movies events, the long talks, the drinking
sessions and the trips we shared together!

Last but not least, I would like to thank my family that has always been there for me.
I thank my parents, brother and grandfather for the moral support which gave me
the courage to go on. A special thanks to my mother for helping me with interview
transcripts and for bringing me food when needed. Next, I want to express my

gratitude towards my boyfriend, Jon, for keeping up with my mood swings, for the
dinners he prepared and for encouraging me during my PhD. Three years ago I got
the chance to adopt two wonderful cats, whom I thank for inspiring me when writing
the use case scenario and who gave me some necessary distractions. Finally, I would
like to acknowledge my grandmother for being with me in my heart and thoughts
throughout the years.

vi

Contents

1 Introduction 9
1.1 Research Questions . 13
1.2 Research Approach and Methodology 16
1.3 Contributions . 20
1.4 Publications . 22
1.5 Thesis Outline . 22

2 Background 25
2.1 History of User Interfaces and Their Users 26
2.2 End-User Development . 30

2.2.1 Cross-Device Interaction . 31
2.2.2 Authoring of Cross-Device Applications 34
2.2.3 Internet of Things . 39
2.2.4 Authoring of Internet of Things Applications 41
2.2.5 Discussion and Limitations 50
2.2.6 Resulting Requirements . 52

3 Use Case 57
3.1 Scenario . 58
3.2 Derived Requirements . 61

4 Reference Framework and Conceptual Model 65
4.1 Related Work . 66
4.2 The eSPACE Reference Framework 85
4.3 The eSPACE Conceptual Model . 90

4.3.1 The RSL Metamodel . 91
4.3.2 RSL Extensions . 92
4.3.3 Domain-specific Conceptual Model 95

4.4 Model Functionality and Discussion 99
4.5 Implementation . 106

1

Contents

5 User Study 113
5.1 Research Questions . 114
5.2 Setup . 115
5.3 Methodology . 115
5.4 Results . 118

5.4.1 Data Transfer and Synchronisation 118
5.4.2 Expressing State Changes . 119
5.4.3 Time-based Actions . 120
5.4.4 Multiple Instances of the Same Data 121
5.4.5 Conditional Statements . 122
5.4.6 Location . 123
5.4.7 Presence of Actors . 123
5.4.8 Actor’s Interactions . 123
5.4.9 Representation of Devices . 124
5.4.10 Use of Symbols and Keywords 124
5.4.11 Informative Interview . 124
5.4.12 Concluding Remarks . 127

5.5 Design Guidelines . 128
5.5.1 G1: Use Pipeline Metaphor to Represent Interactions 129
5.5.2 G2: Use Different Arrow Types for Different Interaction Types 129
5.5.3 G3: Provide a Realistic Graphical Device Representation . . . 129
5.5.4 G4: Provide a Graphical Representation of Users 130
5.5.5 G5: Represent Sequential Interactions from Left to Right and

Group Concurrent Interactions 130
5.5.6 G6: Provide Textual as well as Graphical Representations for

Conditional Statements . 130
5.5.7 G7: Support UI Design . 131
5.5.8 G8: Use of Symbols and Annotations 131

5.6 Checking Related Work Against Guidelines 131
5.6.1 Authoring of Cross-Device Applications 133
5.6.2 Authoring of Internet of Things Applications 135
5.6.3 Concluding Analysis . 142

5.7 Cross-device and IoT Knowledge Analysis 143

6 End-User Authoring Tool 147
6.1 eSPACE Authoring Tool . 148

6.1.1 Home View . 148
6.1.2 UI Design View . 150
6.1.3 Interaction View . 151
6.1.4 Rules View . 154

2

Contents

6.1.5 App View . 156
6.2 Architecture . 156
6.3 Implementation . 157

6.3.1 eSPACE Authoring Views . 157
6.3.2 RSL Link Server . 163
6.3.3 eSPACE User-defined Application 163

6.4 Design Discussion . 170
6.5 Discussion of the Functionality . 172

6.5.1 Limitations . 177
6.6 Use Case Demonstration . 178

7 Evaluation 185
7.1 Setup . 186
7.2 Participants . 186
7.3 Protocol . 186
7.4 Results . 188

7.4.1 Microsoft Reaction Cards . 188
7.4.2 Questionnaire . 190
7.4.3 Observations and Discussion 194

7.5 Summary . 197
7.6 Design Implications and Future Work 199

8 Conclusions and Future Work 205
8.1 Summary . 206
8.2 Discussion and Limitations . 211
8.3 Conclusion . 213
8.4 Future Work . 214

Appendix A Elicitation Study 217
A.1 Scenario . 217
A.2 Post-Survey Questionnaire . 224

Appendix B Evalutation of eSPACE 225
B.1 Tutorial Document . 225
B.2 Post-Survey Questionnaires . 230

B.2.1 Microsoft Reaction Cards . 230
B.2.2 Post-Study System Usability Questionnaire 230
B.2.3 Informative Questionnaire . 232

3

Contents

4

Acronyms

AC Active Component

API Application Programming Interface

AUI Abstract User Interface

BLE Bluetooth Low Energy

CLI Command-Line Interface

CRF Cameleon Reference Framework

CSS Cascading Style Sheets

CTT ConcurTaskTree

CUI Concrete User Interface

DComp Distributed Component

DeUI Distributable User Interface

DIY Do-It-Yourself

DS Design Science

DSL Domain-Specific Language

DSRM Design Science Research Methodology

DUI Distributed User Interface

ECA Event-Condition-Action

eSPACE end-user Smart PlACE

EUD End-User Development

FUI Final User Interface

5

Contents

GUI Graphical User Interface

HCI Human-Computer Interaction

HTML Hypertext Markup Language

IDE Integrated Development Environment

IFML Interaction Flow Modeling Language

IO Interaction Object

IoT Internet of Things

IS Information System

JPA Java Persistence API

LoRa Long Range Radio

MBD Model-Based Design

MB-IDE Model-Based Interface Development Environment

MBUID Model-Based User Interface Development

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Multi-Display Environment

MQTT Message Queuing Telemetry Transport

NUI Natural User Interface

OMG Object Management Group

ORM Object Role Model

OS Operating System

PC Personal Computer

PSSUQ Post-Study System Usability Questionnaire

PUI Physical User Interface

QoS Quality of Service

REST Representational State Transfer

RQ Research Question

6

Contents

RSL Resource-Selector-Link

SIGCHI Special Interest Group on Computer-Human Interaction

SVG Scalable Vector Graphics

UI User Interface

UIDL User Interface Description Language

UIe User Interface Element

UIML User Interface Markup Language

UsiXML USer Interface eXtended Markup Language

WoT Web of Things

WoX Web of Topics

WYSIWYG What You See Is What You Get

XD Cross-Device

XDI Cross-Device Interaction

7

Contents

8

Chapter 1

Introduction

Any sufficiently advanced technology is
indistinguishable from magic.

Arthur C. Clarke

The proliferation of devices, such as smartphones, tablets and smartwatches, has
changed the way we interact with the world around us. While nowadays at least 70%
of the total population own a smartphone, the device ecosystem continues to grow
with diverse and innovative Internet-connected devices. As a consequence, on average
people now use more connected devices than a few years ago. Belgians, for instance,
had on average 2.2 connected devices in 2013, compared to 2.9 in 2017, which is
a compound annual growth rate (CAGR) of 7.15% over 4 years1. In such a multi-
device world, people constantly have to juggle between multiple devices. A study by
Google [112] with 11 964 participants in 2016 showed that 57% of the U.S. users use
more than one type of device and that 21% are concurrent usages2. A larger study
even depicts that on average 21% of the people in 30 different EU countries use 5 or
more devices, as shown in Figure 1.1 [113]. Only 29% of this population do not use
more than one device.

In 2012, Google defined two categories of multi-device usage, including sequential
and simultaneous usage [111]. Figure 1.2 illustrates these two categories. 90% of
sequential usage is done to accomplish a task over time, where users move from
one device to another to accomplish a task. Online tasks are often initiated on a

1https://www.thinkwithgoogle.com/intl/en-gb/advertising-channels/mobile/consumer-
barometer-study-2017-year-mobile-majority/

2Concurrent usage is defined in this study as the use of the computer browser and another device within
the same hour at home.

9

https://www.thinkwithgoogle.com/intl/en-gb/advertising-channels/mobile/consumer-barometer-study-2017-year-mobile-majority/
https://www.thinkwithgoogle.com/intl/en-gb/advertising-channels/mobile/consumer-barometer-study-2017-year-mobile-majority/

Chapter 1. Introduction

15% 14%

19% 18%

14%

21%

0 1 2 3 4 5 or more
devices

Average Number of Devices per Person

Figure 1.1: Average number of devices per person in EU countries

smartphone but then finished on a computer. To move from one device to another,
people often rely on search (63%). Others directly navigate to the corresponding
website (52%) or send themselves the link to the website via email (49%). Next,
simultaneous usage is defined as using more than one device at the same time. There
are two categories of simultaneous usage. The first one is multitasking, where devices
are used for an unrelated activity, such as gaming on a phone while watching TV. The
second type is complementary usage, where devices are used for a related activity,
such as watching a movie on the TV and looking up an actor on the tablet. 78% of
simultaneous usage is dedicated to multitasking and the remaining 22% consists of
complementary usage.

(a) Sequential multi-device us-
age, finishing a task (related
activity)

(b) Simultaneous
multi-device usage, mul-
titasking (unrelated ac-
tivity)

(c) Simultaneous
multi-device usage,
complementary usage
(related activity)

Figure 1.2: Categories of multi-device usage

Similar multi-device behaviours have been identified in a study by Microsoft [139],
who distinguished four kinds of multi-device behaviours. The most popular behaviour
is content grazing where users use two or more screens to access unrelated content
at the same time, which corresponds to simultaneous multitasking. The second
most common behaviour is investigative spider-webbing where users use one device
to search information related to an activity performed with another device. This
corresponds to the simultaneous complementary usage identified by Google. The
third behaviour is the quantum journey, where people use multiple devices to finish
a task, which corresponds to sequential usage. The least common behaviour, still

10

performed by 39% of the users, is social spider-webbing, where users share content of
what they have achieved on other devices. For example, this includes the sharing of
the scores from a game console using their phones or tablets. Note that, this could
also still be seen as sequential usage.

Multi-device interaction, or cross-device interaction (XDI) as more commonly re-
ferred to in research has become a part of our daily life. Therefore, researchers
working in this domain try to facilitate cross-device interactions by providing new
kinds of XD gestures, frameworks and user interfaces to interact with data across
devices. The field of cross-device interaction has also led to research in distributed
user interfaces (DUIs), allowing user interface components to be distributed across
devices. A DUI is defined as follows by Elmqvist:

Definition 1.1 – Distributed User Interface

“A distributed user interface is a user interface whose components are dis-
tributed across one or more of the dimensions input, output, platform, space,
and time” [76].

The five dimensions mentioned in Definition 1.1 are discussed in the following. The
input dimension stands for managing input on one or more devices. The graphical
output can be tied to one device or display but it can also be distributed across multiple
devices. The interface can be executed on one or more computing platforms. Next,
the space dimension refers to the restriction of an interface to be in the same physical
(and geographic) space or distributed over remote interactive spaces. Finally, the time
dimension represents interface elements that execute simultaneously (synchronously)
or distributed in time (asynchronously).

Cross-device interaction and distributed user interfaces offer the functionality for
facilitating sequential and simultaneous multi-device usage, as both XDI and DUIs
reduce the complexity of interacting across devices. For example, one could use a
cross-device gesture for transferring content from one device to another in order to
seamlessly execute a sequential task, which is faster than sending the data via email
or transferring it by using a USB stick. Further, an interface could be distributed and
synchronised across multiple devices to perform a simultaneous task. An example of
such a task could be “booking a hotel” by showing a map with all the choices on a
TV while exploring each hotel’s details on the smartphone.

In addition to smart devices, an increasing number of smart objects or “things” started
to emerge, extending Internet connectivity beyond standard devices and giving ordi-
nary objects (with embedded technology) the ability to communicate and interact
over the Internet. The term Internet of Things (IoT) was coined by Kevin Ashton

11

Chapter 1. Introduction

in 1999 for describing a system where the “Internet is connected to the physical world
via ubiquitous sensors” [13]. Since then, IoT went a long way and is now present
in different sectors ranging from smart homes, energy management, elderly care and
healthcare to transportation and agriculture.

2014 20172015 2016 2018 2019 2020 2021 2022

2016 2022 CAGR30

25

20

15

10

 5

Connected devices (billions)

 0

Fixed phones 1.4 1.3 0%

Mobile phones 7.3 8.6 3%

PC/laptop/tablet 1.6 1.7 0%

Short-range IoT 5.2 16 20%

Wide-area IoT 0.4 2.1 30%

16
billion

29
billion

10%

Figure 1.3: Worldwide total of connected devices [46]

Nowadays more “things” are connected to the Internet than people and as can be seen
in Figure 1.3, the number of connected devices is still growing. The figure has been
taken from a mobility report (2016) with an IoT forecast by Ericsson [46], which di-
vided the IoT into short-range IoT and wide-area IoT. The short-range IoT category
includes all devices connected through Wi-Fi, Bluetooth, Zigbee and other typical
protocols with a range of up to 100 meters. The long-range IoT category con-
tains devices using cellular connections and unlicensed low-power technologies such
as LoRa.

A recent definition of the IoT has been provided by Guinard and Trifa [100]:

Definition 1.2 – Internet of Things

“The Internet of Things (IoT) is a system of physical objects that can be dis-
covered, monitored, controlled or interacted with by electronic devices which
communicate over various networking interfaces, and eventually can be con-
nected to the wider Internet” [100].

While the IoT presence is growing, coping with this large range of devices is chal-
lenging on many levels. There is still no consensus on the (network) architecture,
the scale and complexity are challenges as well and for end users there is the “baskets
of remotes” problem [90], since every object or set of objects has its own remote
controller, either physical or through an application on the user’s phone. In this
dissertation we mainly focus on this last problem for end users.

12

1.1. Research Questions

Considering the pool of smart devices and smart things that users have to deal with
today, there is a need for a solution to control, manage and cope with interaction
across these smart technologies. Such a solution should unify the interaction across
devices and things so that users can control their entire smart environment with one
solution rather than having the control fragmented across different applications. In
addition, since we live in a world where technology keeps evolving over the years, a
solution should also be flexible so that it can incorporate new technologies. Moreover,
beyond technological changes, the solution must face the complex and evolving nature
of the end users’ needs. However developers or researchers cannot anticipate all
user needs in advance, in particular if these change over time. In order to cope
with such needs, the concept of end-user development (EUD) emerged [163] and
Lieberman et al. [126] defined EUD as follows:

Definition 1.3 – End-User Development

“A set of methods, techniques, and tools that allow users of software systems,
who are acting as non-professional software developers, at some point to
create, modify or extend a software artefact” [126].

Many people work on tasks that rapidly vary on a yearly, monthly or even daily basis,
which results in software needs that are diverse, complex and frequently change.
While a developer cannot directly meet all these needs, an end user could respond
faster to their evolving requirements since they have more domain knowledge [165].
By applying EUD, end users can create and tailor their applications to their needs
more closely than any developer ever could.

In a nutshell, the intended solution we mentioned earlier should unify research arte-
facts from the fields of XDI, DUI and IoT in order to support and control all smart
technologies in a user’s smart environments, and apply a flexible, extensible EUD ap-
proach as a mean to support changing and evolving user needs and technologies.
Note that throughout this dissertation the term smart technologies will be used to
refer to both smart devices and smart things. indexsmart technologies

1.1 Research Questions
Over the years various new smart technologies have been introduced and research in
the domain of cross-device interaction, distributed user interfaces and the Internet
of Things has emerged to help developers, designers and end users to cope with the
broad spectrum of connected devices and things. Further, additional applications
have been brought to the market for end users to interact with these smart tech-
nologies. However, no solution provides control over all these smart technologies

13

Chapter 1. Introduction

in one place, which causes the fragmentation problem, forcing users to have differ-
ent configurations and applications—which also come with different interfaces—to
control their smart environments. Moreover, the proposed applications often provide
limited functionality and customisability to their users. Therefore, research on end-
user development aims to provide more power to end users as mentioned earlier in
this chapter. This research has led to end-user authoring tools for creating tailored
cross-device interaction and IoT applications. However, only few of these tools offer
the possibility to control all smart technologies. More importantly, they introduce
new techniques and abstractions to create user interfaces and applications with no
consensus on which guidelines to follow for the creation of these kinds of end-user
authoring tools.

The fragmentation, lack of uniformity and limited functionality problems as well as
the lack of consensus about appropriate guidelines for end-user authoring tools for
smart technologies can be formalised in the following problem statement:

Problem Statement As new smart technologies emerge in large numbers, it is not
only difficult for developers to keep up with these evolving technologies, but even
more for end users. This is caused by the end user’s lack of a flexible, unified and
extensible solution for controlling all smart technologies (in one place) that can cope
with their individual and evolving needs.

In this dissertation we propose the end-user development of cross-device and IoT user
interfaces to address the given problem statement. The user-defined XD and IoT user
interfaces would of course support interaction with all kinds of different smart tech-
nologies. By using the appropriate abstractions for hiding the technical details, end
users would be able to create and tailor such user interfaces without the need for any
programming skills. We therefore formulate our main research question for resolving
the problems stated above as follows:

Main Research Question How can we enable end users to have a better control over
their smart technologies by using appropriate abstractions to hide the complex tech-
nical details when creating and modifying unified cross-device and IoT user interfaces
specifically made to control these smart technologies?

In order to tackle this main research question, we defined four subquestions which will
contribute to the overall solution. In a first phase, we will investigate the requirements
of end-user authoring tools providing cross-device and IoT interaction functionality
by carrying out some background research in end-user development approaches for
cross-device and IoT solutions, leading to the following research question:

14

1.1. Research Questions

Research Question 1 (RQ1) What are the main requirements for the end-user au-
thoring of unified cross-device and IoT user interfaces?

This question will be answered by performing a thorough examination of related work
in cross-device and IoT end-user development research. As a result, a summary and
discussion about the existing solutions, their limitations and the different abstractions
or metaphors that are used in these solutions to hide technical details will be provided.
Based on this analysis, a number of requirements will be derived and further refined
with the help of a use case scenario for cross-device and IoT interactions.

In order to facilitate the development process of our XD and IoT EUD authoring
solution, we might explore a model-based approach. A model-based approach would
allow us to accurately define all important concepts of XD and IoT applications, which
could be reused and eventually extended by other developers. Therefore, we will also
examine related work on existing model-based solutions, which might lead to some
additional requirements and brings us to our next research question:

Research Question 2 (RQ2) What are the necessary concepts and methods to ad-
dress the requirements resulting from answering RQ1?

As discussed later, it is not easy to reuse, adapt and extend existing solutions to
support the requirements resulting from RQ1. Therefore, we will build on the knowl-
edge gained from our background research to present new conceptual foundations
supporting all identified requirements, which will lay the basis for the development of
EUD authoring solutions for cross-device and IoT applications.

The second to last phase of this dissertation focusses on the design of the frontend
of the authoring solution to answer the following question:

Research Question 3 (RQ3) Which metaphors or abstractions should be used on top
of our conceptual foundation to allow end users to visualise and create their unified
cross-device and IoT interactions?

In order to answer this question, in a first instance we conduct a user elicitation study
with as objective to find the most appropriate metaphors for IoT and cross-device
interaction fitting the mental models of users. Further, we will also analyse existing
guidelines for the creation of EUD authoring tools and look back at the different
metaphors used by the end-user authoring solutions investigated for RQ1. Based on
the background research and user study, we will define guidelines involving metaphors
for the creation of cross-device and IoT end-user authoring tools, leading to the last
part of this dissertation to address the following research question:

15

Chapter 1. Introduction

Research Question 4 (RQ4) How can we design a unified cross-device and
IoT EUD authoring tool given the requirements from RQ1, the conceptual foundations
from RQ2 and the guidelines including the appropriate metaphors found in RQ3?

The objective of this last part is to create a compliant proof-of-concept EUD author-
ing solution based on the artefacts resulting from addressing the previous research
questions. The functionality of the tool will be shown through the presentation of
different use case scenarios later in this dissertation. An initial user study will be per-
formed to get some insights on end users’ first thoughts about our proof-of-concept
authoring solution and to have a first indication about the user satisfaction of our
end-user authoring tool for the creation of XD and IoT applications.

1.2 Research Approach and Methodology
In this section we describe the research methodology that we persued in order to
answer the previously mentioned research questions. We decided to follow the Design
Science Research Methodology (DSRM) for information systems research that has
been defined by Peffers et al. [169]. The DSRM is widely used by design science
researchers to guide them when producing, presenting/structuring and evaluating
research outcomes. This methodology fits our described research, as we conduct
design science (DS) research in information systems (IS).

The result of design science research in information systems is an IT artefact created
to solve an important problem which can be either a theoretical artefact, such as con-
structs, models and methods applied in the development of IS, or a computer-based
artefact, such as instantiations in the form of software frameworks and prototype
systems [104]. In this dissertation, our research outcome will be in the form of some
theoretical artefacts such as our reference framework, conceptual model and design
guidelines, and a concrete artefact represented by a proof-of-concept prototype of a
unified XD and IoT end-user authoring tool.

The DSRM process model is based on prior design science research principles and
includes six activities. The first activity is the problem identification and motiva-
tion (1). The next activity involves the definition of the objectives of a solution (2).
The third one is the design and development (3) followed by the demonstration (4),
evaluation (5) and finally the communication (6). In the remainder of this section we
provide an overview how these different DSRM activities have been followed in our
dissertation.

16

1.2. Research Approach and Methodology

Activity 1: Problem Identification and Motivation

We identified the main problems in the previous section as a lack of a solution provid-
ing control over all smart technologies, leading to the fragmentation of control, since
users have to use various dedicated applications and UIs in order to control their smart
environments. In addition to the lack of a unified solution allowing cross-device as well
as IoT interactions, current applications are limited in terms of flexibility, customisa-
tion and extensibility, making them not suitable to cope with evolving technologies
and user needs.

In order to provide a solution to these problems, we investigated existing research
in the domains of end-user development for cross-device and Internet of Things so-
lutions, which aim at empowering end users to create and tailor their own XD or
IoT applications according to their needs. The analysis of XDI and IoT EUD ap-
proaches allowed us to identify the requirements for an EUD solution that provides
end users with a better control over their smart environments. A few additional
requirements were derived from a use case scenario that involves XD and IoT inter-
actions. We further opted for a model-based approach to simplify the development
process. Therefore, existing model-based research in our domains of interest has
been analysed as well, leading to some last requirements forming part of the answer
to RQ1. The final set of requirements and investigation of related work, have been
necessary to design a conceptual foundation for offering a flexible, customisable and
extensible basis for XD and IoT EUD authoring solutions. Lastly, we also identified a
problem at the visualisation layer, which is the lack of consensus and design guidelines
for the developers of such EUD authoring solutions regarding which abstractions or
metaphors to use for allowing end users to create and modify their XD and IoT ap-
plications. Therefore, in order to introduce design guidelines that are best suited for
representing XD and IoT interactions, we analysed the users’ mental models when
dealing with such interactions in an elicitation study.

Activity 2: Objective of the Solution

With the objectives presented below, we aim to solve the problem stated earlier on by
ultimately providing end users a usable solution that allows them to better manage
their smart technologies and make these smart devices and things interact with each
other more easily.

• Our first objective is the formulation of requirements for an end-user authoring
solution allowing the creation of cross-device and IoT applications. The re-
quirements should be derived from existing work as well as use case scenarios.
Note that this objective will pave the way towards our final objective.

17

Chapter 1. Introduction

• The requirements resulting from the previous objective should serve as base-
line for building a conceptual foundation that unifies and supports all of these
requirements by providing abstract common concepts, which are found in cross-
device and IoT authoring tools. In addition, this conceptual solution should be
flexible, reusable, extensible and therefore futureproof.

• An important objective once we have our conceptual solution is to find the right
abstractions in order to best make it available to end users. There is further
a need for design guidelines for the correct use of the abstractions and/or
metaphors in an end-user authoring environment.

• Finally, after having accomplished the previous objectives, a last objective is to
develop a flexible and extensible end-user authoring tool that supports a wide
variety of devices and enables cross-device and IoT interactions. Thereby, the
XD and IoT end-user authoring tool is going to be informed by the defined
requirements, conceptual foundations and design guidelines.

While we provided a summary of our objectives, they are further motivated and
detailed throughout this dissertation.

Activity 3: Design and Development

As a next step, we created several research artefacts in order to complete the objec-
tives stated in Activity 2. First, we introduced the eSPACE reference framework which
unifies the concepts present in cross-device and IoT user interfaces. The reference
framework decomposes the UI development process into four layers of abstractions to
facilitate the UI design process. Next, based on the concepts proposed in the refer-
ence framework, we present the eSPACE conceptual model, a domain-specific model
for customised cross-device and IoT user interfaces. Just as our reference frame-
work, the conceptual model provides reusability, extensibility and flexibility, mainly by
building on top of the RSL hypermedia metamodel [203]. Both, the framework and
model are described in Chapter 4. The model is stored using the RSL link server [185],
which has been extended to fully support our needs, as further explained in Chapter 4.
Finally, as discussed in the Activity 2, we bring the properties and functionality of the
reference framework and conceptual model to the visualisation layer, by developing
the eSPACE end-user authoring tool for the creation of cross-device and IoT appli-
cations. Note that this tool has been designed based on the design guidelines that
resulted from an elicitation study aiming to better understand an end user’s men-
tal model when dealing with XD and IoT interactions. The study can be found in
Chapter 5, while the tool’s design and implementation are detailed in Chapter 6.

18

1.2. Research Approach and Methodology

Activity 4: Demonstration

We demonstrate the utility and value of our different research artefacts in multiple
ways. For example, in order to illustrate the power of our conceptual model, we expose
its functionality via a number of show cases in Chapter 4. The same holds for the
reference framework, where the usefulness of each components is expressed through
examples taken from a use case scenario presented in Chapter 3. By comparing
the conceptual model with the requirements defined for our first objective to address
RQ1, we further illustrate how our model and framework support reusability, flexibility
and extensibility. Last but not least, we use the concepts introduced in our model and
framework to build the eSPACE authoring tool, which serves as final demonstration
of the potential of the introduced concepts.

Concerning the authoring tool, a detailed explanation of its design and functionality
is presented in Chapter 6. The tool is further demonstrated through some usage
scenarios and used by end users during an initial user study, as explained in the next
activity.

Activity 5: Evaluation

As required by the chosen DSRM, we evaluated our research artefacts using different
methods depending on the type of artefact. Note that, for some of the artefacts
the demonstration process also served as an evaluation of this artefact. In the case
of the eSPACE conceptual model, we compare the model’s functionality with the
requirements derived from our first objective and research question, and illustrate
how our model fully complies to these requirements. We further integrate this model
into the RSL-based link Server, which is later used as a running information system for
our eSPACE authoring tool. For the eSPACE reference framework, we validated the
modelled approach by implementing the authoring tool using the concepts introduced
in the model together with the UI development process proposed by the framework.
More precisely, user-defined applications developed with the authoring tool are built
and decomposed based on the different layers defined in the reference framework. In
doing so, we evaluate the validity of our model and framework.

Finally, in order to evaluate our design guidelines that resulted from the XD and
IoT elicitation study presented in Chapter 5, we designed the eSPACE authoring tool
according to those guidelines and based on our requirements. The tool has later
been evaluated by end users in the form of an initial user study in order to gain more
insights about limitations and potential future improvements of the tool based on the
participants’ feedback.

19

Chapter 1. Introduction

Activity 6: Communication

The last activity included in the DSRM is the communication activity, which consists
of the presentation of this research project and resulting artefacts to the research
community. During the course of this PhD, parts of the contributions listed earlier
have been published at international peer-reviewed conferences and journals. A full
list of these publications can be found in Section 1.4. By presenting our work at those
conferences, we gained more insights about our research domain and got feedback
about our ideas and future plans, which also served as input for this final dissertation.
Note that, we also presented our work during the EICS conference workshop on cross-
device user interfaces (XDUI) in 2016, in order to gain more visibility and meet leading
as well as upcoming researchers in the domain of XDI. Part of the presented work is
available in the form of a website that classifies XDI-related work based on multiple
criteria1. Further, we supervised multiple Master’s thesis students in the domain of
XDI, IoT interaction and end-user development and they provided ideas, different
visions and information about the current state of related work in these domains.
Finally, our research contributions and artefacts are also presented throughout this
dissertation.

1.3 Contributions
We briefly summarise this dissertation’s main contributions in Figure 1.4 and describe
them in the following:

• We present a set of requirements for a unified XD and IoT end-user author-
ing tool providing end users more control over their smart technologies. The
requirements resulted from an investigation of related work in the domain of
end-user development of XD and IoT applications as well as related work in
model-based solutions in the XDI and IoT fields. Related work for the EUD of
XD and IoT applications can be found in Chapter 2, while related work of model-
based solutions is described in Chapter 4. The requirements derived from our
analysis of related work were further refined by exploring a use case scenario
involving cross-device and IoT interactions, which is presented in Chapter 3.

• A next contribution is the eSPACE reference framework, facilitating the cre-
ation of user interfaces by structuring the UI development process into multiple
layers of abstraction. The work on this framework has been inspired by related
work on model-based solutions as further outlined in Chapter 4. Note that,
this contribution is represented as one of our methodological contributions in
Figure 1.4.

1https://dui.wise.vub.ac.be/classification

20

https://dui.wise.vub.ac.be/classification

1.3. Contributions

EUD Authoring of
XDI and IoT Interfaces

Model-based Design of
User-defined XDI and IoT Applications

Supportive Software
Case Studies and Explorative Evaluation

- Comparative analysis of End-User Development in the fields
of Cross-Device Interaction and the Internet of Things
 Analysis grid of metaphors
 Limitations of existing solutions
 Requirements for unified XDI and IoT EUD authoring

- eSPACE Conceptual model

- Structured method for MBD
 eSPACE reference framework

- Design guidelines for unified XDI and IoT
EUD authoring

- eSPACE end-user
authoring tool

- Use Cases
- Preliminary evaluation

Figure 1.4: Summary of contributions

• We materialised the concepts introduced in the reference framework by pro-
viding a conceptual model based on the RSL hypermedia metamodel. Our
domain-specific model allows the modelling of cross-device IoT applications and
provides reusabilty, flexibility and extensibility of its components. The model is
designed to satisfy all requirements stated earlier.

• While the model serves for the information storage on the RSL-based link server
by providing support on the data level, we also introduced design guidelines for
supporting the visualisation level. Based on an elicitation study, we analysed
the mental models of people when referring to interaction across devices and
IoT appliances, which resulted in a set of design guidelines that are presented in
Chapter 5. Note that these guidelines are also based on related work in similar
research domains.

• We designed and developed a proof-of-concept XD and IoT end-user authoring
tool, called eSPACE, to demonstrate the potential of our reference framework,
conceptual model and design guidelines. Even though the tool only represents
an initial prototype, it already fulfils a good number of requirements that resulted
from RQ1 and can easily be extended to support the remaining requirements.
A full description of the eSPACE authoring tool is presented in Chapter 6.

21

Chapter 1. Introduction

1.4 Publications
Some of the contributions of this dissertation have been validated through different
international peer-reviewed conferences and journal papers over the course of the last
four years.

Related Publications

The list of publications related to this dissertation consists of the following articles.

• A. Sanctorum and B. Signer, June 2016. “Towards User-Defined Cross-Device
Interaction”. Proceedings of DUI 2016, Workshop on Distributed User Inter-
faces, pages 179–187, Lugano, Switzerland. https://doi.org/10.1007/978-3-
319-46963-8_17.

• A. Sanctorum and B. Signer, May 2019. “A Unifying Reference Framework and
Model for Adaptive Distributed Hybrid User Interfaces”. Proceedings of RCIS
2019, International Conference on Research Challenges in Information Science,
pages 1–6, Brussels, Belgium. https://doi.org/10.1109/RCIS.2019.8877048.

• A. Sanctorum and B. Signer, 2019. “Towards End-User Development of
Distributed User Interfaces”. Universal Access in the Information Society,
18(4):785–799, 2019. https://doi.org/10.1007/s10209-017-0601-5.

• A. Sanctorum, S. Kieffer and B. Signer, October 2020. “User-driven Design
Guidelines for the Authoring of Cross-Device and Internet of Things Applica-
tions”. Proceedings of NordiCHI 2020, Nordic Conference on Human-Computer
Interaction, Tallinn, Estonia. (accepted for publication)

Unrelated Publications

We would also like to briefly mention the following unrelated publication, as this
dissertation is presented in pursuit of a doctoral degree.

• S. Trullemans, A. Sanctorum and B. Signer, June 2016. “PimVis: Exploring
and Re-finding Documents in Cross-Media Information Spaces”. Proceedings
of AVI 2016, International Working Conference on Advanced Visual Interfaces,
pages 176–183, Bari, Italy. https://doi.org/10.1145/2909132.2909261.

1.5 Thesis Outline
This dissertation comprises eight chapters which together provide answers to all of our
research questions. A compact representation of the dissertation’s outline is shown

22

https://doi.org/10.1007/978-3-319-46963-8_17
https://doi.org/10.1007/978-3-319-46963-8_17
https://doi.org/10.1109/RCIS.2019.8877048
https://doi.org/10.1007/s10209-017-0601-5
https://doi.org/10.1145/2909132.2909261

1.5. Thesis Outline

using a flow chart in Figure 1.5. The current chapter has introduced the general
concepts, research questions and contributions. In Chapter 2 we present related work
in the domain of end-user development in the context of XDI and IoT research. Based
on this related work we derive a number of requirements to answer our first research
question. We further present a use case scenario in Chapter 3, from which additional
requirements originated. After that, we investigate model-based approaches in the
XDI and IoT research domains that allowed us to finalise the requirements for RQ1.
The investigation of model-based approaches and the defined requirements led to the
design of a reference framework and conceptual model for cross-device and IoT user
interfaces, which are discussed in Chapter 4. The reference framework and conceptual
model provide a way to answer our second research question.

Chapter 8Chapter 6

Chapter 5

Chapter 5

Chapter 2

Chapter 2, 3 and 4

Chapter 4

Chapter 4

Chapter 4

Requirements

Related Work

Related Work

Elicitation
Study

Design
Guidelines

eSPACE
Authoring Tool

Conceptual
Model

Reference
Framework RSL-based

link Server
Chapter 3

Use Case
Scenario

Chapter 7

eSPACE
Evaluation

Future Work

Conclusions

Figure 1.5: Thesis outline

In a next step, we present our end-user elicitation study in Chapter 5, to better
understand user’s mental models when referring to cross-device and IoT interac-
tions, allowing us to answer RQ3. Based on the participants’ vision, we infer design
guidelines for a potential end-user authoring solution for the development of XD and
IoT applications. While our model is validated by its integration with the RSL-based
link Server serving as backend of the authoring solution, we adopt the development
process described by our reference framework to construct user-defined applications
in our authoring tool. In addition, the development of the end-user authoring tool
takes the design guidelines from our user study into account as well. The tool’s design
and functionality is illustrated in Chapter 6. Our eSPACE authoring tool is further
evaluated with an initial user study to complete our answer to the last research ques-
tion, this evaluation is described in Chapter 7. Last but not least, Chapter 8 provides
a summary of our work, some conclusions as well as potential future directions based
on our research.

23

Chapter 1. Introduction

24

Chapter 2

Background

We live in a time full of opportunity for
imaginative individuals. In our lifetime, we will

witness the emergence of more and varied
forms of human-computer interaction than

ever before.

Learning and Thinking with Things
by O’Reilly Media

In this chapter we introduce the evolution of user interfaces (UIs) as well as the
concept of end-user development in general and in the context of cross-device and
Internet of Things interactions. We start with a brief overview of the history, which
will highlight how user interfaces and technology as well as their users, evolved over
time. Next we introduce and review the importance of end-user development and
its role in our society, and more specifically in the context of cross-device and IoT
systems. Last but not least, in order to answer our first research question we conclude
with a discussion about the derived requirements for an authoring tool for end-user
development of XD and IoT applications based on our analysis of related work.

25

Chapter 2. Background

2.1 History of User Interfaces and Their Users
User interfaces have been around for decades and have evolved together with tech-
nology and people. Before delving into the history of user interfaces, let us first define
what a user interface is1:

Definition 2.1 – User Interface

A user interface is the means by which a person can interact with a software
application or a hardware device.

User interfaces have not always been as we know them today and the way we in-
teract with computer systems has evolved over the years. We start our history of
user interfaces when digital electronic computers first appeared in the 1950s [141].
The history of this evolution can be broken into three main eras: batch interfaces
(1945–1968), command-line user interfaces (1969–1983) and graphical user inter-
faces (1984–present) [180], as shown in Figure 2.1.

Batch Interfaces (1945 – 1968)
Command-line User Interfaces

(1969 – 1983)
Graphical User Interfaces (1984 – Present)

IBM 029 Card Punch
1964

Apple Lisa 1
1983

iPhone 1
2007

Smart Devices & Things
Present

IBM 5150 Personal Computer
1981

Figure 2.1: Milestones in the history of user interfaces

The first user interface appeared in the mid 20th century with the first batch ma-
chines, where users had to input a program through a punch-card system. The data
was encoded on paper cards in the form of holes and then fed to the machine, which
mechanically read each card in order. This process could take hours or days before
finishing. With the rise of command-line interfaces (CLIs), the latency was taken from
days or hours to seconds, because the user interface was a series of request-response
transactions, expressed as textual commands in a specialised vocabulary [180]. As
result of the lower latency, users could change their mind about later stages of a trans-
action depending on near real-time feedback from earlier transactions. Software could
be interactive as never possible before. In the mid-1970s, the widespread adoption
of video-display terminals has cut the latency even further by showing the characters
on a screen instead of paper. However, these interfaces, just as for batch machines,
required significant training from users in order to learn to master them. Therefore,
1https://techterms.com/definition/user_interface

26

https://techterms.com/definition/user_interface

2.1. History of User Interfaces and Their Users

users of these computer systems were still engineers and programmers. At that time,
computers were expensive too and thus not affordable for households. This started to
change in the late 1970s and early 80s, when computers became smaller and cheaper.
In 1981, the first IBM 5150 personal computer (PC) has been introduced targeting
homes and small business use. Note that such computers had already been in use
since 1973, the year when the Xerox Alto has been developed. The Xerox Alto was
the first computer designed to support an operating system based on a graphical user
interface. It featured a bitmap display and a mouse. It was not meant for public use
but inspired the development of future generations of personal computers [180].

By popularising the IBM PC to the public, “a new phenomenon occurred: non-experts
began using computers” [141]. This group of “end users” did not want to spend time
understanding complex user interfaces and software, but were expecting to use com-
puters as a tool to assist them in their daily life, similar to a phone or car. Therefore,
manufacturers started to consider “user-friendly” user interfaces, making them more
easy to use. Research addressing this problem started to emerge, leading to a Special
Interest Group on Computer-Human Interaction (SIGCHI) with the goal to promote
the use of human factors in the human-computer interaction (HCI) process [30]. HCI
has been defined as follows:

Definition 2.2 – Human-Computer Interaction

“A discipline concerned with the design, evaluation, and implementation of
interactive computing systems for human use and with the study of major
phenomena surrounding them” [105].

Research was shifting focus from helping programmers-as-users towards helping pro-
grammers develop better interfaces for non-programming end users [98]. Even though
the original IBM PC only had a single monochrome text mode with graphics capability
available as an extra-cost option and no mouse, these PCs were widely “cloned”, which
led to the creation of a broad ecosystem of software, peripherals, and other products
that could be used with the platform. This resulted in the introduction of systems
incorporating technologies that are still present in today’s personal computer, such
as the Apple Lisa Office System 1 in 1983, which was the second commercial per-
sonal computer with a graphical user interface (GUI) inspired by the Xerox Star 8010
Information System. While both computers were not a commercial success, a year
later the Macintosh became the first successful mouse-driven computer with a graph-
ical user interface. These PCs provided a combination of GUI and command-line
interfaces. In contrast to CLIs, which were purely textual, graphical user interfaces
also includes images (e.g. icons, windows, scrollbars and sliders), the main thing that
was still missing was colour. These first graphical user interfaces were based on the

27

Chapter 2. Background

desktop metaphor to allow users to interact more easily with the computer [180].
The desktop metaphor treats the computer screen as a “desktop” that contains doc-
uments, folders of documents and pictures that can be opened, moved around and
otherwise manipulated. Over the next 10 years, GUIs have begun to incorporate
features such as colour, better screen resolution and increased processing power, but
their design has remained relatively consistent. The involvement of the user, however,
still evolved over time, being more and more included into the development process
by modelling the user’s goals and requirements. This user-centred design takes end
users into account from the very beginning of the development process in order to
create systems that satisfy the user needs and expectations. As the individual users
change, the set of requirements vary and evolve. Therefore, already in the 1990s,
work has been done in making systems more flexible not only in the design phase
but also during usage. This increased the user’s efficiency and gave them greater
freedom [161]. One way to obtain flexibility was by making it possible to change
the system characteristics and tailor the system according to their personal tasks and
needs. In such adaptable systems the interface presentation, naming and dynamics
can, for example, be changed through special menus or macro mechanisms. Another
way of making systems more flexible was by making them adaptive, such systems are
able to change their own characteristics automatically depending on the user’s needs.

The fact that people were having their own machines made it possible to tailor the
machine’s software settings without impacting the computing environment of other
users [37]. In addition, as a result of better hardware, graphics cards and usability ad-
vances in GUIs, users had the possibility to explore novel programming tools designed
to meet their needs. Spreadsheet systems, such as Excel, were the first end-user
development (EUD) programming environments where users could create first-order
functional programs using formulas [173]. The widespread use of personal software
systems and the evolution of the World Wide Web into the so-called Web 2.0, deter-
mine new roles for users, evolving from information consumers into information pro-
ducers [58]. The Web supports diverse “programming” activities, going from simple
parameter customisation to variation and assembly of components, creating simula-
tions, blog posts and games. This opened up diverse and powerful opportunities for
end users, who are now willing to modify or create software artefacts. Over time,
research about end-user development emerged which tried to find a balance between
the application complexity and learning effort [81]. For this purpose, graphical design
languages and design patterns were created and refined [163]. Intuitive metaphors
were introduced, such as the jigsaw puzzle or pipeline metaphor for linking basic pro-
gramming elements together, hereby representing the data flow of a program [163].

While people were getting familiar with their personal computers, these PCs were also
influencing the way mobile technology looked like and vice versa. After making the

28

2.1. History of User Interfaces and Their Users

screens bigger, processors faster and the memory bigger the next frontier was getting
computers more portable. In 1991 the Apple PowerBook was released as a first laptop
meeting the needs of the market. A bit less than 10 years later, in 2000, the very first
camera phone was brought to the market by SoftBank. From then on the evolution
of smartphones took off. Their user interfaces reused elements from the desktop
GUI, such as the WIMP components, being Windows, Icons, Menus and Pointer.
However, due to constraints in space and available input devices, different unifying
metaphors were used and new interaction techniques started to emerge, resulting
in so-called post-WIMP GUIs. As UI designers had to rethink interface designs for
smaller handheld devices, a few years later, the first Apple iPhone came out which
may have proposed the best phone user interface so far. The iPhone included a multi-
touch GUI enabling new interaction techniques including gestures with more than one
finger, such as “pinching” to zoom in or out. Further, it featured functionality in
the form of applications that could be implemented by 3rd party developers to create
Web 2.0 apps which looked and behaved like built-in phone applications (having access
to the iPhone’s services). A year later, this led to the creation of the App Store and
the Google Android market (Google Play Store). This “app revolution” also influenced
the computer UIs with Windows 8 as notable example, which incorporated features
from the smartphone or tablet. The proliferation of mobile devices into our daily
life has resulted in HCI research involving the interaction between people and various
device configurations and ecologies [35]. New research fields emerged, such as multi-
display environments (MDEs), cross-device interaction (XDI) and distributed user
interfaces (DUIs). The main purpose of cross-device research is to facilitate the use
of multiple devices for developers as well as for end users by creating new cross-device
languages, tools and interaction techniques.

Today, next to smartphones, other smart technologies emerged, such as tablets, smart
thermostats, smart doorbells and some wearable devices as well including smartbands,
smartwatches, smart glasses and smart jewellery. These smart technologies are con-
nected with other devices and networks through various wireless protocols, such as
Wi-Fi, Bluetooth or NFC. In recent years a new trend started, making any traditional
“dumb” or non-Internet-enabled device and everyday object “smart” by extending it
with Internet connectivity. These devices embedded with technology, able to inter-
act over the Internet via dedicated applications are called Internet of Things (IoT)
objects1. The rise of wearable devices and IoT objects raised new challenges in the
design of UIs for even smaller (touch) screens and new physical UIs. Again good
designs were inspired by what people already know and are familiar with. For exam-
ple, the Nest Learning Thermostat2 is based on visual cues taken from the original
thermostat design and the way people use dials (think of a speedometer in a car), as

1https://internetofthingsagenda.techtarget.com/definition/IoT-device
2https://store.google.com/gb/product/nest_learning_thermostat_3rd_gen

29

https://internetofthingsagenda.techtarget.com/definition/IoT-device
https://store.google.com/gb/product/nest_learning_thermostat_3rd_gen

Chapter 2. Background

shown in Figure 2.2. The design of user interfaces for these new devices is not the
only challenging part. Due to the various communication protocols used by smart
devices, communicating with all of them in a secure way has become very challeng-
ing [9]. Therefore, research has not only emerged on how to design smart devices
and applications but also on how to enable fluid communication between them and
how to provide privacy and security. Further, research has also been done on how to
facilitate the use of IoT objects for end users by proposing applications to connect,
communicate and configure their smart environment.

Figure 2.2: Nest learning thermostat

User interfaces have gone a long way and are still evolving today with the adoption
of voice and gestural interaction. Some authors speak about Natural User Inter-
faces (NUIs) as the next era [177]. These interfaces are often invisible and make the
user act and feel natural depending on the context and should lead to skilled practice.
Using a voice interface for giving commands in a car is an example of a NUI.

2.2 End-User Development
As we have seen over the course of the evolution of user interfaces, computer users
have shifted from expert programmers to non-expert users, also called end users. Over
the years, end users gained more control over their user interfaces and applications,
going from simple modification and personalisation to the creation of new functionality
and applications. Many solutions have been proposed to do so in the field of end-
user development (EUD). Next to this we have also seen the proliferation of new
kinds of smart devices and things over time, making it hard to find appropriate end-
user solutions to control all these smart technologies. In this section we will focus
on EUD solutions in the fields of cross-device interaction (XDI) and the Internet
of Things (IoT), as our main objective is to allow end users to easily manage and
control all smart technologies in their smart environments by using a solution that
allows them to create their own UIs and smart apps through appropriate metaphors
which hide the technical details. Therefore, we aim at unifying both the XDI and

30

2.2. End-User Development

IoT research domains and find the metaphors that best match the mental models of
end users when thinking of cross-device and IoT interaction.

2.2.1 Cross-Device Interaction

With the increasing number of smart devices over the last two decades, the need for
designing applications going beyond the bounds of a single device emerged. Research
in the fields of cross-device interaction, multi-device environments and distributed
interfaces surfaced, trying to find new ways of interacting with digital content across
various devices. Brudy et al. [35] unified these fragmented research domains under
the umbrella of cross-device computing. Figure 2.3 shows a simplified overview of the
author’s ontology of cross-device research terminology. The top part of the figure
categorises the key terms of cross-devices subdisciplines using a nested structure with
cross-device, multi-device and distributed covering the broadest scope. Note that a
large amount of the terms are used interchangeably by many researchers. The bottom
part of the figure shows a list of the different focus areas of research in these diverse
(sub)disciplines of cross-device computing.

Cross-device Multi-device Distributed

Cross-surface Multi-surface Trans-surface

Cross-display Multi-display
In particular:

Multi-display Environments (MDE)

Multi-monitor/screen Multi-slate/tablet

Dual-display/monitor

Multi-mobileFocus on >=2
static
monitors.

Includes: two
displays/monitors

Includes:
Smart-
phones

Includes:
Tablets
E-readers

Includes:
Large surfaces
Digital walls
Interactive Whiteboards
Tabletops
Projectors
Television sets

Includes:
Tangibles
IoT Devices
Wearables
AR/VR headsets
Smart glasses
Other networked devices

Usually local connection, single master device Often distributed systems, with local or remote server

Usually static setups, no location tacking Tracking often inside-out Tracking often outside-in

Interactions | Collaboration

Platform | Middleware

Interaction techniques, interfaces, collaboration

Technology, middleware, development

(User) Interfaces

Environments | Ecologies

User interface design, techniques, adaptive interfaces

Larger setups or deployments

Computing General research area

Applications | Systems Concrete use-case applications

USUAL FOCUS

e.g.: Cross-device e.g.: User Interfaces+

Figure 2.3: Simplified view of the cross-device research terminology [35]

31

Chapter 2. Background

Some researchers focus on proposing novel interaction techniques, such as
Di Geronimo et al. [91] who introduced the Cross-Tilt-and-Tap (CTAT) framework
to support the combination of touch and tilt interactions in cross-device scenarios.
Another interaction technique which is often used is the portals technique allowing
content to be moved between devices by dragging an item towards the tinted edge of
the device and releasing it to move it to the device next to it [198, 78]. The portals
technique is also sometimes used in combination with other interaction techniques,
such as cross-device pinch-to-zoom or tilt-to-preview [138]. An overview of the var-
ious interaction techniques and devices used in cross-device research can be found
in [193]. While focussing on the interaction techniques, some authors also focus on
the collaborative aspect of a cross-device environment, such as Marquardt et al. [138]
who explored how groups of people position themselves, orient and tilt their devices
during collaborative settings to find better interaction techniques. Other authors fo-
cus on unifying the interaction with applications and documents at a certain location
to allow multiple users to collaborate using different devices and displays [16, 23].
Cross-device interaction requires dedicated user interfaces that can sometimes be
distributed across multiple devices. Researchers such as Husmann et al. [107] pro-
vide a tool for distributing a web interface across multiple devices, and going a step
further, Nebeling [154] provides semi-automatic generation of cross-device web in-
terfaces. Nebeling et al. [156] also introduced a GUI builder designed to support the
development of cross-device web interfaces. A non-web-based solution to design dis-
tributed user interfaces has been provided by Melchior et al. [145], which allows any
UI element to be distributed to another device by describing a distribution scenario.
This approach has been showcased with a distributed Pictionary, Minesweeper, Snake
and a combination of those games as the Game of the Goose. Sometimes ready-to-
use systems are introduced as well, often building on previously defined XDI research,
such as aCrossETH, which is an application developed making use of CTAT [91].
Other examples are the Scrapbook and Fotobook applications that have been created
to demonstrate the potential XDKinect [157], a development toolkit that facilitates
the development of cross-device applications using the Kinect to track interactions
between multiple devices and users. A few researchers focus on creating new mid-
dleware that aims at assisting the development of applications for smart spaces by
coordinating software entities and networked devices contained in those spaces. An
example of such middleware platform is Gaia, introduced by Román et al. [186], which
also provides a framework to develop user-centric, context-sensitive, resource-aware,
multi-device and mobile applications. Going a step further by including IoT devices
as well, Ajam and Mu [2] also present ongoing work on a middleware to enable
immersive and interactive multi-device TV experiences. In order to allow certain
cross-device interactions, many researchers augment tables [178] or rooms [31] with
cameras, projectors and sensors to better track the different devices and users in the

32

2.2. End-User Development

interactive environment. However such environments are then often limited in terms
of interaction space [193].

In [193], we present a rich body of work in the domain of cross-device and distributed
user interfaces. Through a critical analysis we could make the following conclusions.
Research on cross-device computing has shown that great benefits can be gained by
breaking the confinements of solitary devices and users [35]. However, since most
cross-device solutions propose new interaction techniques to manipulate and share
data across various devices, frequently applications provide their own set of interac-
tions, often without taking into account existing interaction techniques introduced
by other systems. This results in inconsistent interaction techniques for performing
similar actions across devices and applications. For example, one system allows the
sharing of UI elements by tilting the device, while another solution might require users
to use a swipe interaction instead, causing confusion for users using both systems. In
addition, different modalities might be used as well, such as speech and/or gestures,
confusing users even more. Moreover, some systems might allow only data transfer
while others allow the transfer of user interfaces as well as individual user interface
elements, such as buttons. This distribution is further sometimes limited to certain
devices or device types depending on the operating system and protocol that is used.
In addition, the interaction might be limited in terms of space too, since some sys-
tems require a fixed setup involving the need for cameras and sensors that have to
be placed in the interactive environment.

Conveying the limitations and interaction possibilities in cross-device systems and
applications to the users represents quite a challenge. There is a need for new guide-
lines, UI patterns, feedback and feedfoward mechanisms designed for cross-device
computing [35]. However, to address these needs, more research has to be done to
investigate the mental models of end users of smart devices, cross-device interaction
and large device ecologies in order to provide empirical ground for new cross-device
research. According to user experience studies, we notice that already many people
struggle with multi-device fragmentation [48, 69, 194] and it remains to be determined
to what extent users will adopt new multi-device systems and their new interaction
techniques [35], as they often suffer from the effects of legacy bias. This phenomenon
occurs when users resort to well-known interaction styles even when more effective
and novel techniques are available and has been documented in multiple studies, such
as cross-device sensemaking [174], note-taking [114], and curation tasks [36]. In
order to promote the adoption of cross-device interaction by users and to better un-
derstand their mental models, we chose the path of end-user development. As we
have seen in the previous section, the role of users has changed a lot throughout
history. Recently, this shift is particularly visible in the online community where users
are becoming more and more content creators rather than just content consumers.

33

Chapter 2. Background

The “Do-it-Yourself” (DIY) culture is gaining popularity in multiple domains, ending
the monopoly of mass manufactoring just as the Internet terminated the monopoly
of mass media [12]. Therefore, we will mainly focus on the user interface part of
cross-device computing, but in contrast to the work of Husmann et al. [107], Nebel-
ing et al. [154, 156] and Melchior et al. [145] that focusses on making it easier for
designers and developers to control their cross-device environments, we want to fa-
cilitate this task for end users. In the following section, we review existing work in
the domain of end-user development in cross-device computing.

2.2.2 Authoring of Cross-Device Applications

We will focus on tools for end users that provide cross-device interaction at design
time rather than tools just providing the possibility of only performing cross-device
interaction at runtime. Similar to Paternò et al. [165], we will identify the metaphors
used by the proposed XDI EUD solutions.

One early solution that aimed at empowering end users has been introduced by
Han et al. [102]. The authors presented WebSplitter, an XML framework that allows
a web page to be distributed to different users and displays. WebSplitter can further
be used to split views of a web slideshow presentation over multiple devices. The pre-
senter can, for example, navigate their slides using a PDA while students can follow
the presentation on their own devices, such as a PDA or a laptop. An XML metadata
policy file is used to manage access privileges allowing different users to have a differ-
ent view of a web page presentation. Through this file, an end user can decide which
XML tags or web components should be distributed to which user groups or devices
by defining mapping rules (for each XML tag). As consequence, the author of the
policy file can limit some user groups by giving them access to only a partial view of
a web page. Note that for each web page, a separate policy file has to be defined.
Once the system is running, the different views generated for the web pages based
on the policy file cannot be changed by the user, which is quite a limitation. Most of
the recent systems offering UI distribution give users more freedom concerning the
distribution of data and applications across devices.

New web-based systems emerged, such as Ghiani et al.’s platform [94], which allows
end users to manage migration of web application in a multi-device environment
together with the associated privacy policies. Web pages or parts of them can be
migrated across devices while preserving their state using the push and pull modality.
By using the push modality, web pages can be forwarded from the device the user
is currently using to another device, while a pull allows users to select a web page
from another device and send it to the currently used device. The authoring is done
through a visual environment via a point-and-click user interface. A few years later,

34

2.2. End-User Development

Ghiani et al. [95] proposed the MashupEditor for EUD of Web mashups that are built
from existing Web components. The editor uses the copy-paste metaphor to create a
connection between different web components, such as an input field, a Google Maps
and a weather component, once a connection made the name of the city entered in
the input field will be shown on the map component and the city’s temperature will
be shown on the weather component. The MashupEditor environment is meant to
be compatible with a wide range of devices by using web technologies, but does not
offer multi-device mashups yet, which means that so far a mashup cannot be split
across several devices.

Another tool based on web technologies that allows end users to create mashups
has been presented by Cappiello et al. [44], who introduced a UI-centric approach
for creating mashups on multiple devices. The proposed environment follows the
WYSIWYG (What You See Is What You Get) paradigm, by showing real time changes
to the mashup application. In contrast to the MashupEditor, connecting UI compo-
nents is done using the drag-and-drop metaphor. The authors used a model-driven
approach, where each action of the user on their compositions are transformed into
descriptive models describing the logic of the mashup [45]. These models are au-
tomatically parsed to instantiate the respective applications on the fly so that users
can interactively try out their mashup composition. The mashup can run on multiple
devices as standalone app.

Figure 2.4: Part of a desktop to mobile mapping table [167]

Model-driven and model-based approaches are used to facilitate the UI development
process by generating UIs from declarative models, but such approaches often focus
at making it easier for designers and developers rather than end users [64, 143].
Although there are a few exceptions, such as the previously introduced system and
a tool presented by Paternò and Zichitella [168], which is based on the MARIA
language [167] and allows end users to customise desktop-to-mobile adaptation via

35

Chapter 2. Background

a mapping table, as shown in Figure 2.4. However, their solution only supports
basic customisations and does neither offer support to modify the distribution of
UI components across devices nor cross-device interactions.

Other web-based tools are SmartComposition [123] and DireWolf [122], which in con-
trast to previously introduced tools offer distribution of components across different
devices. The components are presented as pre-built widgets which can be arranged
in a grid-based layout using drag-and-drop. Both systems support inter-widget com-
munication allowing cross-device cooperation and use peer-to-peer communication
between devices. Figure 2.5a provides an example of a web mashup using DireWolf.

(a) Widget distribution of DireWolf [122] (b) UI distribution of an email using
XDBrowser 2.0 [154]

Figure 2.5: DUI solutions

Some more advanced approaches provide automation, such as XDBrowser 2.0 [154]
which provides semi-automatic distribution of UI components based on the results of
a study that analysed how participants manually customise web pages for cross-device
use. The tool enables end users to re-author web pages across devices by allowing
them to select parts of a web page and copy or move the selection between devices,
as shown in Figure 2.5b.

Going into the domain of multi-device UI design, Meskens et al. [147] presented Jelly,
a design environment where UIs can be designed for multiple platforms in parallel by
copy and pasting parts of a user interface from one device to another. Every time an
element is copied to another device, the designer can select from a list of available
widgets how the element should look like on the target device. Jelly also proposes
linked editing which keeps the content of UIs consist across the different devices.
However, like most multi-device design tools [62, 128, 148], Jelly is meant to be used
by designers rather than end users.

Ghiani et al. [92] introduced an authoring environment for the development of
context-dependent cross-device user interfaces using trigger-action rules to define

36

2.2. End-User Development

context-dependent behaviour. The rules metaphor has been defined and used in the
literature as follows:

Definition 2.3 – Rules metaphor

By using rules, the system’s behavior is represented using if-then statements.
Each statement expresses the way the system should behave given specific
situations [165].

In Ghiani et al.’s authoring environment [92], a part is dedicated to rule composition
where the trigger can be a UI or contextual event and the action can have an effect on
the visibility of a UI component on a certain device. An example could be, “if user is
near the widescreen, then assign ‘shopping list content’ to the widescreen device and
unassign it from the mobile device”. The rules can be previewed at any time to see
the effect on the UI(s) in the main area. Unfortunately, the tool was only usable by
professional developers, therefore the authors provide a domain-dependent extension
for people working in the smart retail area with a simplified view of the trigger-action
rules, as shown in Figure 2.6.

(a) Original environment for authoring context-
dependent UIs

(b) The domain-dependent environment for
the smart retail

Figure 2.6: Ghiani et al.’s authoring environments [92]

Some authors focussed on customising the cross-device interaction itself, such as
Chen et al. [50] who presented Improv, an input framework that allows end users
to define custom cross-device inputs by demonstration. The defined gestural inputs
are used to manipulate existing applications on the fly. First the target behaviour is
demonstrated on the computer, then the new input method is demonstrated on the
smartphone or another input device. Once that both are demonstrated and recorded,
Improv will perform the target behaviour when the input gesture is recognised.

Instead of using gestures, Messer et al. [149] introduced InterPlay, which allows end
users to use pseudo-English sentences to control heterogeneous home networked
devices. The pseudo sentence represents a task and consists of a verb, a subject and

37

Chapter 2. Background

one or multiple target device(s). An example sentence could be: “Play, The Matrix,
Living Room DTV ”. The advantage of using pseudo sentences is their similarity with
natural language which helps users to understand the intent without the need to refer
to a manual.

Already taking a step towards the authoring of Internet of Things applications, Hum-
ble et. al. [106, 183] presented an editor that allows end users to configure their
ubiquitous computer environments. The editor uses the jigsaw puzzle metaphor to
assemble heterogeneous components, such as connecting and configuring lightweight
sensors, computer devices and services. It would thus allow to create some basic
cross-device interaction as illustrated in Figure 2.7a. The jigsaw puzzle metaphor has
been defined as follows:

Definition 2.4 – Jigsaw puzzle metaphor

By using the jigsaw puzzle metaphor, applications are represented as a com-
bination of multiple puzzle pieces. Each piece of a puzzle usually corresponds
to a service, while the shape of the puzzle provides cognitive clues to discern
the possible actions [67].

While the jigsaw puzzle metaphor is one of the most used metaphors [67], its main
disadvantage is that its expressiveness is limited by the number of sides of a puzzle
piece.

(a) Humble et. al. [106, 183]’s editor
using the jigsaw puzzle metaphor

(b) Platform Composition [172, 171] that uses the join-
the-dots metaphor

Figure 2.7: XDI tools

38

2.2. End-User Development

A variation of the jigsaw puzzle metaphor is the join-the-dots metaphor used by
Pering et al. [172, 171] in their Platform Composition, where the GUI shows the
devices as large circles enclosing smaller circles representing the device’s core services,
as shown in Figure 2.7b. To create a connection between a service and a device, users
simply have to draw a line from the service to the target device. Disconnecting is
done by dragging a line across the service (metaphorically “cutting” the connection).
The use of the join-the-dots metaphor has been described in the literature as follows:

Definition 2.5 – Join-the-dots metaphor

By using the join-the-dots metaphor, the environment is represented using
circles or clusters that can be connected with each other. Each cluster rep-
resents a device containing services that are represented by smaller circles or
dots. Connections between devices and services are created by drawing a line
between the corresponding circles [67].

The main advantage of the join-the-dots metaphor is its simplicity, since users receive
a graphical overview of all available devices and their services, hereby outlining the
entire state of the system.

2.2.3 Internet of Things

As shortly described in our history section, the rise of the Internet of Things (IoT)
resulted in a proliferation of new smart technologies, such as smart fridges, power
plugs, light bulbs and thermostats, that were introduced on the market, most of them
accompanied by dedicated applications to control them. However, these applications
are limited to controlling a range of IoT devices (often from the same manufacturer),
with the consequence that users have to install multiple applications to control all
these devices. This fragmentation introduces an extra cognitive burden for the users
who are trying to find the right application to control the right thing.

A lot of research has been done around IoT and various survey papers summarising
this research emerged [8, 96, 152]. While IoT brought up new interaction possibilities
together with new kinds of augmented everyday objects, it also raised new challenges
involving the connectivity, security, privacy and usability of all these new devices.

Due to the wide variety of heterogeneous devices, sensors and actuators with differ-
ent capabilities, functionality and network protocols, it is already difficult to create
applications controlling all of them for programmers. Therefore, frameworks and
IoT architectures have been created for developers to deal with challenges related
to connectivity and privacy [11, 179]. An interesting vision concerning the future of

39

Chapter 2. Background

IoT connectivity has been presented by Guinard and Trifa [99], who mention that
every smart thing should provide access to its services using well-known web stan-
dards such as REST. The authors present two approaches, one where each device
embeds a Web Server offering a RESTful API to access the device’s functionality
and one where each device communicates with smart gateways that provide a way to
access the functionality of more resource-limited devices through a RESTful API as
well. By using REST and the Web to communicate with devices, rapid prototyping
of IoT applications become possible as these technologies are powerful and offer a
lot of flexibility. With their approaches, Guinard and Trifa aim to lay the basis for
the future Web of Things (WoT)1. The WoT aims at countering the fragmentation
introduced by the IoT by connecting devices over the Web in order to make it easier
to create applications without requiring knowledge about various IoT technologies
and standards. The official definition of the Web of Things has later been given by
Guinard and Trifa in their book [100], which is dedicated to this subject:

Definition 2.6 – Web of Things

“The Web of Things is a refinement of the Internet of Things by integrating
smart things not only into the Internet (network), but into the Web Architec-
ture (application) [100]”.

While the WoT might improve the interoperability problem, there is still the need to
find a way to show the data produced by these smart things as well as to investigate
how to manage and interact with them. Many dashboard-like systems2 were intro-
duced to organise and present the large amount of data produced by IoT devices.
Each brand presenting an IoT product also comes with their own application software
for end users, often only allowing them to manage IoT devices of this specific brand,
forcing the end users to figure out how to use each functionality of the different
applications proposed by IoT manufacturers. Furthermore, end users are again stuck
with the predefined functionality provided by each application, often leaving no room
for any customised functionality. Therefore, research has been carried out in EUD for
IoT environments, allowing end users to have more control over their smart spaces. In
order to give users more control, meaningful abstractions and metaphors to abstract
the low-level details of IoT systems have to be found, to allow end users to only focus
on the relevant aspects when dealing with such IoT devices [165].

1https://www.w3.org/WoT/
2https://ubidots.com/blog/iot-dashboards

40

https://www.w3.org/WoT/
https://ubidots.com/blog/iot-dashboards

2.2. End-User Development

2.2.4 Authoring of Internet of Things Applications

In this subsection we analyse related work in the domain of IoT authoring tools for
end users together with the metaphors used by these tools.

Various commercial solutions have been introduced to help users configure their smart
environments based on a set of Event-Condition-Action (ECA) rules [75]. A well-
known example is IFTTT1 (if this, then that), a web-based service that allows users to
create conditional statements that are automatically executed based on the internal
state of apps or other web services. IFTTT already supports different IoT devices in its
conditional statements, such as the Philips Hue2 and Alexa speakers3. This shows that
the IFTTT approach can address emerging IoT devices, as discussed by Ur et al. [213].
IFTTT uses the rules metaphor and the trigger-action (”if, then”) programming style,
which is also used by similar alternatives, such as Atooma4, Tasker5 and others [38].
Figure 2.8 shows an overview of some of these commercial solutions.

(a) Example rules with IFTTT

(b) Example rule with Atooma (c) Tasker interface for rules

Figure 2.8: Commercial IoT solutions

By using the concept of trigger-action programming as well, Fogli et al. [83] presented
ImAtHome, an application to help users configure and manage their home automation
accessories by using ECA rules. Contrarily to IFTTT that only supports rules with one
event and one action, ImAtHome supports more complex rules that can be created
via a different visual interaction language allowing manual and automatic activation

1https://ifttt.com
2https://www2.meethue.com/en-us
3https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?ie=UTF8&node=9818047011
4https://resonance-ai.com/about.html
5https://play.google.com/store/apps/details?id=net.dinglisch.android.taskerm&hl=en

41

https://ifttt.com
https://www2.meethue.com/en-us
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?ie=UTF8&node=9818047011
https://resonance-ai.com/about.html
https://play.google.com/store/apps/details?id=net.dinglisch.android.taskerm&hl=en

Chapter 2. Background

of a set of actions (scenes). It further promotes reusability of scenes to make the
rule creation more efficient. However, its expressiveness is quite limited and the app
is restricted to iOS users since ImAtHome is based on the Apple HomeKit framework.

Similarly, Barricelli and Valtolina [17] also introduced a rule-based system called the
SmartFit Rule Editor that targets the context of the eWellness domain. It helps
coaches and trainers to monitor and analyse fitness and wellness data as well as to
detect events and specify rules based on their working setting. The architecture of
the SmartFit framework is based on the Software Shaping Workshop (SSW) design
methodology [57]. The goal of this methodology is to help designing software systems
that are customised to the needs of end users, who are recognised as domain experts,
so that they can tailor or create their own tool. In SmartFit, domain experts are
the coaches and trainers, who will receive appropriate software artefacts needed to
perform their activities in order to ease their work with computer technology.

Another more advanced example is TARE [93], where rules are also expressed via a
trigger-action syntax. The rule editor provides continuous feedback of the rule that
is being edited in an easy-to-understand language, as illustrated in Figure 2.9. TARE
allows end users to create and customise context-dependent behaviour of their smart
environment. In contrast to most IoT EUD tools it also supports distribution of a UI
from one device to another using rules. However, it is unclear how TARE supports the
distribution of parts of the UIs and whether UI design is supported. Further, TARE
provides an interactive simulation for previewing the execution of created rules in a
simulated context. The authors also included a home controller application showing
the sensor values, a map of the smart home and a way for direct control of home
appliances, which serve as basis to populate the authoring environment.

Figure 2.9: TARE [93] rule composition interface

42

2.2. End-User Development

Presenting a more visual prototyping system, Dey et al. [74] introduced iCAP, a visual
rule-based system to prototype context-aware applications for smart environments,
which is shown in Figure 2.10. iCAP is based on a user study that the authors
performed in order to better understand the mental models of end users concerning
context-aware applications. 20 participants with no programming skills were inter-
viewed during 90 minutes, more specifically they were given the description of a smart
home and, in a first instance, were asked to describe how, when and where they want
music to be played in the smart home. During the last part of the interview, par-
ticipants could create their own context-aware scenarios that they would find useful
in their smart home. The iCAP interface is based on how participants described the
different scenarios, which was mainly using rules describing a subject’s situation and
a command to the house to act on this state. The visual interface has been chosen
because visual programming languages are effective in taking advantage of the spatial
reasoning skills of users [200]. While this visual interface is more familiar and simple,
it is less expressive than a text-based one, but given that the average user-specified
rules were not very complex, the authors deemed this an appropriate choice.

Figure 2.10: iCAP [74] visual interface

Focussing on how to facilitate the description of the “interaction” in particular, Kubitza
and Schmidt [124] proposed meSchup, an IoT prototyping platform that simpli-
fies the integration of devices and the creation of smart environments. It provides
a web-based scripting IDE that combines traditional text-based programming with

43

Chapter 2. Background

interactive physical demonstration. However, the tool mainly targets people with
some programming experience since the users still need to use JavaScript to cre-
ate rules. Therefore, the authors implemented a simple mobile EUD interface called
TouchCompozr [124] as an app for the meSchup platform. TouchCompozr allows
end users to form IF-THEN-ELSE rules for the compositions of smart things using
form elements. The form input fields can be filled in by physically demonstrating a
real-world interaction, as shown in Figure 2.11a. The figure depicts a user pressing a
button in order to fill in the IF-part of the rule, which means that pressing this button
is used as trigger of the current rule. After that, to define the THEN-part the user
can demonstrate another action, such as turning on the light, which will then be used
as action of the rule.

Another tool using programming by demonstration is introduced by Dey et al. [73]
in a CAPpella, which supports programming of context-aware behaviour by demon-
stration. Users demonstrate a behaviour including a situation and its associated
action(s) a number of times and based on this demonstrations, a CAPpella will then
learn to recognise this situation and perform the demonstrated actions when the
demonstrated situation is detected. In order to show the system when the behaviour
is demonstrated, users have to indicate the start and end time in the a CAPpella user
interface, hereby using the timeline metaphor. For the sake of clarity, we provide a
definition of the use of the timeline metaphor:

Definition 2.7 – Timeline metaphor

By using the timeline metaphor, temporal references can be provided, typi-
cally represented by a line on or above which different elements are (graphi-
cally) positioned. The elements correspond to events which are organized in
a chronological order [165].

Tackling specifically the problem of users having a plethora of mobile IoT applications
scattered on their phones, Li et al. [125] introduced EPIDOSITE, which enables
end users to automate various IoT devices by demonstrating the required behaviour
through the manipulation of the smartphone’s IoT apps. The created automations
are stored as scripts in the EPIDOSITE app, as shown in Figure 2.11b. This way,
the users have “one app to rule them all”. However, the users still have to keep the
original IoT apps since EPIDOSITE manipulates the apps as demonstrated by the
user when the triggers are launched.

Another smartphone solution is Keep Doing It that has been proposed by
Maues et al. [68], which provides users with recommended rules to automate smart-
phone tasks based on how the user uses their phone. This approach is more limited
since users cannot define their own rules.

44

2.2. End-User Development

(a) TouchCompozr [124] interface (b) EPIDOSITE [125] interface

Figure 2.11: IoT solutions for smartphones

Still in the smartphone solutions, Heo et al. [103] introduced the IoT Mashup Appli-
cation Platform (IoT-MAP) that dynamically discovers devices, downloads the nec-
essary software modules and provides a UI, called Versatile, to the end users for the
mashup and composition of smart things. The composition UI is based on Node-Red1

and thus uses the pipeline metaphor. The pipeline metaphor is defined and used as
follows:

Definition 2.8 – Pipeline metaphor

By using the pipeline or graph metaphor, applications are represented as di-
rected graphs. The nodes of such a graph typically correspond to individual
devices, services or activities, while links (i.e. pipelines) allows to connect
them. Binary logic operators and filter elements can be used to organize
pipelines into more complex structures [67].

Exploring different types of rule creation interfaces, Desolda et al. [72] performed
an elicitation study with Computer Science students to identify appropriate visual
composition mechanisms for trigger-action rules. More specifically the leading ques-
tion of the study was “how to specify events and actions in a rule by answering to the
Which, What, When, Where, and Why questions?”. The participants designs gave
rise to three main design prototypes, the E-Free, E-Wizard, and E-Wired interactive
prototypes. The “E” stands for EFESTO, a mashup platform by the authors [71],
which was used as basis for implementing the three prototypes. The E-Free proto-
type depicts rules as events and actions and is shown in Figure 2.12. The interface
is split into two parts, with the triggering events on the left and the actions that will

1https://nodered.org

45

https://nodered.org

Chapter 2. Background

be executed on activation of the events on the right. New events and actions can be
added by clicking the ‘+’ symbol on the left or right of the interface, which will open
a popup wizard where users can define the event or action they want by first selecting
which service, then what the service needs to do, where the event/action has to be
triggered (optionally) and when it should be triggered (optionally). Once the steps
of the wizard completed, the event or action will be shown on the appropriate side of
the interface.

Figure 2.12: E-Free rule creation interface [72]

The E-Wizard interface is the same as the E-Free UI, but it offers a more controlled
environment for the user. Instead of having the possibility to create multiple events
before starting to define an action, in E-Wizard users have to first define a basic rule
with one event and one action. Then they can add additional events or actions by
using the ‘+’ symbol. The authors present the E-Wizard prototype as incremental
compared to the E-Free prototype which provides a “freer” environment. The last
prototype, E-Wired, uses the pipeline metaphor, where nodes represent services that
are involved in a rule. The directed links between services represent the “cause-effect”
relationships. The UI of the E-Wired prototype depicts a sidebar on the left containing
the available services and a workspace area on the right where services can be linked
to create a rule. When a connection is created between two services, by drawing an
arrow from one service to another, a popup window will appear asking users to fill in
what the event is, with optionally when and where it should be triggered, and then
the same information is asked for the action. The authors carried out a comparative
study with 40 participants (27 computer science, 10 business and 3 physiotherapy
students) comparing the three prototypes with IFTTT. The results of the study

46

2.2. End-User Development

pointed out that E-Free was favoured by the participants. Further E-Free also had a
higher satisfaction and performed better compared to other prototypes and IFTTT.
Lastly, the authors performed a study to evaluate the E-Free prototype with 15 home
automation experts. These studies resulted in design implications for future EUD rule
creation UIs.

Including a ‘tangible’ aspect in the rule creation process, Russis and Corno [190]
synthesised existing work on end-user programming of smart homes to come up with a
set of guidelines for designers of EUD interfaces and tools. Based on these guidelines,
the authors propose the HomeRules prototype, a tablet-based tangible interface for
EUD of smart homes using ECA rules. An evaluation of two paper prototypes steered
the design of the interactive HomeRules prototype which UI comprises a ‘rule panel’
and a ‘devices’ sidebar on the right. The rule panel shows the rules as ‘event +
condition -> action’. A rule can be composed of multiple events, conditions or
actions. If a user, for instance, wants to add an extra action, the device which will
perform the action should be selected in the devices sidebar or the user can choose
the ‘interactive learning’ option, which will wait for the user to perform any operation
in the home and report it in a popup screen where the user can select the operation
as ‘action’. The action will then appear under the existing action in the rule panel.
The same method can be used for adding events and conditions as well.

(a) The hardware toolkit (b) Choosing a trigger

Figure 2.13: T4Tags 2.0 [19]

In contrast to previous systems, Bellucci et al. [19] included self-made tangible to-
kens to the IoT environment and provide an end-user toolkit, called T4Tags 2.0,
for programming those tokens using trigger-condition-action rules. The tokens can
easily be placed on physical objects to program intelligent behaviour. For example,
by placing a token on a door, one can detect when this door is being opened by
someone. The authors provide a ready-to-use DIY toolkit comprising of a wireless
base station, 4 BLE physical tokens that can be labelled and are embedded with sen-

47

Chapter 2. Background

sors (temperature, luminosity and accelerometer), 2 Philips Hue1 light bulbs, 2 smart
Fibaro Wall Plug2 smart power outlets, a regular chalk pen and 18 adhesive squares
for attaching tokens to objects. The different hardware is illustrated in Figure 2.13a.
The behaviour of these smart objects can be programmed using the T4Tags 2.0 UI, a
mobile-oriented web application, whose menu resembles the one of Atooma, providing
the IF or THEN options in a circular menu with icons, as shown in Figure 2.13b. The
created rules can be made public on a social platform and are viewable in a tile-based
interface, such as IFTTT rules shown in Figure 2.8a, but instead of using only text,
the tiles are more graphical, including icons and pictures of involved services.

Figure 2.14: CMT rule creation using the “AND template” [212]

Focussing on the context awareness aspect of recent smart environments,
Trullemans et al. [212] presented the Context Modelling Toolkit (CMT), allowing
end users to control context-aware solutions. CMT presents a visual authoring en-
vironment based on “IF situation or event THEN situation or action” rules, which is
depicted in Figure 2.14. The figure shows the main rule creation interface with an
“AND template” as skeleton for defining a rule, where the IF side can contain multiple
situations or events, while the THEN sides can contain multiple situations or actions.
In contrast to existing solutions, CMT focuses on the reusability of situations of a
rule. A situation can be defined by using templates, similar to the “AND template”
shown in Figure 2.14. These templates can be created using a more advanced au-
thoring view for more experienced end users. CMT distinguishes between three types
1http://www2.meethue.com/en-US
2http://www.fibaro.com/en/the-fibaro-system/wall-plug

48

http://www2.meethue.com/en-US
http://www.fibaro.com/en/the-fibaro-system/wall-plug

2.2. End-User Development

of users being the end users, expert users and programmers. Depending on the type
of users different authoring views are made available.

Following a component-based web mashup approach, Koren and Klamma [120] pre-
sented a conceptual extension of the DireWolf framework [122] that integrates het-
erogeneous Web of Things (WoT) devices by including UI components served directly
by WoT devices. The UI components can be aligned in a tree structure and separated
into different application spaces which can be located on different types of devices.
These application spaces can be embedded in arbitrary HTML pages. The authors
however still have to evaluate the scalability and usability of their approach.

A more complete tool, called AppsGate, has been presented by Coutaz and
Crowley [60]. It provides an EUD environment to help end users control and augment
their home. Users can program their smart home devices in the syntax editor by cre-
ating rules, actions and conditional statements using a pseudo-natural language, as
illustrated in Figure 5.17. AppsGate supports debugging as well, by allowing users to
run programs using a virtual date and time. Monitoring of the smart home can be
done using the timelines and through a dependency graph which shows the relations
between entities.

Figure 2.15: AppsGate rule creation interface [61]

Another metaphor used for EUD that we already discussed in the previous section is
the jigsaw puzzle metaphor. Danado and Paternò [66] presented Puzzle that supports
the development of IoT applications on smartphones. Each puzzle piece represents
some functionality that can be composed by connecting the pieces via a drag-and-
drop interface. The shape and colour of the puzzle piece indicates the number of
inputs and outputs as well as the data that can be exchanged. A commercial solution
using the jigsaw puzzle metaphor is the Zipato Rule Creator1, an online tool to create
rules for the Zipato Home Automation System.

1https://www.zipato.com

49

https://www.zipato.com

Chapter 2. Background

2.2.5 Discussion and Limitations

We have presented a rich body of work on end-user development in the domains
of cross-device interaction and the Internet of Things. While some tools focus on
the interaction between smart devices or things and their connection with each other,
others focus on the elements that can be distributed among these smart technologies,
ranging from simple commands to parts or entire user interfaces transferred between
devices and things.

We have seen many different approaches and metaphors allowing end users to cre-
ate interactions between their smart technologies. Since the main goal of an end-
user authoring tool is to hide the complexity of the underlying technologies, intuitive
metaphors are needed to highlight the main conceptual aspects and abstract the tech-
nical details. For example, in the case of defining a data transfer between two devices,
it is important to hide the communication protocol by using appropriate metaphors
that show when and how the data is transferred from one device to the other without
requiring the technical knowledge of a developer [166].

Choosing the right abstractions and metaphors is not an easy task, given that they
all come with their advantages and disadvantages. Various metaphors have been
used in the field of XDI and IoT EUD, ranging from simple drag-and-drop to rules,
timelines, pipelines, join-the-dots or the jigsaw puzzle metaphor. In Table 2.1 we
provide an overview of the most dominant metaphor(s) used by related work described
in this chapter. EUD solutions in the field of XDI are noted down in black while
EUD solutions in the IoT field are coloured in blue.

Metaphor Systems
Timeline a CAPpella [73], AppsGate [60]

Rules
AppsGate [60], Atooma, CMT [212], E-Free [72], E-Wired [72], E-Wizard [72], Ghiani et al. [92],
HomeRules [190], iCAP [74], IFTTT, ImAtHome [83], Keep Doing It [68], SmartFit [17]
T4Tags 2.0 [19], TARE [93], Tasker, TouchCompozr [124]

Pipeline AppsGate [60], E-Wired [72], Versatile [103]
Jigsaw ACCORD [106, 183], Puzzle [66], Zipato
Join-the-dots Platform Composition [171]
Drag-and-drop DashMash [44], DireWolf [121], DireWolf 3.0.0 [120], SmartComposition [123]
Copy/paste Jelly [147], MashupEditor [95], XDBrowser 2.0 [154]

None EPIDOSITE [125], Ghiani et al. [94], Improv [50], InterPlay [149], Paternò and Zichitella [168],
WebSplitter [102]

Table 2.1: Summary of used metaphors with existing solutions in alphabetical order

Most of the presented IoT EUD solutions use the rule metaphor [17, 19, 60, 72,
83, 93, 124, 68, 190, 212], with the exception of a CAPpella [73] using the time-
line metaphor, Puzzle [66] using the jigsaw puzzle metaphor, DireWolf 3.0.0 [120]
using drag-and-drop, Versatile [103] using pipelines and EPIDOSITE [125] using
no metaphors at all. AppsGate [60] applies multiple metaphors, including the
rule, timeline and pipeline metaphors. On the other hand, in XDI EUD solutions,

50

2.2. End-User Development

metaphors are less present and more scattered between drag-and-drop [123, 121, 44],
copy/paste [95, 147, 154], rule [92], join-the-dots [171] and jigsaw puzzle [106, 183].

As mentioned earlier, metaphors abstract from low-level details, but each metaphor
comes with its own limitations. Scalability can, for example, be an issue with the
pipeline metaphor where the diagram becomes hard to interpret once the amount of
elements and connections increases. While the jigsaw puzzle metaphor supports more
complex configurations than the pipeline metaphor, by allowing structures (e.g. clus-
ters of pieces) to act as one entity [67], its scalability might be an issue as well,
since the screen easily gets cluttered with an increasing amount of puzzle pieces.
The jigsaw puzzle metaphor is also limited by the number of sides of a puzzle piece,
restricting the set of possible combinations, i.e. restricting its expressiveness [67].
Some metaphors allow easy composition of events and actions, such as rules where
events/actions can be composed using Boolean operators, such as AND, OR and
NOT. Rules can be visualised in different ways, as seen in related work. For example,
Desolda et al. [72] presented different prototypes using the rule metaphor, where one
prototype visualises rules using the pipeline metaphor. The drawback of using rules
is that they can be easily broken and it is difficult to detect conflicting actions [74].
Some systems, such as T4Tags 2.0 [19], therefore restrict the choice of triggers com-
binations, guide users while creating rules to avoid inconsistent or invalid states and
prompt users informing them when a specific behaviour cannot be defined, explaining
the cause. Others [55] focus on providing ways to debug trigger-action rules.

With the different possibilities of metaphors and their limitations in mind, researchers
try to find the right metaphor to use in their tools for letting end users define
cross-device or IoT interactions, sometimes combining multiple metaphors as seen
in E-Wired [72] and in AppsGate [60]. The choice of metaphor is often based on re-
lated work, observations of commercial solutions and own experience, as for instance
explicitly mentioned in HomeRules [190], which has been designed based on guidelines
that were derived out of such an analysis. However, it is important to also consider
the way people think about cross-device and IoT interaction, since they might have
a different view compared to a developer in terms of algorithmic computation and
require representations and concepts that are more suitable for them [166]. In other
words, we need to investigate the end user’s mental models when thinking about
cross-device and IoT interactions for selecting the most intuitive metaphor(s) which
will affect the way people will include EUD activities in their everyday lives.

Taking the mental models of end users into account is often omitted by existing so-
lutions. While Desolda et al. [72] performed an elicitation study to find appropriate
metaphors, the participants of this study were computer science students instead of
regular end users. To the best of our knowledge, from the described related work
in this chapter, the only researchers that performed a user study with end users to

51

Chapter 2. Background

better understand their mental models before building a solution are Dey et al. [74],
who interviewed end users about context aware applications. Lucci and Paternò [132]
also performed a study to improve current designs and inform future designs of mo-
bile context-dependent applications, on which some of TARE [93]’s requirements are
based on. However, the study was less open than the one of Dey et al. [74] and
focused on smartphone EUD applications. Lucci and Paternò [131] analysed and
compared three Android apps, including Tasker, Locale1 and Atooma. A usability
study of these three applications pointed out a lack in consistency of the terminology
used in the applications. Accordingly, in order to improve the user exprerience of
EUD apps, the choice of elements, terms and icons should be consistent and unam-
biguously understandable by end users. This led to the card sorting study in [132],
where users classify the concepts supported by the three apps, to identify which ones
are more closely related to the users’ mental models. Note that, in contrast to prelim-
inary studies, almost all of the presented solutions did evaluate their solution through
a study after having already chosen a metaphor.

Another important characteristic of related work, next to the metaphors they use, is
of course the underlying functionality that these EUD tools provide. As mentioned by
Lucci and Paternò [131], commercial solutions use different terms and icons, which
is also true for EUD solutions in general. The same functionality can therefore be
found under different names in various tools which might be counter intuitive for
end users. Further the functionality provided by cross-device EUD tools is rarely
combined with functionality of IoT EUD solutions. There is a lack of unification
between the XDI and IoT domains. Although, some tools, such as the authoring tool
of Ghiani et al. [92], are going into the right direction, they revealed to be too difficult
for end users. The authors then later presented TARE [93], supporting IoT as well
as cross-device functionality, such as user interface distribution using trigger-action
rules. It is however unclear, to which extent cross-device UIs can be created. The
authors do not mention the granularity of the distribution, which parts of UIs can
be distributed and how it is distributed remains unclear. One key advantage of this
authoring tool is the real-time preview of a rule, while a disadvantage is the difficulty
of finding the right attributes of a rule in the context model hierarchy.

2.2.6 Resulting Requirements

In Chapter 1 we have expressed the need for a unified XD and IoT end-user au-
thoring solution that would solve the problems of fragmented control, lack of uni-
formity, limited functionality and customisation. Based on studies by Google [111]
and Microsoft [139] about the users’ behaviour with their devices, we derived some
requirements that such a solution should support. Further, by analysing the related
1http://www.twofortyfouram.com

52

http://www.twofortyfouram.com

2.2. End-User Development

work presented in this chapter, their system characteristics, user study results and
requirements, we identified additional requirements. We collected a large number
of different requirements, ranging from very specific requirements including warning
mechanisms [72] or means for simulating and debugging rules [93] to more gen-
eral requirements, such as external service triggers [125] or distribution of Web wid-
gets [121]. From these requirements we kept only the more recurrent general ones.
Note that this selection procedure has been mainly based on our own opinion. The
remaining functional: R1, R2, R2.1, R2.2, R3 and non-functional requirements: R4,
R4.1, R4.2 and R5 are listed below together with some research papers or studies
from which they resulted. These requirements serve as part of the answer to our first
research question, while additional requirements will complete our answer to RQ1 in
the upcoming chapters.

Requirement 1 (R1). Provide an overview of the smart technologies, environments
and applications Motivated by many presented solutions in the XDI and IoT domain
(e.g. DireWolf [121], AppsGate [60] and TARE [93]), users should be provided an
overview of the available devices together with their status. They should further be
able to visualise their smart environment as well as the created applications or rules.

Requirement 2 (R2). Interaction support As explained in Chapter 1, the main goal of
cross-device interaction and IoT research is to enable smart devices and smart objects
to interact with each other. Therefore, this represents our second requirement, which
is further subdivided into two subrequirements.

Requirement 2.1 (R2.1). Support for interaction across multiple smart technolo-
gies All discussed solutions provide different types of approaches in order to allow
users to interact with their devices and make these devices interact with each other,
thereby using various metaphors to help users cope with the underlying complexity
of such interactions. Users must therefore be able to make smart technologies inter-
act with each other by defining the way in which they should interact. Interaction
between devices can be in the form of data transfer (e.g. [171]) or by issuing com-
mands (e.g. [149]). For example, data transfer could be triggered by letting the user
define that a picture should be sent to the tablet whenever a user swipes this picture
in the direction of the tablet from their smartphone. An example of issuing a com-
mand could be that whenever a user presses a certain button on their smartwatch,
the smart light bulb should turn on. These kinds of interactions should be easy to
define and manage by users. Note that interaction involving data transfer facilitates
the sequential multi-device usage [111] or quantum journey [139] which is often per-
formed by people owning multiple devices. When changing devices, instead of having
to search for the same data on another device, the data can simply be transferred—in

53

Chapter 2. Background

the chosen manner of the user—from the first device to the next device, on which
the user can finish their task.

Requirement 2.2 (R2.2). Support for creation, customisation and distribution of
cross-device and IoT user interfaces In order to further support interactions as seen
in the domain of distributed user interfaces, not only data should be easily transferred
and distributed across devices but also user interfaces. Therefore, users must be able
to create, customise and distribute user interfaces between their devices. While some
of the introduced systems apply a mashup approach taking different web interfaces
and distributing them across devices [123, 121, 154], some systems, such as [92] also
allow the creation of interfaces from scratch. This functionality is often not present
in EUD for IoT environments. It is however present in TARE [93], although it is
unclear how exactly the UI creation part is performed. The IFTTT tool supports the
creation of simple buttons but does neither support the distribution of these buttons
across devices nor the creation of more complex user interfaces. Notice that with this
requirement we facilitate the complementary usage [111] of devices and investigative
spider-webbing [139] behaviour performed by many users, where a user interface can
be split and synchronised across multiple devices.

Requirement 3 (R3). Support for sharing and integration of apps in a central smart
apps repository Looking at commercial solutions in the EUD of IoT environments,
such as IFTTT and Atooma, we have seen that applications or rules created by the
users are often stored in a central repository and shared amongst the community.
The sharing helps users setting up new rules in a faster way than creating them
from scratch. It further sparkles creativity and inspires users to create similar rules
adapted to their particular needs [166]. Rule sharing has also been identified as
one of the main requirements in TARE [93], where the authors claim that the reuse
mechanism of rules was found useful in work settings such as warehouses and retail
where efficiency is important. Similar findings about the advantages of sharing and
building upon experiences of other users were also supported by Bellucci et al. [19],
who also provide a sharing platform in T4Tags 2.0.

Requirement 4 (R4). Extensibility In order to allow a system to evolve over times it is
important to support extensibility at several levels. As mentioned by Fischer et al. [81],
users should not be presented with closed systems, but they should be provided tools
to extend the system in order to fit their needs.

Requirement 4.1 (R4.1). Offer extensibility at the level of communication proto-
cols, devices and user interfaces Given that an EUD authoring tool should support
many different types of smart technologies ranging from computers, smartphones and

54

2.2. End-User Development

smartwatches to smart thermostats, smart lights and smart power plugs, it is impor-
tant to make it easy to add new types of emerging devices. Some XDI tools, such as
Improv [50], explain how they could be extended to support IoT objects. Such sup-
port for extensibility is important, since, as we have seen in Ericsson’s report, things
are still predicted to grow in popularity over the coming years [46]. Therefore, an
authoring solution should not be a closed system where it is difficult for developers
to add new devices and thus completely impossible for end users. Next to the flexible
support of new devices and things, new communication protocols that might come
with these new smart technologies and user interface components (e.g. [147]) should
be easy to add over time as well.

Requirement 4.2 (R4.2). Enable the integration of third-party applications In order
to trigger certain actions on a device, third-party applications might be needed and
should therefore be easy to be integrated with the authoring tool. A popular commer-
cial example from related work that provides third-party applications is IFTTT, but
this is also supported in non-commercial solutions, such as EPIDOSITE [125] which
uses IFTTT as backend and mashup tools such as DashMash [45]. An example of
such a third-party application could be a weather service providing functionality re-
lated to the weather that could potentially be used in a rule that would be triggered
depending on the outside temperature.

Requirement 5 (R5). Support for end-user development Given that the unified XD
and IoT authoring tool is supposed to be used by end users, the functionality presented
in the previous requirements should be accessible to end users whenever possible. End
users should therefore be able to create, customise and distribute cross-device and
IoT user interfaces (R2.2). They should further be provided means to share their
applications with a community of users (R3). In addition, it should be easy for end
users to add new devices and user interface components to their authoring tool, as
already mentioned in requirement R4.1. Accordingly, end users should neither have
to write a single line of programming code nor be required to have particular technical
knowledge [126].

55

Chapter 2. Background

56

Chapter 3

Use Case

We are all apprentices in a craft where no one
ever becomes a master.

Ernest Hemingway

In order to illustrate the potential of a unified end-user authoring solution which
supports cross-device interaction, user interface distribution and interaction with the
Internet of Things, we defined a use case scenario. This use case scenario is the
result of an analysis of a larger set of use case scenarios collected from related
work (e.g. meetings [73, 156], museums [87, 92], music scenarios [74] and others)
as well as own use cases (e.g. scrapbook scenario [192]) involving XDI, DUI and
IoT interactions. From this set of use cases we derived additional requirements which
will be added to the ones introduced in the previous chapter in order to further
address our first research question. In this chapter, we start by presenting our use
case scenario that is a reduced version of the set of use cases, and has been created
by keeping non-repetitive elements of the different scenarios which still reflect our
derived requirements. After that we present the requirements that resulted from the
larger set of use case scenarios. Note that the introduced scenario will also be used
throughout the remainder of this dissertation to better explain various concepts.

57

Chapter 3. Use Case

3.1 Scenario

During the week, Lucas wakes up around 7:30 a.m. every morning. In order to support
his daily morning routine, he created a number of applications. The first application
is the morning routine application shown on the smartphone mock-up in Figure 3.1a.
The application consists of several components. The upper left part of the screen
shows an alarm that is currently set to 7:20 a.m. Next to the alarm, Lucas placed a
button to control his coffee machine. The central part of the screen shows a real-time
schedule of trains passing by between 7 a.m. and 9 a.m.; the selected train being the
one Lucas plans to take. Some 20 minutes before the selected train arrives, the lights
in the living room will start flashing as indicated at the bottom right. Further, as
shown at the bottom left, the blinds in the bedroom should open when he gets up at
7:30 a.m. In addition, Lucas placed two extra buttons to manually control the blinds
and the light.

Feeding Time

 9:00
 2
Portions

 21:00
 1
Portion

+

CATS APP

18 °C

- + FOOD LOW

Train List

MORNING ROUTINE APP

07:50 08:20 Brussels

08:15 09:00 Brussels

08:30 09:00 Brussels

08:50 09:30 Brussels

0 7 2 0:

+5'

CATS APP

0 7 3 0: 0 8 1 5:

(a) (c)

(b)

(d)

Figure 3.1: Mock-ups of Lucas’ first version of themorning routine application (a), his
cats application on the tablet (b), his leaving home application on the smartwatch (c)
and Lucy’s version of the cats application (d)

The second application is the leaving home application running on a smartwatch as
shown in Figure 3.1c. Once Lucas locks the front door, this application will check
whether the lights, the TV as well as the electric iron are off. In the case that one
of them is still on, Lucas receives a notification and can turn the device off via the
smartwatch user interface. The UI consists of three parts—each containing a button
to turn one of the devices on/off—and a swipe up/down gesture can be used to
switch between them.

58

3.1. Scenario

Lucas’ next application is the cats application. He has two cats for which he bought a
smart feeder, a pet Wi-Fi camera and a food storage box with LEDs and an integrated
weight sensor. With his self-made application, he can control the feeder and see his
cats when he is not at home. Further, the food storage box glows green when
relatively full and red when almost empty to remind Lucas when he should buy some
cat food. In addition, Lucas added a rule to this application to add the item “cat
food” to the grocery list and show a food low icon in the UI when the box is glowing
red, as shown in the mock-up of the cats application in Figure 3.1b. On the left-hand
side of the UI, Lucas set different feeding times, one at 9 a.m. and one at 9 p.m. At
any time, Lucas can check what his cats are doing via the video stream on the right,
which also contains a record/snapshot button to record a small video or take a
picture. He also added a button to access the gallery view containing the captured
images and videos. Lucas further installed some motion sensors behind the couch to
get notified when the cats try to scratch the couch, in order that he can then activate
a small spray of water to stop them. The temperature component allows Lucas to
see whether it is not too cold in the apartment for the cats. Once the temperature
drops to 16 degrees Celsius, he gets a notification and can turn on the heating.

The last application, the grocery list application, is composed of two parts. One
part is on the fridge while the other part is on Lucas’ smartphone. Via the fridge
component Lucas can add items to the grocery list as well as leave notes, memos
or pictures on the fridge, while the smartphone only shows the synchronised grocery
list. Figure 3.2b and Figure 3.2c show the mock-ups of this application. Lastly, in
order to manage all the applications, an administration panel can be used to edit the
applications, manage their rules and distribution properties as well as the user rights.

On a regular day during spring Lucas’ alarm goes off at 7:20 a.m. After turning the
alarm off, Lucas spends ten more minutes in bed until he finally decides to get up.
Usually, the blinds would open now and he would start making his bed. However, it is
not a usual day, since Lucas’ girlfriend Lucy moved in yesterday evening. Therefore,
they made some changes to Lucas’ applications so that Lucy can also use them.
She created a profile with her preferences and adapted some of his applications to
her needs using the administration panel. Given that Lucy’s job allows more flexible
hours, she has to get up later than Lucas, around 8:30 a.m. Consequently, the blinds
now need to be opened when both Lucas and Lucy are out of bed. So they changed
this rule in the morning routine application accordingly as well as the alarm time which
goes off later for Lucy. While Lucas and Lucy use the same applications they each
have their own view of the user interface.

Hence, when Lucas got out of bed, the blinds did not open. He turns on the coffee
machine with his application and leaves his room to greet the cats. Lucas takes his
coffee and goes to the living room for having breakfast while watching the news on

59

Chapter 3. Use Case

TV. He usually takes the train of 8:30 a.m. which he also configured in his application.
After a while, the lights start flashing, which means that Lucas has to leave soon in
order to catch his train. He turns off the lights with his smartwatch, prepares to walk
to the station, kisses his girlfriend goodbye and leaves his apartment without locking
the door.

Lucy’s morning routine is very similar to Lucas’, however she does not take the train
to work. Therefore, the UI of her morning routine application does not include the
train schedule. Since she is taking her car to go to work, she added a new rule to the
application: “When there is a lot of traffic jam, make the artificial plants next to the
TV glow orange and otherwise blue.” In addition, she also added a new UI element
showing a real-time traffic map but did not use Lucas’ rule for flashing the lights.

Later, Lucy heads off to work as well. When locking the door, she receives a notifi-
cation telling her that the TV is still on. Since she does not have a smartwatch, she
opens the leaving home application on her phone, which adapts to the new device as
well as to her preferences and turns off the TV. Note that since Lucy is red-green
colour blind, she uses orange and blue buttons instead of the red and green buttons,
as shown in Figure 3.2a.

LEAVING HOME APP GROCERY LIST

 Add Element+

Colruyt List

5 Apples

Flour

3 Pizzas

Cat Food

GROCERY APP
Colruyt List

5 Apples

Flour

3 Pizzas

Cat Food

 Add Element

 Add Tile+

A user interface is like a joke.
If you have to explain it,

it’s not that good.

Be home around
9pm today.

Kisses,
 Lucy

+

(a) (b)

(c)

Figure 3.2: Mock-ups of Lucy’s leaving home application on her smartphone (a), the
grocery list application on Lucas’ smartphone (b) and on the fridge (c)

During the day, Lucas receives a notification that the cats are scratching the couch.
He wants to check via the cats application whether they are really scratching the

60

3.2. Derived Requirements

couch or just passing nearby. After a quick look at the video stream, he realises that
the cats are just playing near the couch and therefore does not use the water spray,
but takes a few pictures and hits the funny button instead. The funny button has
been added by the couple to notify each other about funny content and is shown in the
tablet and phone mock-ups in Figure 3.1b and Figure 3.1d (button with the cat face).
Whenever Lucas presses this button, Lucy receives a notification. As illustrated on
the smartphone mock-up, Lucy’s UI of the cats application only contains the video
stream, the gallery button, and funny button since she did not need all the other
features. Further, Lucy shared the video stream UI element to her best friend who
also loves cats. In contrast to Lucas, whenever she presses the funny button, she
notifies Lucas and her best friend. After taking some pictures and sharing them with
colleagues, Lucas continues to work.

When using the cats application earlier, Lucas saw that the cat food supply was
running low. Therefore, he checks his grocery list, sees “cat food” that had been
added automatically as well as a list of other products added by Lucy. He decides
to go shopping on the way home and removes the products he bought from the list.
Finally, once home, the couple shows each other a few pictures by displaying them
on the TV using a touch-and-throw gesture in the gallery view on their smartphones.
They defined this gesture as a throw gesture with their phone while touching the
image they want to distribute to the TV.

Note that while users still use different applications to control their smart technology,
these applications are organised and used for a specific context according to the user’s
needs, in contrast to current fragmented applications which are often tied to a certain
brand of IoT objects.

3.2 Derived Requirements

The presented scenario illustrates the usefulness of a system allowing cross-device
interaction as well as distribution of UIs (e.g. grocery list application), IoT interaction
(e.g. using buttons on smartwatch interface) and some adaptations depending on the
context which was the user of the application and device on which the application
is viewed on, in this case. While in the previous chapter we derived requirements
from related work, in this chapter we add requirements resulting from our use case
scenario. Some requirements are added as subrequirements of those presented before
while others will form new core requirements.

In R3 we expressed the need for sharing applications via a central repository. Based on
our scenario we also want to include the possibility of sharing with specific users, more
specifically users of the exact same devices, typically other members of a household.

61

Chapter 3. Use Case

Therefore, we change R3 into a core requirement “shareability” with as subrequire-
ments the previously defined R3 which becomes R3.1 and a new requirement R3.2
formulated as described below. While requirement 3 and its subrequirements are all
functional requirements, the remaining requirements introduced below are all non-
functional requirements.

Requirement 3 (R3). Shareability Sharing is an important concept as it helps users
setting up new rules or applications in a faster way than creating them from scratch. It
further sparkles the creativity and inspires users to create similar rules and applications
adapted to their particular needs [166].

Requirement 3.1 (R3.1). Support for sharing and integration of apps in a central
smart apps repository Looking at commercial solutions in the EUD of IoT environ-
ments, such as IFTTT and Atooma, we have seen that applications or rules created
by users are often stored in a central repository and shared amongst the community.
Rule sharing has been identified as one of the main requirements in TARE [93], where
the authors claim that the reuse mechanism of rules was found useful in work settings
such as warehouses and retail where efficiency is important. Similar findings about
the advantages of sharing and building upon experiences of other users were also
supported by Bellucci et al. [19], who also provide a sharing platform in T4Tags 2.0.

Requirement 3.2 (R3.2). Enable sharing of applications, user interfaces or parts of
a user interface with specific users While the previous requirement has been added
with the idea of sharing a user’s creations with the community of users, this require-
ment is specifically targeting users having access to the same device configurations
as typically found in households. This means that the applications can be used as
they have been created, or tailored to the new user’s preferences as done with Lucy
in the presented scenario. Such a type of sharing can also be used for guests, in order
to provide them (temporary) access to the smart devices in the house.

In Chapter 2 we defined requirement R5 as the support for end-user development.
Since this requirement is seen as an overarching requirement, we move this require-
ment to the end of our list and update it depending on the new requirements derived
from our use case scenario.

Requirement 5 (R5). Reusability Next to sharing with other users, it is also impor-
tant to support the reuse of user interfaces and functionality. In order to do so, a clear
separation between the user interface elements and the tasks that will be performed
by those elements is necessary. That way UI elements can be reused to perform other
tasks. Further the same tasks can be executed using other UI elements or rules. By

62

3.2. Derived Requirements

allowing flexible reuse, users also do not have to start from scratch every time they
design new applications. Therefore we define the following subrequirements:

Requirement 5.1 (R5.1). Support for reuse and combination of different user in-
terfaces When designing new user interfaces, a user should be able to reuse the
same components in multiple applications and eventually combine these components
in different ways. The on/off buttons of the morning routine application have, for
example, been used multiple times and depending on their position in the user inter-
face, the button is associated with different functionality. The button next to the
light acts like a light switch, while the button next to the blinds allows the blinds to
be opened or closed. Note that the reusability of UI components has also been seen
in related work, such as Jelly [147].

Requirement 5.2 (5.2). Support for reuse and combination of different functionality
This requirement is different from the previous one in the sense that instead of
reusing user interface components, users should also be able to reuse application
logic. Further, they should be able to create combined new functionality out of
existing ones, as done with the touch-and-throw gesture that is a combination of
the touch gesture and the throw gesture recognition functionality. Another example
is the use of the notification functionality which is used in the leaving home
application to notify Lucas or Lucy when they close the door if an appliance is still
on. This notification functionality is reused in the cats application with the funny
button that notifies Lucas’ or Lucy’s contacts when the button is pressed. Note that
the reusability of functionality has also been shown in related work, such as reusability
of rules in TARE [93] and in CMT [212].

Requirement 6 (R6). Portability Given that we want to support cross-device inter-
action, it is also important to make sure that user interfaces and applications can
be used (and run) on all compatible devices. By compatible devices we mean that
certain applications might need specific characteristics to be present on a device to
be able to run on this device. For example, typically a graphical user interface can
only be used on devices that have a display.

Requirement 6.1 (R6.1). Offer platform independence While an interface might
have been created with a certain platform or device in mind, the application should
be able to run on any compatible platform. For example, Lucas designed the leaving
home application for his smartwatch but Lucy is using it on her smartphone.

63

Chapter 3. Use Case

Requirement 6.2 (R6.2). Support for adaptation of applications and user interfaces to
users and devices Related to what has been explained in R6.1, an application should
be able to run on multiple devices, but it should further also be adapted according to
the characteristics of the device on which it is accessed. In the use case scenario we
have seen that the leaving home application, for example, displays larger rectangular
buttons when opened on Lucy’s smartphone compared to the round buttons shown
on Lucas’ smartwatch. Further the user interface should also adapt to specific users.
For example, the interface should adapt to Lucy by replacing the colours red and
green by other colours, as shown for the leaving home application where her buttons
are shown in blue and orange.

Requirement 7 (R7). Support for end-user development Given that the unified XD
and IoT authoring tool is supposed to be used by end users, the functionality presented
in the previous requirements should be accessible to end users whenever possible. End
users should therefore be able to create, customise and distribute cross-device and
IoT user interfaces (R2.2). They should also be provided means to share their appli-
cations with a community of users (R3.1) as well as share to specific users (R3.2).
Further, it should be easy for end users to add new devices and user interface compo-
nents to their authoring tool, as already mentioned in requirement R4.1. In addition,
end users should be able to reuse existing UIs and functionality (R5). The user-defined
applications should further be able to adapt to specific users and devices in the man-
ner described by the end user (R6.2). Note that, accordingly end users should neither
have to write a single line of programming code nor require to have any particular
technical knowledge to perform all the described functionality [126].

As we will see in the next chapter, we choose to follow a model-based approach in order
to fulfil these requirements. The advantages of such an approach is that it facilitates
the development process and makes our system more flexible, extensible (R4) and
reusable (R5). The details and further advantages will be extensively discussed in
the following chapter where we present related work of model-based solutions in the
domain of adaptive, cross-device and IoT user interfaces and introduce our conceptual
model and reference framework.

64

Chapter 4

Reference Framework and
Conceptual Model

No substantial part of the universe is so simple
that it can be grasped and controlled without
abstraction. Abstraction consists in replacing

the part of the universe under consideration by
a model of similar but simpler structure.

Models, formal and intellectual on the one
hand, or material on the other, are thus a
central necessity of scientific procedure.

Arturo Rosenblueth and Norbert Wiener

In the previous chapters we identified a number of limitations and requirements for
managing and controlling smart devices as well as smart things. In this chapter we
present our model-based approach for fulfilling these requirements and addressing
existing limitations. First, we explain the benefits of a model-based approach and
review some related work of model-based user interface development in the cross-
device and IoT research domains. We further look at adaptable and adaptive systems
in order to provide the context aware interactions identified in one of our require-
ments (i.e. R6.2). Based on related work we refine our final requirements and present
a reference framework and conceptual model which lays the conceptual foundation
for our end-user authoring tool.

65

Chapter 4. Reference Framework and Conceptual Model

4.1 Related Work

In the late 1980s, a large number of modelling languages for the creation of richer and
accurate interface models emerged, which led to the rise ofmodel-based user interface
development (MBUID) [143, 176]. This approach uses declarative models to generate
user interfaces (UIs). The aim is to reduce the costs of developing and maintaining
UIs (compared to traditional UI development) by following a layered architecture that
separates different concerns [64, 84]. The use of models also results in other benefits,
including increased communication and control, as exposed by Hutchinson et al. [110].
Many prototype systems started to emerge where developers could use a high-level
specification language to write the characteristics of the user interface rather than
using a programming library. The specification would then automatically generate the
corresponding UI or be translated into an executable program.

Szekely [208] introduced a generic MBUID architecture which shows the typical com-
ponents of model-based interface development environments (MB-IDE). The main
components are the modelling tools, the model, the automated design tools and the
implementation tools. In order to build the model, developers use the modelling tools.
The model is divided into three levels of abstraction. The highest level contains the
task and domain model, which represents the tasks users need to perform and the
data and operations supported by the application. The next level is called the ab-
stract user interface (AUI) specification, which expresses the structure and content
of the UI in an abstract way, for example, by expressing the information that will be
shown in each window. The third level is the concrete user interface (CUI) level,
which specifies the rendering style of the presentation units and the layout of all ele-
ments of a window. Many MB-IDEs allow designers to only work on certain aspects
of a model and use automated design tools to compute the missing elements of the
model. Using the implementation tools, the CUI specification can be translated into
an executable representation linked to application logic. This source code has later
been adopted as the fourth abstraction level and is called the final user interface (FUI)
level [43]. More details about the model-based interface development process can be
found in [208]. During the 90s, different MB-IDEs were introduced using different
modelling languages and focusing on different levels of the model. ITS [221] and
MASTERMIND [210], for example, required developers to specify all levels of the
model, while JANUS [15] only needed the developers to provide the data model and
with HUMANOID [209], developers could generate an interface by only specifying the
data types of command inputs.

Since then, modelling languages have become more expressive as well as easier to
use, and different conceptual frameworks and architectures have been introduced to
capture the important aspects of MBUID. However due to the continuous evolution

66

4.1. Related Work

of UIs, model-based user interface development still remains a challenge. Already in
1996, Szekely [208] stated some challenges that are still valid today. The first one
is task-centred interfaces (1). Applications offer a lot of functionality and options
to users, who often have a hard time figuring out the capabilities of the application
in order to perform their task. Some applications try to cope with this problem by
introducing task assistants, help buttons and tutorials. Although, nowadays users
want to be able to use an application on the fly and do not want to spend too
much time trying to understand an application. A second challenge is multi-platform
support (2). With the growing amount of devices in each household, there is a need
for UIs that can run on multiple devices and platforms and that can adapt themselves
depending on the device and platform. While traditional interface development needs
a redesign of each UI element for individual platforms, the model-based approach
offers a better alternative, where changes only need to be done in the mapping from
the abstract interface objects to the concrete interface objects. For similar devices
with different screen sizes a simple scaling factor is necessary. As a third challenge,
Szekely introduced interface tailoring (3), which refers to the ability of an interface to
customise and optimise itself according to the context of use. This ability can take
place at different levels of the MBUID process. Developers may provide different
versions of the final application depending on some criteria or the tailoring can be
done by experienced users. In some cases the interface can adapt by analysing the
user’s patterns of use. The FUSE [130] system, for example, allows the interface to be
tailored according to the level of experience of a user. The last challenge is support
for multimodal interfaces (4). Input modalities such as pen interaction, gestures,
speech, gaze and output modalities such as sound, light, vibration and many more can
be used to make richer user interfaces. However, creating UIs that combine all these
modalities is difficult for many reasons. The input modalities need to be visible to the
user, straightforward and natural to use. Combining multiple modalities can become
redundant in some cases. Furthermore, some modalities will be preferred depending on
the context of use. An early architecture for the development of multimodal interfaces
has been presented by Cohen [51]. The open architecture supports pen, voice and
direct manipulation. More recently, Vanderdonckt [215] introduced 20 additional
detailled challenges for MBUID. Further, a thorough overview about the history and
challenges of MBUID can be found in the work of Meixner et al. [143] and a survey
on model-driven engineering tools has been presented by Perez-Medina et. al [170].

The challenges by Szekely [208] are quite well covered by the requirements defined
in the two previous chapters. By providing an overview (R1) and expressing the
fact that functionality of the authoring solution should be simple for end users (R7),
we address the first challenge. Next, the multi-platform support is expressed by
our portability requirement and more specifically by requirement R6.1. asking for
“platform independence”. The third challenge involving interface tailoring is reflected

67

Chapter 4. Reference Framework and Conceptual Model

in R6.2, where we mention the need for adaptation. Only the last challenge involving
multimodal support is not directly reflected in our requirements. Enabling interaction
across devices could be done in a multimodal way, but in this dissertation we do not
focus on how to tackle this last challenge in details. In some of the related work,
authors introduce how they added different modalities to their system and in future
work we will also discuss how to integrate multimodality into our solution. Note that,
at the time when Szekely’s challenges were introduced, IoT devices were not yet as
popular as today. We believe that a fifth important main challenge for MBUID is the
integration of things into the UI design process. The inclusion of things might be
quite challenging since they come with new kinds of physical or digital UIs depending
on their characteristics and capabilities.

In the remainder of this section we focus on MBUID in the domain of adaptive and
adaptable UIs, cross-device UIs and UIs for IoT environments.

Model-based Adaptive and Adaptable User Interfaces

One of the most challenging parts of developing UIs is to build an interface that
fits all of its users. Adaptive user interfaces—also referred to as multi-context or
multi-target user interfaces—aim to improve the user experience by adapting to a
user’s context of use at runtime. Thereby, the context of use is defined by a triple
consisting of the user, platform and environment entities [84]. Another variant of
adaptive UIs are adaptable UIs, which can be tailored according to predefined options.
While adaptive UIs automatically react to changes in context, adaptable UIs usually
require an explicit human intervention. A key goal of adaptive UIs is plasticity, which
is the ability of a UI to preserve its usability throughout multiple contexts of use [59].

The first reference framework for multiple contexts of use applying a model-based
approach was introduced by Calvary et al. [41]. An extended version of this frame-
work with additional relationships and definitions was presented later on [42, 43],
which gave rise to the CAMELEON reference framework (CRF) [40]. The CRF has
now been accepted by the HCI community as a reference to structure and classify
model-based UI development processes, supporting multiple contexts of use [142].
Both design and run-time phases are covered by the CRF. Furthermore, support for
UI plasticity is proposed via ontological models and the use of observed models at
runtime [42]. The adaptation metamodels provide tools to specify the appropriate re-
action on context of use changes. The CRF structures the development life cycle into
four levels of abstraction which were introduced earlier and are shown in Figure 4.1.
In order to use these levels for the model-based development, CRF proposes a four
step reification process. The concepts-and-tasks model is reified into an abstract user
interface which is reified to a concrete user interface model. Finally, the concrete UI

68

4.1. Related Work

will be turned into the final user interface which is typically done via code generation
techniques.

Context of use A Context of use B

1. Task & Concepts

2. Abstract UI (AUI)

3. Concrete UI (CUI)

4. Final UI (FUI)

5. Task & Concepts

6. Abstract UI (AUI)

7. Concrete UI (CUI)

8. Final UI (FUI)

Reification Abstraction Translation

Figure 4.1: Simplified CAMELEON Reference Framework [127]

Over time, different approaches were introduced for the development of adaptive
and adaptable UIs. Some approaches focussed on providing a reference architecture,
others proposed techniques to achieve adaptive UIs and the last category introduced
new tools. We will focus on the model-based systems that introduce a practical
technique based on a reference architecture and demonstrate the feasibility of the
approach by introducing one or more tools.

A large part of the existing tools propose an IDE style UI to create adaptive and
adaptable UIs. An example can be found in Akiki et al.’s work [4], where the authors
present Cedar Studio, an IDE to support technical users in developing and maintain-
ing adaptive model-driven applications. The IDE uses the role-based UI simplifica-
tion (RBUIS) mechanism [5], which is based on the CEDAR reference architecture [3].
By using CEDAR, the system supports direct as well as indirect adaptation and allows
its adaptive behaviour to be extended. Furthermore, the architecture follows the lev-
els of abstractions suggested by CAMELEON for representing the UI models, which
makes it possible for the IDE to offer control of the UI at all levels of abstraction using
visual design tools. Next to visual design tools, Cedar Studio also proposes code edit-
ing tools for the extensible adaptive behaviour. It provides support for model design
as well as automatic generation and synchronisation between models. The design tool
provided for the Task models uses the widely adopted ConcurTaskTree (CTT) [164]
notation to model the tasks, as shown in Figure 4.2a.

The first design tool to model CTTs was presented by Mori et al. [151] and called
the ConcurTaskTrees Environment (CTTE). It supports the creation, editing and
analysis of task models as well as a simulator to analyse the dynamic behaviour of
the task models. A few years later, Paternò et al. [167] introduced the MARIA

69

Chapter 4. Reference Framework and Conceptual Model

(a) Task modelling with CEDAR Studio [4] (b) Abstract UI model from IdealXML [206]

Figure 4.2: Adaptive model-based solutions

language and tool. Using MARIA, AUI and CUI models can be generated from a
CTT task model. The associated MARIA authoring tool can be used to describe the
UIs at different levels of abstraction and has especially been developed for designing
and generating interactive web applications based on web services. The tool further
allows designers to customise the model-to-model transformations and the rules used
to transform the model into a final implementation. The use of the MARIA language
has been demonstrated by presenting the migratory Pac-Man application, where the
UI is able to follow mobile users as they change devices while maintaining the state
of the application. Nonetheless, according to the authors the tool is not yet suited
for end-user development as further usability testing is still required and additional
components should be added to make the tool usable for non-professional software
developers.

Another popular user interface description language (UIDL), called UsiXML1 (USer
Interface eXtensible Markup Language), has been introduced by Limbourg and Van-
derdonckt [127]. The language allows designers to apply a multi-path development
of their UIs, thereby allowing a user interface to be specified and produced from any
level of abstraction. This development method is also based on the CAMELEON
reference framework defining the development life cycle for multi-context applica-
tions. Many tools were presented supporting UsiXML. For example, UsiComp [89] is
a UI development and execution environment based on UsiXML allowing designers to
create models which can be modified at design and runtime. It produces UIs that are
adapted to different platforms depending on the platform model. The editor shows
the different models within a single document-style panel, which makes it less flexible
and more difficult to use for large-scaled systems.

1http://www.usixml.org/en/home.html?IDC=221

70

http://www.usixml.org/en/home.html?IDC=221

4.1. Related Work

The different UsiXML-based tools target different phases of the CRF abstraction
levels, meaning different phases of the UI development process. Some tools were
introduced for the AUI level, such as IdealXML [206] that creates abstract UI models
from task and domain models as illustrated in Figure 4.2b. Other tools focus on
the CUI level, including SketchiXML [62, 63] which is used to generate CUI models
from hand-drawn sources, VisiXML [216] that generates CUI models from vectorial
drawings, and GrafiXML [150] a graphical high-fidelity editor to design CUIs by drag-
ging and dropping widgets. These three tools range from low-fidelity to high-fidelity
prototyping. Finally, there is a category of tools for rendering the final UI (FUI), such
as FlashiXML [21], which is a UI generator using UsiXML as source language and
Macromedia Flash as target language and JaviXML which renders CUI UsiXML files in
Java. A complete overview of the UsiXML tools can be found in Vanderdonckt [214].
While UsiComp may still be an early-stage research prototype, it is the only one of
the presented UsiXML tools that supports all levels of abstractions. Model-to-model
transformations as well as UI adaptation rules are written in the Atlas Transformation
Language (ATL) [117]. The rules can, for example, be used to adapt the UI models
to different platforms. An ATL transformation is also used to convert the CUI to
Java code.

Inspired by multiple research domains and based on the CAMELEON’s abstraction
levels, the Multi-Access Service Platform (MASP) has been created to address the
deployment and run-time issues when developing user interfaces in smart environ-
ments [181, 29]. MASP provides support for the creation of adaptable [197], dis-
tributed [27], synchronised [26] and multimodal [28] UIs based on an abstract de-
scription language. Based on this abstract description of content and interactions, it
can generate the user interfaces in languages such as HTML, WML, and VoiceXML.
MASP uses CC/PP-based [119] device capability detection to detect the device ca-
pabilities at runtime, which allows the generation of UIs by taking screen size, the
supported media and user preferences into account. Furthermore, MASP provides
a layouting tool [80] for generating the layout models, a task tree editor and a task
tree simulator. However, MASP’s tools only support basic pre-defined adaptations
applied on a box-based layout and do not support the definition of visual and code-
based adaptation rules which could allow more layout optimisations.

A model-based approach has been presented in GUMMY [148], a multi-platform
GUI builder that can generate initial designs for a new platforms based on existing
UIs for the same application. The prototyping of the multi-platform GUIs is done in
the same way as in traditional GUI builders (e.g. Visual Studio1). While designers
prototype their UI, GUMMY builds a platform-independent representation of the UI.
This allows GUMMY to hide the levels of abstractions from designers, who can then

1https://visualstudio.microsoft.com

71

https://visualstudio.microsoft.com

Chapter 4. Reference Framework and Conceptual Model

operate on the CUI level—which they know best—and hereby have more control over
the UI. The underlying language used for the generated models is the User Interface
Markup Language (UIML) [1], which is an XML-based language for representing
CUIs. GUMMY still lacks some important features. It only allows the design of user
interfaces with a single screen and there is no way for designers to specify how the UI
should behave when resized at runtime. Furthermore, due to the fact that designers
can only work on the CUI level, some characteristics of models from other abstraction
levels (such as the temporal operations on CTT tasks models) are not easy to deduce.

Figure 4.3: Model-driven architecture for self-adaptive UIs [223]

Based on adaptability properties for software systems [191], referred to as
self-* properties, Yigitbas et al. [223] present how these properties can be applied
to the domain of self-adaptive UIs. Such UIs are able to adapt to the context of use
at runtime using these self-* properties. Yigitbas et al. [224] introduced a model-
driven architecture consisting of three parallel development paths, which is illustrated
in Figure 4.3. The first path addresses model-driven development through the use
of an AUI and domain model which are transformed into a final UI. The second path
has been added to support adaptation while the last path is meant for context man-
agement. The authors further provide an IDE called Adapt-UI for the model-driven
development of self-adaptive UIs. The Adapt-UI development environment provides
different modelling views. One view is for UI modelling by using IFML1, another view
is for context modelling by using ContextML and the last view is for adaptation mod-
elling with AdaptML. Based on these different models, UI code is generated that is
coupled with adaptation services and integrated in an overall UI framework, which
allows run-time UI adaptation realised by an automatic reaction to changing context
of use parameters [223, 224].

A broader overview about the history of MBUID in the context of adaptive UIs can
be found in the work of Akiki et al.[6].
1https://www.ifml.org

72

https://www.ifml.org

4.1. Related Work

Modelling of Cross-Device User Interfaces

In this section we look at models for cross-device and distributed user interfaces,
where UIs can not only be generated for multiple devices—as we have seen in the
previous section—but can also be split up and synchronised across various devices.
Similar to our previous section, we focus on model-based systems that demonstrated
their feasibility by introducing use cases.

Balme et al. [14] presented CAMELEON-RT, one of the first architecture reference
models which referred to the term distributed user interfaces. The model can be used
to compare and reason about existing run-time infrastructures as well as to create
future run-time infrastructures for distributed, migratable and plastic user interfaces.
The CAMELEON-RT architecture reference model consists of three layers, the in-
teractive systems, the Distribution-Migration-Plasticity (DMP) middleware and the
platform layer. The DMP layer is the core of the architecture and provides mecha-
nisms and services for DMP UIs. Based on this architecture CamNote (CAMELEON
Note), a distributed slides viewer which is able to run on multiple platforms, and
I-AM (Interaction Abstract Machine), a platform manager supporting the dynamic
configuration of resources across different workstations, have been developed. The
architecture targets the three context of use pillars and can be considered as general
purpose due to its implementation neutrality. All levels of abstraction are supported
since it follows the CAMELEON reference framework.

In the same year and based on the concepts of DUIs and MBUID, Vandervelpen
and Coninx [217] presented an approach to add support for UI distribution to their
Dygimes model-based runtime environment that dynamically generates user interface
for mobile devices and embedded systems. Dygimes [52] has originally been created to
generate UIs for different kinds of devices at runtime by using task specifications [164]
that are combined with XML-based Abstract User Interface building blocks. The en-
visioned model extensions consists of adding distributed event controllers, real loca-
tion transparency, tool support and distributed layout/topology management. A year
later, the same authors took a different approach, one that does not rely on a new
methodology or ontology, but relies on a suitable description in order to transform
functionality of native applications into web interfaces and focusses on the dynamic
distribution of these web interfaces [218]. RelaxNG1 schemas are used to describe
the services offered by native applications and from these schemas the XHTML-based
user interface is generated. Using light-weight HTTP-based daemon as a distribution
manager, the interface can be distributed manually or automatically among hetero-
geneous devices. This allows designers to distribute web interfaces with a minimum

1http://www.relaxng.org/spec-20011203.html

73

Chapter 4. Reference Framework and Conceptual Model

effort. The authors [134] later concluded that a structured high-level user interface
description language (in this case HTML) is most suitable to create DUIs.

Going to the field of ambient intelligence, Luyten et al. [133] presented the MoDIE
(mobile distributable interface engineering) platform [134], a tool to design UIs for
ambient intelligent environments by following a task-centred model-based approach.
With UI completeness and continuity as main properties in mind, the authors provide
tools for the visualisation of the task allocation environment and simulation of the
execution of the tasks. The authors introduced the notion of a situated task in
order to model how a task can be distributed in subtasks on different platforms in
the same environment over time. The task allocation is visualised by the tool in
a 3D environment as depicted in Figure 4.4a. Luyten et al. further envisioned to
integrate MoDIE with model-driven engineering to create a complete environment
for designing and testing distributed user interfaces. Another system focussing on
the distribution of tasks is FlowiXML that introduced a series of workflow UI patterns
for distributing tasks to one or many resources [88]. In contrast to MoDIE, FlowiXML
has already been integrated in a multipath UI development process using UsiXML [127]
and validated with a case study.

Some adaptive UI approaches evolved towards systems that include user interfaces
that can be distributed across devices. Manca and Paternò [136] extended the MARIA
language to provide support for the description of distributed user interfaces. Unlike
Vandervelpen and Coninx [217], who focus on the AUI level, Manca and Paternò
support the UI specification at the CUI level in order to facilitate the generation
of the corresponding implementation. Next to supporting GUIs, devices using other
modalities, such as voice and touch, are also supported. A few years later the authors
also proposed an authoring tool exploiting the distributed MARIA language to allow
the distribution of a UI at different granularity levels [137]. They presented the
potential of their solution with a variety of distribution scenarios and by allowing
dynamic end-user customisation of the distribution.

A few months before the introduction of the distributed MARIA tool,
Melchior et al. [146] already proposed true DUI support based on a model-based
approach as well. The approach contains three pillars, the models for DUIs along
with the specification language to express these models, the step-wise method for
modelling the DUIs and an envisioned software that supports this step-wise method.
The platform, user and environment model are used to represent the context of use.
In order to model the distribution of UIs, a CUI model which includes the distribution
dimensions and is able to express any DUI element in an XML-compliant format is
used. Furthermore, a set of distribution primitives are defined which will operate on
the CUI models and enable the distribution of UI elements. A formal language to
express these primitives is introduced as well and is shown in Figure 4.4b. Using this

74

4.1. Related Work

(a) Task distribution configuration in MoDIE [133] (b) Extra-UI by Melchior et al. [146]

Figure 4.4: DUI model-based solutions

language, distribution scenarios can be created for automatic and manual distribution
via a command line interface serving as extra-UI. Melchior et al. illustrate this method
with two DUI applications, a Pictionary and a Minesweeper game, which were then
incorporated in a larger DUI Game of the Goose. With this approach the distribution
of UIs is supported at design time and run time. A few years later, Melchior [145]
introduced his toolkit for creating DUIs, called the JayTk, which is built on top of
Beernet [144] to allow peer-to-peer distribution. JayTk provides different levels of
granularity for UI distribution, namely action/service, widget, windows and applica-
tion. Using this toolkit, designers and developers can create applications that support
dynamic distributed graphical user interfaces and that can be used on multiple de-
vices. This technology has been used by Melchior’s Spin-off called Usidistrib1, which
extends current applications to support distribution and mobility across devices. In
contrast to Manca and Paternò [136], Melchior et al. [146] focus on GUIs and did
not test other modalities such as voice.

As introduced earlier, a system which supports voice-based interactions is
MASP2 [25]. The authors first introduced a framework for the creation of multi-
modal UIs for smart home environments. Based on this framework, they proposed a
model-based user interface architecture called MASP, whose core is a set of UI models
representing the interaction on different levels of abstraction. Based on the context of
use, the UI is derived from the run-time model, which is then distributed and adapted
across devices that support different modalities. Afterwards, MASP coordinates input
and output and keeps all UI parts synchronised [188]. MASP has been deployed in the
Service Centric Home Project and different multimodal applications [220], including

1http://www.usidistrib.be
2http://www.dai-labor.de/ngs/abgeschlossene_projekte/masp

75

http://www.usidistrib.be
http://www.dai-labor.de/ngs/abgeschlossene_projekte/masp

Chapter 4. Reference Framework and Conceptual Model

a cooking assistant [28], an energy assistant [188] and a meta user interface [187].
However, according to Melchior [145], MASP is not providing any choice regarding
the displayed UI, offers a limited multi-user interaction and it is not possible to control
the distribution granularity.

More recently, Tesoriero and Altalhi [211] proposed a model-based approach to de-
velop applications that exploit coupled-displays ecosystem. The authors propose the
concept of Distributable User Interfaces (DeUIs), where users can distribute Interac-
tion Objects (IOs) across Interaction Surfaces (ISs). Hence, instead of sharing the
whole screen, users can share IOs, such as labels, buttons and frames across displays,
which allow more flexibility, privacy, a higher granularity and multitasking. To en-
able such a UI distribution, Tesoriero and Altalhi extend the CAMELEON Reference
Framework (CRF) models and metamodels to integrate UI distribution models. In
order to create, edit and validate UI distribution models, a graphical model editor was
developed as an Eclipse feature based on the Eclipse Modeling Framework (EMF)1.
The models are used as input parameters for the model-to-text transformation that
generates the source code of the web applications. The code runs on the User In-
terface Distribution Framework, which serves as extra abstraction layer to isolate the
implementation of the UI distribution. This application is called distributable by the
authors, because it can either run on the devices as standalone version or be dis-
tributed across devices. While distributed UIs require more than one device or screen,
DeUIs does not require more than one device to be able to run.

Modelling of IoT Environments

In our background chapter we have seen that a lot of research has been done in the
IoT domain in order to promote interoperability among IoT devices. IoT environments
are characterised by a hight degree of heterogeneity, which is addressed by certain
platforms by proposing models and reference architectures abstracting the functional
and non-functional elements of IoT systems [47].

Bassi et al. [18] introduced the IoT Architectural Reference Model (IoT ARM), which
provides a common structure and guidelines to handle the core aspects of the de-
velopment, usage and analysis of IoT systems. The model consists of submodels.
The foundation of the IoT reference model is the domain model which is illustrated
in Figure 4.5. The domain model introduces the main concepts of the IoT including
Devices, Physical Entities, Services and Virtual Entities. Virtual entities
are the digital representations of physical entities, also referred to as virtual coun-
terparts. A service offers the functionality for interacting with network or device
Resources associated with physical entities. Next to the IoT domain model, the

1https://www.eclipse.org/modeling/emf

76

https://www.eclipse.org/modeling/emf

4.1. Related Work

Figure 4.5: IoT ARM domain model [18]

IoT reference model includes the IoT information and functional model. The latter
also consists of the IoT communication model and IoT trust, security and privacy
model. Based on the IoT ARM, Bassi et al. provide a reference architecture to
generate concrete IoT architectures. A process for generating concrete architectures
is presented in Chapter 6 of Bassi et al.’s book [18].

A model-driven approach using IoT ARM as starting point, has been presented by
Costa et al. [56], who introduced a design and analysis process together with a
framework to help designers model their IoT applications and verify the corresponding
Quality of Service (QoS) properties. The framework consists of a SysML4IoT and
a SysML2NuSMV component. The SysML4IoT is a SysML profile1 based on the
IoT-ARM [18] and is shown in Figure 4.6. Most concepts depicted in the figure come
from the IoT-A reference model such as the Devices and Services that are part
of the System as well as the Physical Entities and Users. Other concepts have
been added to comply to the ISO/IEC/IEEE 15288 standard2. The SysML2NuSMV
component is a model-to-text translator which automatically converts a model and
its QoS properties into a NuSMV (symbolic model verifier) program. The approach
has been evaluated via a proof-of-concept IoT application for energy consumption.

1https://sysml.org
2https://www.iso.org/standard/63711.html

77

https://sysml.org
https://www.iso.org/standard/63711.html

Chapter 4. Reference Framework and Conceptual Model

Figure 4.6: Partial SysML4IoT profile representation [56]

While Costa et al. [56] focussed only on one development phase, namely the analysis.
Pramudianto et al. [175] propose an MDD approach for generating skeleton code.
The authors present a perspective of an IoT architecture that decouples the domain
modelling from the implementation of IoT technology, in order to allow the knowledge
of the domain to be engineered by domain experts, while technology experts can focus
on the implementation. A domain modelling tool has been developed so that domain
experts can design domain models which contain virtual objects that can be linked
to IoT implementations. Once the virtual objects are linked, prototype code in Java
is generated and can be manually refined. The architecture and the tool have been
evaluated using a software walk-through technique and have shown potential to ease
the development of IoT applications.

Some authors focus on the communication between IoT devices, such as
Fleurey et al. [82], who proposed a model-based approach to automatically gen-
erate efficient communication APIs in order to exchange messages between resource-
constrained devices. The approach is based on a concise ThingML1 description of
the messages.

1http://thingml.org

78

http://thingml.org

4.1. Related Work

Focussing on the communication as well, Mainetti et al. [135] extended the topic
approach from the MQTT publish-subscribe protocol [129] by proposing the Web
of Topics (WoX), a conceptual model for the IoT. The aim is to shorten the gap
between the design and the solution domains in an IoT context. In WoX an IoT entity
is defined as a set of Topic-Role couples. The authors focussed on the emerging Web
of Things (WoT) paradigm that abstracts the heterogeneity of embedded devices to
facilitate their integration and interoperability. WoX can be seen as an abstraction
layer between the WoT and the user applications, made to accelerate the development
of IoT applications by hiding the communication protocol details. A few years later,
the Wox APIs have been published on the WSO2 [86] Enterprise Service Bus to
exploit the key benefits of an enterprise architecture (e.g. security, scalability and
interoperabilty.) [39].

Conzon et al. [53] identified a lack of toolkits that easily enable developers to create
and evaluate IoT prototypes. Therefore, the authors extends the work on the ebbits
platform architecture [34]. While the ebbits platform provides features for the inte-
gration of things by exposing them as internet web services, application developers
still need in-depth knowledge of IoT technologies in order create system that uses
these things. Conzon et al. propose a model-driven development toolkit based on
the semantic discovery service that allows developers to dynamically select and lo-
cate available resources and devices. It also provides a graphical interface to create
mashup applications.

Instead of focussing on the executability of IoT applications like in previously described
systems, Brambilla et al. [33] focus on the user interaction. The authors’ work is
meant to complement such previously described systems. They provide IoT extensions
to the IFML language [32], introduce some UI design patterns for the modelling of
user interactions with IoT systems and include the implementation of a code generator
prototype tailored for IoT application development. An example of the user interaction
model is shown in Figure 4.7. While previous MDD IoT solutions could provide the
access layer to the devices, this solution can be used for the model-driven specification
and execution of the application layer.

Some authors focus on sensor networks, such as Patel and Cassau [162] who propose a
development methodology for IoT application development inspired by model-driven
development and building upon work in sensor network macroprogramming. The
methodology defines a sequence of steps to be followed to develop IoT applications
by a separation of concerns. Four concerns have been identified, namely, domain,
functional, deployment and platform. The concerns are addressed by dividing the
responsibilities of stakeholders into different roles, namely a domain expert, software
designer, application developer, device developer and network manager. The devel-
opment methodology is implemented as a concrete development framework and is

79

Chapter 4. Reference Framework and Conceptual Model

Figure 4.7: Example of a user interaction model of an application from
Brambilla et al. [33]

depicted in Figure 4.8. The framework provides three modelling languages for ab-
stracting the complexity of IoT applications and offers automation techniques for
different development phases. The latter includes code generation, task mapping,
and linking techniques. According to the conducted evaluation, this methodology
improves the productivity of the stakeholders of IoT applications and reduces de-
velopment effort. In contrast to most of the previously described approaches, the
approach supports the entire life cycle phases of the application development pro-
cess.

Likewise, Nguyen et al. [159] also focussed on sensor networks and introduce
FRASAD, a FRAmework for Sensor Application Development which implements an
MDA approach to manage the complexity of IoT applications and aiming to improve
their reusability, flexibility and maintainability. The authors introduce a node-centric,
multi-layered software architecture which hides the low-level details and provides a
higher level of abstraction. At the highest abstraction level, a rule-based program-
ming model and a domain-specific language (DSL) are used to describe the appli-
cations. In order to facilitate the design, implementation, testing and optimising
of the IoT applications, a GUI, code generation components and supporting tools
have been included. Building upon their previous work [160], the authors created this
framework to demonstrate and evaluate their solution. Two case studies illustrated
that FRASAD enables a fast way to develop IoT applications by reducing the cost of
dealing with heterogeneity of the devices and complexity.

80

4.1. Related Work

Figure 4.8: Conceptual framework for IoT application development [162]

While the previously described systems sound promising, they all omit the support for
the run-time adaptation of the IoT system. Focussing on the adaptivity of IoT sys-
tems, Hussein et al. [108] presented a model-driven approach to facilitate the mod-
elling and development of adaptive IoT systems. By following the SysML4IoT profile
presented by Costa et al. [56], the design model is created and a publish/subscribe
pattern [118] has been adopted to specify environment information. Further, a system
management component [191] has been introduced to support the adaptive behaviour.
In order to model this runtime adaptive behaviour the state machine approach [109]
is adopted. Depending on the design model, an IoT platform model is generated
and based on this model some Java code is generated and deployed to the smart
environment.

Ciccozzi and Spalazzese [79] also propose a model-driven adaptive approach for
IoT applications. The authors introduce MDE4IoT, a framework supporting the
modelling of things and the self-adaptation of Emergent Configurations (ECs) of
connected IoT solutions. Emergent Configuration has been defined by the authors
as “a set of things with their functionalities and services that connect and coop-
erate temporarily to achieve a goal”. An interesting characteristic to notice from
the MDE4IoT framework is that the physical devices can be represented at different

81

Chapter 4. Reference Framework and Conceptual Model

granularity levels. A physical device can be represented either as a black box with a
set of available features or as a complex device composed of smaller pieces, such as
sensors, actuators and processing units. The granularity level depends on the pur-
pose of the models and their intended use, and the capabilities of the involved model
transformations.

While previously mentioned systems do not provide solutions for end users, Johnsson
and Magnusson [116] introduced their graphical editor for end users that follows an
inverted GUI development approach. The approach focusses on presenting func-
tionality as graphical components in a GUI. In contrast to the classic workflow of
conventional graphical editors where users usually first build their graphical interface
and then attach functionality to it, the authors’ editor lets users first choose the func-
tionality and then attach a GUI component to it from a list of suggestions. Johnsson
and Magnusson follow a model-based approach by presenting a language to describe
the abstract user interfaces, introducing the editor for concrete user interfaces and
implemented interpreters to render the final UIs. In order to facilitate the commu-
nication with smart devices, the authors use the PalCom middleware framework [85]
allowing to combine services offered by different devices and to send commands to
the devices. The graphical editor which is shown in Figure 4.9 therefore only works for
creating and editing GUIs for PalCom systems. It has been evaluated and compared
to Android Studio by engineering students. The results of the evaluation showed that
the authors’ editor was more efficient. Further, the scalability has been evaluated by
creating mobile applications for advanced home care scenarios. However, the editor
has not yet been tested by end users and thus still requires further evaluation.

Figure 4.9: Graphical GUI editor building on the PalCom User Interface Markup
Language (PML) [116]

82

4.1. Related Work

Summary and New Requirements

Various systems have been developed to support model-based user interface devel-
opment in multiple domains. We briefly introduced the ones most relevant to our
research, which include MBUID in the adaptive, cross-device and IoT domains. Many
solutions in the adaptive and cross-device research domains follows the different lev-
els of abstractions of the CAMELEON Reference framework [40]. Some focus on
parts of the UI development process by providing tools that only support certain ab-
straction levels, while others such as Cedar Studio IDE [4], CAMELEON-RT [14] or
MASP [24] provide an approach that supports all abstraction levels. Further, the CRF
has sometimes been extended in order to, for instance, support self-adaptive UIs [223]
or distributable UIs [211]. In order to model IoT environments, a couple of solutions
follow the IoT ARM model, including Costa et al. [56] and Hussein et al. [108].
The WSO2 reference architecture [86] is used as starting point to build some of the
IoT systems, as done by Mainetti et al. [135], but most of the remaining IoT systems
all provide their own framework and/or model to design IoT solutions.

Overall, a large number of presented solutions focus on a particular research domain
(i.e. adaptive UIs, XDI or IoT), with some exceptions such as MASP and the dis-
tributed MARIA, which span over multiple research domains including adaptable and
distributed UIs. Other exceptions are the MDE4IoT framework [79] and the model-
driven approach from Hussein et al. [108], which covers adaptive IoT solutions. How-
ever, to the best of our knowledge none of the existing systems covers both the XDI
and IoT domains and provides support for XD/distributed and IoT UIs that can be
adapted according to the context of use. Therefore, in Section 4.2 and Section 4.3
we will introduce a reference framework and conceptual model that unify the different
concepts from frameworks and models of the related work’s adaptive, cross-device
and IoT solutions. Besides, also note that existing model-based solutions commonly
address designers and developers, with less support for end-user development, with
Johnsson and Magnusson’s tool [116] forming an exception.

Based on the presented related work, we now review and finalise our existing require-
ments. As we have seen with adaptive interfaces, the user interfaces adapt based on
a given context of use. In order to express this adaptation to a certain context of use,
we will adopt the term context awareness as done in the literature. We therefore re-
formulated our non-functional requirement R6.2 accordingly and thereby enable more
than device- and user-based adaptation only. After that, we continue with the intro-
duction of some new non-functional: R4.3 and functional: R2.3 subrequirements.

83

Chapter 4. Reference Framework and Conceptual Model

Requirement 6.2 (R6.2). Support for context awareness A user interface should
adapt to the platform (device) on which it is accessed, the user who is using it and
the environment in which it is utilised. For example, the interface should adapt to
Lucy who is red-green colour blind by replacing the colours red and green with other
colours, as shown for the leaving home application where her buttons are shown
in blue and orange. The buttons are also shown in a larger size, as she uses the
application on her phone instead of a smartwatch. Further, the environment could
play a role by, for example, making the brightness of the interface lower when the
application is used in a darker environment.

Requirement 4.3 (R4.3). Offer extensibility of adaptive behaviour and distribution
configurations Related to the extensibility core requirement where we already de-
fined extensibility at the level of communication protocols, devices and user interfaces
in R4.1, we add extensibility at the level of adaptive behaviour and distribution config-
urations, which should be extensible as well. As argued by Akiki et al. [6], extensibility
is an important concept when it comes to UI development and therefore support ex-
tensibility of adaptive behaviour in Cedar Studio, which is also partially supported by
UsiComp [89], MARIA [167] and MASP [24]. Extensibility also enables the system
to evolve over time instead of having static configurations which cannot be changed.
Our solution should therefore provide the possibility to add new adaptive behaviour,
and should not be dependent on a fixed configuration of the UI distribution either,
but allow run-time UI distribution [145]. For example, a specific UI distribution as we
have seen in the grocery list application in our use case scenario should be able to be
reconfigured at runtime so that if necessary Lucas could distribute the memos from
his fridge to his smartphone as well.

Requirement 2.3 (R2.3). Offer fine granularity UI distribution Related to the sup-
port for distribution of user interfaces across devices mentioned in R2.2, we specify
that this UI distribution should be possible at a fine granularity level. Regarding distri-
bution in the context of CRF’s levels of abstractions, Demeure et al. [70], for example,
mentioned that any part or whole of the CUI could be distributed. Therefore, graph-
ical containers as well as individual components (e.g. text fields, buttons and other
UI elements) are subject to distribution. The authors further describe the notion
of splittable and unsplittable components to indicate whether or not a component
could be split across devices. Such distribution at a fine granularity enables a more
flexible distribution configuration where not only entire UIs can be distributed, but
also smaller parts of a user interface, as supported in the distributed MARIA [136],
CAMELEON-RT [14] and Melchior’s tool [145].

84

4.2. The eSPACE Reference Framework

4.2 The eSPACE Reference Framework

In order to allow end users to build the user interfaces presented in Chapter 2, we
now present our multi-layered end-user Smart PlACE (eSPACE) reference framework
illustrated in Figure 4.10, which unifies cross-device and IoT user interfaces based on
our requirements. The framework is further based on our analysis of related work and
has mainly been inspired by the CAMELEON reference framework (CRF) [40].

Towards a Conceptual Framework and Metamodel for
Cross-Device Interaction & Smart Environments

Towards a Conceptual Framework and Metamodel for
Cross-Device & Physical-Digital Interaction Environments

CONTEXT A, USER B

Active Component

UI Elements

DComp

Final User Interface

AC 1

AC 2 AC 4

AC n

UIe 3

UIe nUIe 1

UIe 2

AC 3

AC 5

AC 1

AC 3

UIe 1

AC 6

UIe 3

DComp 2

AC 4

UIe 3

DComp 3DComp 1

AC 2

UIe 1

AC 5

AC 6

UIe 2

DComp 4

AC n

UIe n

DComp 5

Any Ambient Objects

DComp 2

DComp 3

DComp 4

DComp
1

CONTEXT A, USER B

Tasks

UI Elements

Distributed Components

Final User Interfaces

AC 1

AC 2

AC 4

AC n

UIe 3

UIe n

UIe 1

UIe 2

AC 3 AC 5

AC 1

AC 3

UIe 1

AC 6

UIe 4

DComp 2

AC 4

UIe 3

DComp 3DComp 1

AC 2

UIe 1

AC 5

AC 6

UIe 2

DComp 4

AC n

UIe n

DComp 5

Any Ambient Objects

DComp 2

DComp 3

DComp 4
DComp

1

Navigations

Triggering actions

LEGEND

Compositions

Figure 4.10: eSPACE reference framework

Similar to CRF, we decompose the UI development process into different layers of
abstraction to facilitate the UI design process. In contrast to CRF, we do not in-
clude transformations between each layer of abstraction but chose a compositional
approach [49] which does not require specific mapping techniques for associating el-
ements from one model to their related counterpart(s) in another model. The CRF
provides two ways to associate elements of different layers, namely linking and de-
riving. With linking associations are made between existing elements of two models,
while with deriving elements from one model are constructed based on elements in
another model [97]. Compared to the CRF we only provide one way to associate
elements from different layers, namely using relations which are often in the form
of compositions, with the triggering actions relation forming an exception between
the UIes and tasks layer, as explained later on. The reason behind this choice is
that we do not foresee the use of different models per layer of abstraction but rather
one model that connects the different layers. The use of one model combining the
different layers in order to form the final user interface model, simplifies the task for

85

Chapter 4. Reference Framework and Conceptual Model

designers and developers, as they do not need to learn different types of modelling
languages to build their UIs. In addition, designers do not have to pay attention to
the mapping of the elements between each of the layers. However, with such an ap-
proach models cannot always exist in an independent way (since they are composed
out of elements of previous layers) as is the case in the CRF, where models can be
created at any layer of abstraction. Note that a last important distinction with the
CRF is the FUI layer, which in CRF refers to the source code generated from a CUI,
but in the eSPACE reference framework the FUI is part of the model and should still
be transformed into an executable program.

Given requirement R5, regarding reuse of UI elements (UIes) and functionality, we
aim for a loosely coupled interaction between the UI elements and their functionality
or tasks. This is achieved by putting the tasks that a UI should perform and the
UI elements in separate layers. By doing so, a UI can be reused for multiple tasks and
a task can be coupled with different UI elements depending on the users’ preferences.
The layer containing the tasks is called the tasks layer. We represent tasks as active
components (ACs), a concept that has been introduced by Signer and Norrie [205].
Each AC represents a piece of program code that executes a certain action, such as
turning on the light. A formal definition of an active component is given by Signer
and Norrie [204]:

Definition 4.1 – Active Component

“The concept of active components is used to link to pieces of program code
that may either be applications in their own right or bridges to existing appli-
cations [204].”

The advantage of using ACs is that one can trigger some application logic by simply
linking to an active component from a UI element or another AC. More importantly,
an active component does not have to implement the application logic itself but
can also act as a proxy for some third-party applications as well as physical objects
(e.g. a light). For example, a number of dedicated active components have been
implemented in the PaperPoint presentation tool in order to call some functionality
of Microsoft PowerPoint [203]. Another example is the Lost Cosmonaut installation,
where the interaction with RFID tagged physical objects would trigger some changes
in the ambient light setting as well as the ambient sounds [219]. ACs can be linked to
each other rather than to a UI element in order to define and execute more complex
interactions. For example, an AC checking the scratching sensor can be linked to
an AC that sends notifications, so that Lucas gets notified when the cats might
be scratching his couch. In this example we also show that ACs can capture the
functionality of both a sensor and an actuator. In order to easily promote the reuse

86

4.2. The eSPACE Reference Framework

of such linked ACs or complex tasks, a new AC can be created which is composed
of other ACs (e.g. the scratching sensor AC and the notifier AC can form a
scratching notifier AC), as illustrated in Figure 4.10 where AC 2 is composed of
AC 1 and AC 3. If Lucas now wants to reuse this new scratching notifier AC in
other applications, he can just refer to it as AC 2. The notifier AC is a generic notifier
that can be reused in various applications with different configurations. Another more
complex example is the combination of a touch AC and a motion AC to create
the touch-and-throw AC, which is used by the couple in our use case scenario to
distribute images from their phone to the TV in the presented scenario. Figure 4.11
illustrates how ACs and UIes can be linked with each other in order to create a part of
the cats application. The figure shows that navigating to the gallery view is possible
be using the gallery button UIe and that the touch-and-throw AC can be used
to show content from the gallery UIe on TV. Since the touch-and-throw AC runs
on the smartphone we added a link that represents ownership between this AC and
the phone and did the same for the show AC which belong to the TV.

CATS APP

Navigate to
Touch-and-throw

gesture

Gallery Button UIe

Touch-Throw AC Show AC

Gallery UIe

NavigationsTriggering actions

LEGEND

Ownership

Figure 4.11: Illustration of an interaction created by linking ACs and UI elements

Note that active components can be compared to the tasks in the task models of
CRF, but they could also be compared to services described by the IoT ARM domain
model since services expose the functionality of either network resources or smart
devices and things resources. In the same way, ACs can be holding functionality of
both third-party services and smart technologies. The term services is also used by
Johnson and Magnusson [116], who define a clear separation between UI elements
and services in their system.

The next layer is the user interface elements layer which contains the UI elements.
A UI element can, for example, be a text field, a button, a video component or even
a combination of different UI elements. These UI elements could be described with
a UIDL, in our case we plan on using HTML. As suggested by Luyten et al. [134],

87

Chapter 4. Reference Framework and Conceptual Model

HTML is one of the most suitable languages to create UIs that can be distributed.
However, in theory any language can be used to describe UIes. Note that a UIe can
also represent a physical UI, such as a light switch, a physical button, slider and so on.
Similar to the previous layer, different UI elements can be linked together to form more
complex UIs. One can use links to navigate from one UI element to another. This
can be used to navigate between different UI views, such as in the cats application
where when Lucas presses the gallery button, a link is followed to the gallery
view, as shown in Figure 4.11. Links can also be used to arrange UI elements in a
certain view. For example, the video player of the cats application could be created
by linking a video frame UI element together with a button UI element. Note that,
to add functionality to the video player, the video frame UI element should be linked
with some AC with as functionality showing the cats video stream and the button
UI element should be linked with an AC that can capture images or videos of the
video stream. In order to easily reuse such a UI composition, a new UI element can
be designed that is made out of a video frame UIe and button UIe positioned in a
certain manner. An example composite UI is shown with UIe 1 that is composed
of UIe 2 and UIe 3 in Figure 4.10. Last but not least, links can be used to give
functionality to UI elements by linking them to ACs, as explained earlier. For example,
linking a button UIe to an AC that holds code to turn on the light, will give the button
the ability to act as a light switch. While most UIes will be linked to ACs, some UIes
do not need to be linked to any functionality. A typical example of such UIes are
labels. Note that this UIe layer as well as the tasks layer are the only two layers from
which a designer can start constructing models, as they are not composed out of
elements from other layers.

The third layer, is the distributed components layer which consisting of different Dis-
tributed Components (DComps). These DComps consists of compositions created
by linking ACs and UI elements with each other. Each DComp is composed of at
least one AC or one UI element. It has the property of being distributable in real-time
and therefore holds all the information needed to distribute and synchronise its com-
ponents. We have seen from related work that such information can, for instance,
include whether or not the UIe(s) of the DComp are distributable and if they have a
distributable state as seen in Tesoriero et al. [211]. Each composition described in
the two previous layers will be part of a DComp. For example, the cats application
consists of many DComps, one contains a video frame UI that is combined with a
show video stream AC. This DComp also contains the record/capture button that is
linked to some ACs which allows the user to take pictures and record a video. Given
its “distribution” properties, the DComp can be distributed to another device, such as
a smartphone or TV in order to see the video stream from there. Distribution can
happen at different granularity levels. For example, as described in Chapter 3, for
Lucas’ grocery list application, he has chosen to distribute the top part of the fridge

88

4.2. The eSPACE Reference Framework

UI (containing only the list of groceries) to his smartphone to make it accessible via
his phone. DComps can also represent simple buttons for triggering the light, TV,
power plugs and so on. Furthermore, DComps can also be composed uniquely of ACs
without any UIes. For example, a scratching sensor AC linked to a notifier AC. These
DComps will not be visible, since they do not contain any UI elements. However, they
might, for example, be visible in the form of rules in the system, since we have seen
that rules are a popular metaphor among existing IoT solutions. In this case the rule
would be “if motion detected by the scratching sensor then trigger a notification to
Lucas”. The DComps are still device independent, which means that they are not
tied to any device at this stage and therefore their look and feel is not yet defined.

The last layer is the final user interfaces layer which contains the final user interfaces.
Once a DComp is assigned to a device it will get its look and feel depending on
the device and become part of the Final User Interface (FUI). The FUI is always
associated to one device, but it can be composed of multiple DComps that can be
arranged according to a certain layout. For example, the leaving home application
contains three simple DComps, one to control the lights, one to switch the TV on/off
and one to turn on/off the electric iron. Additionally, an application can contain
multiple FUIs, such as Lucas’ grocery list application which contains a FUI for his
smartphone and one for his smart fridge. Finally, a FUI can change depending on
the context of use. If Lucy would use Lucas’ smartwatch, the buttons of the leaving
home application would adapt to Lucy’s colour preferences. Note that, as indicated
on top of Figure 4.10, the context of use can have an influence at different layers
of our framework. For example, in the morning routine application the lights of the
living room will start blinking to signal Lucas that he should leave in order to catch his
train; so they blink depending on the expected arrival time of his train, which might
change daily depending on delays. In this case context is affecting the AC layer since
an AC is triggered depending on a certain context. The FUI layer, can be compared
to the CUI layer of the CAMELEON reference framework since it is the last layer
before transforming the models into executable code.

In this section we have introduced a framework allowing cross-device and IoT interac-
tion depending on the context of use. Our framework supports the reusability (R5) of
its different components (i.e. ACs, UIes, DComps and FUIs) in multiple applications, by
either reusing them as they are or by linking them together to form new reusable com-
ponents. We further illustrated the flexibility and extendibility (R4) of this approach
by allowing these components to be linked together to navigate between them and
create new compositions (allowing new adaptation or distribution rules to be created),
which is not supported in many existing systems. With a basic set of components
created by developers, end users could configure and link the existing components to
create new and sometimes unexpected functionality. By following such an authoring

89

Chapter 4. Reference Framework and Conceptual Model

rather than programming approach, the existing set of components can be extended
over time by end users. However, it should be noted that appropriate abstractions
need to be used to let end users manipulate the components described in our eSPACE
reference framework, since we cannot expect them to learn a modelling language. We
discussed in Chapter 2 some of the metaphors used in related work to abstract XDI
and IoT concepts and will investigate which metaphors to use according to the end
users’ mental models of XDI and IoT interactions in Chapter 5.

4.3 The eSPACE Conceptual Model
Based on the concepts introduced in the previous sections, we developed our eSPACE
conceptual model for unified customised cross-device and IoT user interfaces which
can adapt to context of use. The conceptual model is based on the Resource-
Selector-Link (RSL) hypermedia metamodel [203] and its concept of Active Com-
ponents (ACs) [205]. We chose a hypermedia model because our UI development
approach described by the eSPACE framework clearly revolves around linking compo-
nents. Further, by using a hypermedia solution we also profit from concepts intro-
duced by hypertext visionaries such as Douglas Engelbart [77] or Ted Nelson [158].
One of these concepts that is of importance for us is the transclusion introduced by
Nelson [158], enabling the reuse of data without duplication. In addition, Engelbart
was the first person to demonstrate collaborative work based on a hypertext-enabled
real-time editor in “The Mother of All Demos” [77]. Nowadays, similar ideas of real-
time editing can for example be found in Google Docs. We have specifically chosen
the RSL hypermedia metamodel due to the fact that, in contrast to other hyperme-
dia models, it is not tied to any specific domain or application, as explained in [203].
This unifying RSL hypermedia metamodel comes with attractive properties, such as
support for the loose coupling of resources via different types of links, which are
treated as first-class citizens. RSL also offers features for user and context man-
agement. Finally, it provides extensibility for domain-specific requirements through
concept specialisation in the metamodel, which we will use for our domain-specific
model that integrates the concepts presented in our eSPACE reference framework
and satisfies the requirements presented earlier in this chapter and in Chapter 2 and
Chapter 3.

Last but not least, it is import to note that our research lab has been doing research
on RSL and thus has expertise with this metamodel. While an implementation of this
model has been created in the form of iServer [201], our lab recently implemented a
new version offering some benefits as described in Section 4.5.

90

4.3. The eSPACE Conceptual Model

4.3.1 The RSL Metamodel

The main components of the RSL hypermedia metamodel are the Resource,
Selector, and Link entities, which are subtypes of the Entity entity type as shown in
Figure 4.12. Note that, we choose the ORM modelling language [101] for describing
the models, but the original RSL metamodel was based on the OM data model [203].
Given that Resource, Selector, and Link entities share the same parent Entity,
all three share the same functionality. RSL entities can, for example, have multiple
Properties, which are key-value pairs that can be used to store application-specific
(meta)data. In our case this can, for instance, be used to store the size property of
a UI element. A Resource is the simplest type of entity that is used to represent
entire information units. Since a Resource is an abstract concept, it needs to be
subtyped for supporting a variety of different resource types such as text, images or
videos. Next to resources, RSL introduces Selectors that can be used to refer to a
piece of a resource and again has to be subtyped to support concrete types of media.
A video selector can, for instance, be used to address a specific fragment of a video.
A selector can only refer to one resource, while a resource can have more than one
selector, as shown by the referred by/refers to fact type.

Structural LinkNavigational Link

Entity

LinkSelectorResource

Property

Position
Context Resolver

target of / has target

source of / has source

of / has

referred by / refers to

"ChildLink"

child of / has child

has / of
of / has

Figure 4.12: Original RSL metamodel in ORM notation [203]

The Link entity type is used to represent associations between entities. Since Links
are subtypes of Entities, they can have other links as sources or targets. RSL
links can have multiple sources and targets. Further all links are bidirectional. The
latter means that it is not only possible to find all link targets for a given source
but also to get all link sources given a certain target entity. The RSL core model
distinguishes two link subtypes, the Structural Links and Navigational Links.
By using Structural Links one can create structures to aggregate content. For
example, different UI element resources can be combined using such structural links to
form a bigger UI element resource that is structured in a certain way. The targets of

91

Chapter 4. Reference Framework and Conceptual Model

Structural Links are ordered, as shown by the objectified fact type child of/has
child that has a position value type, which allows an order in a structure. If we for
instance take this dissertation as entity, it could be encoded as a structure containing
multiple ordered target links to chapter resources using the order of appearance.
The Navigational Links are used to describe navigational relationships between
entities. They can also be used to navigate to parts of a resource (using selectors)
and structures. Other Link subtypes can easily be created if other types of links are
required.

In addition, RSL offers functionality for the context-dependent handling of entities
through the use of Context Resolvers. Each entity can be associated with context
resolvers that act as gateways determining whether an entity is available or not given
a certain context. Context resolvers can also be used on links, to set conditions on
when a link needs to be followed. For example, a structural link with multiple targets
can have different accessible and inaccessible target entities depending on a given
context. If this link would refer to this dissertation, one could change the visibility of
certain chapters depending on the person who reads it.

This leads us to the final concepts of RSL, which are related to user management
and shown in Figure 4.13. A User can either be an individual or a group. Users
can have preferences and can be granted or denied access to specific entities. This
allow access management combining access rights on individuals and groups, such as
“allow this group but without these users”. Finally, an entity is created by exactly one
individual user, who has full control over its content. A complete description of the
RSL metamodel can be found in [203].

Entity

Preference

User

(.id)

IndividualGroup

has no access to / inaccessible to

has access to / accessible toof / has

member of / has members

created / created by

Figure 4.13: Original RSL user model in ORM notation [203]

4.3.2 RSL Extensions

While the core RSL metamodel already provides us with a lot of concepts that we
need in order to fulfil our requirements and support the components described in
our reference framework, there is still some missing functionality. Therefore, we will

92

4.3. The eSPACE Conceptual Model

make a few small extensions to the original RSL metamodel. We, for example, argue
that explicit sharing of the entities with other users is something we need in order
to make our authoring tool “futureproof” and to comply to our third requirement
related to shareability. Even though users might adapt existing applications based on
their individual preferences, as Lucy did with Lucas’ applications, it might of course
be interesting to see whether some general “ideal” interaction patterns could evolve
over time as it can be seen with evolutionary processes in other domains (e.g. the
evolution of language). While it is out of the scope of this dissertation to perform
these long term studies, we would like to do a first step in this direction by offering
the necessary technical support in order to share interaction components with other
users. Another extension that we provide is the possibility to add properties on parts
of a link, such as specific sources or targets.

Source- and Target-specific Link Properties

The original RSL metamodel allows entities to have a set of properties, hence links
being a subtype of an entity also can be associated with properties. Since we want to
be able to reuse the different components introduced in our reference framework, we
will need to associate some properties of a component to its structural link rather than
to the component itself. Further, in some cases certain properties should specifically
be assigned to a certain target or source of the composition.

Record Button UIe

Property:
(align: center)

Video Player UIe

Video Frame UIe

(a) Properties on link using the original
RSL metamodel

Record Button UIe

Property:
(align: center)

Video Player UIe

Video Frame UIe

Property:
(vertical-align: top)

Property:
(vertical-align: bottom)

(b) Target-specific properties on link using the
extension to the RSL metamodel

Figure 4.14: Support for source- and target-specific link properties example

Take, for example, a video player UI element that is composed out of different
UI elements placed in a certain way using properties on a structural link. This structure
might have some common properties for its targets, as shown in Figure 4.14a, but
it will eventually need target-specific properties to form the desired UI structure, as

93

Chapter 4. Reference Framework and Conceptual Model

depicted in Figure 4.14b. However, with the current metamodel all parts of a link have
the same properties, there can be no properties defined over the individual sources or
targets of a link in the context of their link membership.

Structural LinkNavigational Link

Entity

Link

Property

Position

target of / has target

"TargetLink"

source of / has source

"SourceLink"

has / of

"ChildLink"

child of / has child

has / of

has / of

has / of

has / of

Figure 4.15: Extended RSL properties

In order to allow source- and target-specific link properties, we objectified
the source of/has source and target of/has target fact types between the
Entity and Link entity types, and added a has/of fact type representing the re-
lationship between a SourceLink or TargetLink and a Property. The same rela-
tionship has been added between ChildLink and Property. Figure 4.15 shows this
extension to the RSL metamodel. Properties can be reused as shown in Figure 4.14
and can now be used in the two ways demonstrated in this figure for source as well
as target/child links of both navigational and structural links.

User-Entity Sharing

As explained earlier in this section, we need support for explicit sharing of content
across users of the system. While reuse and collaboration is already present in the
RSL metamodel, we need to go beyond user access management and ownership. As is,
only the creator of an entity can decide to make this entity accessible or inaccessible
to certain users. In some cases, one might want to grant more privileges of their
created entity to other users. For example, if Lucas has created an application that
acts as a remote controller to their TV and shared it with Lucy, Lucy might want to
share this application as well with her guests at home when Lucas is not present.

More importantly, we also want to make a distinction between giving access to an en-
tity and sharing an entity with other users. Imagine the entity being the leaving home
application that has control of Lucas’ smart lock (of his door), TV, electric iron and

94

4.3. The eSPACE Conceptual Model

lights. Lucas wants to make this application accessible to the public since he thinks
that others might want something similar. In this case, the control over Lucas’ smart
devices and things should not be made available to the public. On the other hand,
when Lucas shares this application with Lucy, he wants to preserve the control over
the different devices and things. This can be used to ensure some privacy, since no
sensitive information will be available when users make entities accessible for each
other.

For this reason, we added the sharing relationship to the RSL metamodel, as shown
in Figure 4.16. The new ternary relationship allows a user to share many entities with
many users. Note that if a user A shares an entity with user B this entity should
also be accessible to user B. Further sharing is not possible if the user does not have
access to the entity.

Entity

Preference

User

(.id)

IndividualGroup

has no access to / inaccessible to

has access to / accessible to

of / has

member of / has members

created / created by

… shares … to …

Figure 4.16: Extended RSL user model

4.3.3 Domain-specific Conceptual Model

Based on the concepts we have seen in related work, the reference framework and
requirements, we present our domain-specific conceptual model as domain-specific
extension of the RSL metamodel. Our model is shown in Figure 4.17, where the core
RSL components are shown in black and our extensions are in italics and coloured in
blue.

In our domain-specific extension we differentiate between the following types
of resources, which are the Application, Final User Interface, DComp,
UI Element, Active Component, Parameter, Property Set, Layout, Device,
Service, Context and Physical Object resource. Note that we use the term
Physical Object to refer to things as well as physical user interfaces (PUIs). As
mentioned in the beginning of Chapter 2, IoT objects can come with new PUIs,
such as the Nest Learning Thermostat. Conforming to our reference framework, an
Application consists of one or more FUIs, which in turn are composed of at least
one DComp that contains at least one AC or a UI Element. Further, an AC can be

95

Chapter 4. Reference Framework and Conceptual Model

A
c
tiv

e
 C

o
m

p
o

n
e

n
t

P
h

y
s
ic

a
l O

b
je

c
t

U
I E

le
m

e
n

t

P
a

ra
m

e
te

r
N

a
m

e

V
a

lu
e

T
y

p
e

S
tru

c
tu

ra
l L

in
k

N
a

v
ig

a
tio

n
a

l L
in

k

F
in

a
l U

s
e

r In
te

rfa
c
e

A
p

p
lic

a
tio

n
D

e
v

ic
e

D
C

o
m

p

E
n

tity

L
in

k

S
e

le
c
to

r
R

e
s
o

u
rc

e

P
re

fe
re

n
c
e

U
s
e

r

(.id
)

In
d

iv
id

u
a

l
G

ro
u

p

P
ro

p
e

rty

P
o

s
itio

n

C
o

n
te

x
t R

e
s
o

lv
e

r

L
a

y
o

u
t

P
ro

p
e

rty
 S

e
t

O
w

n
e

r L
in

k

S
ig

n
a

l L
in

k

V
a

lu
e
 R

a
n

g
e

S
e

rv
ic

e

P
a

ra
m

e
te

r L
in

k

C
o

n
te

x
t

o
f / h

a
s

o
f / h

a
s

o
f / h

a
s

h
a
s n

o
 a

cce
ss to

 / in
a
cce

ssib
le

 to

h
a
s a

cce
ss to

 / a
cce

ssib
le

 to

ta
rg

e
t o

f / h
a
s ta

rg
e
t

"T
a
rg

e
tL

in
k
"

so
u
rce

 o
f / h

a
s so

u
rce

"S
o
u
rce

Lin
k
"

o
f / h

a
s

m
e
m

b
e
r o

f / h
a
s m

e
m

b
e
rs

h
a
s / o

f

cre
a
te

d
 / cre

a
te

d
 b

y

re
fe

rre
d
 b

y
 / re

fe
rs to

"C
h
ild

Lin
k"

ch
ild

 o
f / h

a
s ch

ild

h
a
s / o

f

…
 sh

a
re

s …
 to

 …

o
f / h

a
s

h
a
s / o

f

h
a
s / o

f

h
a
s / o

f

in
clu

d
e
s / is in

o
f / h

a
s

h
a
s / o

f
o
f / h

a
s

Figure
4.17:

Conceptualm
odelbased

on
RSL

96

4.3. The eSPACE Conceptual Model

composed out of other ACs, the same is true for an UI which can be composed out
of other UIs. These constraints on compositions are not visible in our ORM scheme
since these associations are instantiated using Structural Links which are used to
build all kinds of structures. Instead we provide an overview of the constraints in
Table 4.1.

Entity Type Allowed Targets of the Structural Link Min Max
Application FUI 0 *
FUI DComp, Layout, Property Set 0 *
DComp UIe, AC 1 *
UIe UIe 0 *
AC AC 0 *

Table 4.1: Contraints in compositions according to our eSPACE framework

Next to that, an Application usually runs on one or multiple Device and/or on
Physical Objects. This is inferred by the FUIs the application is composed of,
since the FUI is associated to a Device or a Physical Object, as shown by the two
fact types and the exclusive-or constraint between these fact types. A Service
resource has been added to include third-party functionality. Take, for instance, a
weather service which offer functionality related to the weather. In order to provide
this functionality, the service will be linked to a couple of ACs. An example AC
could be a show weather of ‘city’ AC, where city is a parameter, if users want to
see the weather of Brussels, that parameter will be set to Brussels. While RSL’s
Context Resolvers are used as gateways to let something happen given a certain
context, we still needed a more powerful concept of a “context” in the authoring tool.
Therefore, we added the Context resource, which is used to represent the notion of
context to the users. The context could be related to user, time, location or other
environmental properties. Using this Context resource one can create an interaction
rule involving a context as trigger. For example, “if it is 10:00 p.m., then turn off the
light” can be modelled by linking a time context resource with a turn on AC of the
light physical object via a signal link. On this link a Context Resolver is associated
to follow the link only when it actually is the correct time. The context resource
will provide functionality to monitor time, while the context resolver—with metadata
“10:00 p.m.”—will make sure that the link is only followed at the right time, which will
result in turning off the light at 10 p.m. Note that our use of context resolvers can
be compared to special kinds of Properties. A similar approach has been provided
by Brambilla et al. [33] with their extended IFML notation for the IoT domain, as
shown in Figure 4.7.

Further, the Layout resource will be used to set the layout style or structure. This
kind of pre-defined structures can be used to align multiple user interface elements in
a certain manner, such as in a grid or list layout. Next to the ordering of elements,

97

Chapter 4. Reference Framework and Conceptual Model

style data can, for example, be kept as Properties. In order to easily reuse a set
of such style properties, we introduced the Property Set resource, which allow to
group properties into a Property Set that can be referred to when these properties
need to be applied.

The Parameter resource is used to represent the input and output parameters of ACs,
UI elements and Context resources. Each Parameter contains a name, type, value
range and value. By modelling a parameter as a separate resource, it makes our model
more flexible and different parameters can be reused by various ACs, UI elements
and Context resources as explained later in this section. This is also the reason why
we needed context as an entity.

While we use the existing Navigational Link to, for example, navigate between
UI views of an application and Structural Links to create different kinds of struc-
tures that will ultimately form an application, our domain-specific extension further
differentiate between the following types of links. The first one is the Signal Link
which is used for triggering interaction, so they could have as source a UI Element
or a Context resource and as target an Active Component. For example, a button
UI element can be linked to a notification AC with a Signal Link to trigger a
notification whenever this button is pressed. The second type of link is the Owner
Link which indicates an ownership relationship. A Device, Physical Object and
Service own a range of different ACs. A concrete example could be a smart light bulb
that has ACs such as the change status AC, blink AC and change colour AC. The last
link type we added is the Parameter Link which is used to link Parameters to ACs,
UI elements or Context resources. As explained before, we want the parameters to
be reusable and therefore we defined this special type of link. The Parameter Link
will hold the value of the parameter in a given structure. A DComp can, for instance,
be made of a UI Element and an AC which both hold certain parameters with a given
value. This value will be stored in the properties of a Parameter Link together with
the id of the DComp.

Figure 4.18 shows an example that summarises the use of the various types of links
that we defined. The blinds physical object owns different ACs. One of these ACs is
used in a DComp that, in this case, could be seen as a “rule” in an application. The
DComp provides the following functionality, “open the blinds at a 7:30 a.m.”, which is
modelled using a time context resource linked through a Signal Link to the change
status AC of the blinds physical object. The Parameter Link between the Time
context resource and its time parameter holds the value of this parameter (7:30 a.m.)
and the DComp’s id. The id of the DComp is then used to match the right value for
each composition. Finally, the Signal Link is associated with a Context Resolver
to make sure that this link is only followed at 7:30 a.m.

98

4.4. Model Functionality and Discussion

Change Status ACTime Context

Blinds DComp

Context Resolver:
Time == 7:30 a.m.

Parameter

name: status
type: string
value: ‘open’
valuerange: [‘open’, ‘close’]

Open AC Close AC

Parameter
name: time
type: string
value: ‘7:30 a.m.’
valuerange: […,‘7:30 a.m.’,
‘8:00 a.m.’, ‘8:30 a.m.’, …]

Properties:
[(DCompId: 1234),

(Value: ‘open’)]

Properties:
[(Id: 1234)]

Properties:
[(DCompId: 1234),

(Value: ‘7:30 a.m.’)]

Parameter link

Signal link

LEGEND

Structural link

Owner link

Is/Has Relationship

Figure 4.18: Example of the use of the different link types

4.4 Model Functionality and Discussion
In this section we describe how our model satisfies all the requirements we described
earlier on in this chapter as well as in Chapter 2 and Chapter 3. Therefore we
briefly explain how each requirement is addressed using our model and some examples.
Further, note that all the described model functionality has been implemented, this
implementation is detailed in the next section.

Requirement 1 (R1). Provide an overview of the smart technologies, environments
and applications By defining the physical objects, devices and applications as specific
types of resources and given the built-in user management of RSL, one can retrieve
all physical UIs, things, devices and applications of a given user. It is then up to the
front-end authoring tool to provide an appropriate overview of this data.

Requirement 2 (R2). Interaction support Actions or interactions are reflected in
our model in the form of Active Components. Each AC can provide different kind
of interactions going from simple commands to data transfer between smart devices
and things.

Requirement 2.1 (R2.1). Support for interaction across multiple smart technologies
Active Components are either owned by a Service, a Device or Physical Object.
In order to trigger an action on a device, we introduced the Signal Link, a subtype
of the generic RSL Link. Actions can be triggered based on context, UI interaction
or other actions (ACs). Therefore, in order to make two devices interact with each
other, a Signal Link can be defined between a UI element on one device and an AC

99

Chapter 4. Reference Framework and Conceptual Model

on another device as shown in Figure 4.19a. This figure shows that whenever button
‘A’ is pressed on the smartwatch, the TV should turn off. Since RSL provides multi-
target links, we can also use such a link to trigger multiple actions simultaneously
as shown in Figure 4.19b, where the button triggers the light to turn off as well.
Both figures are used to illustrated how to use the Signal Link and we therefore
omitted the other links connecting the AC and the UI to their respective devices to
keep it clear and simple. Note that by using RSL Selectors one can also trigger
actions only on certain parts of a resource. For example, a peculiar interface could be
created where pressing the upper part of an image UI element triggers an action on
the tablet while pressing the lower part of the image UI element triggers an action on
the phone. This can be achieved by selecting the upper part of the image UI element
using an image selector, linking this with an AC from the tablet using a Signal Link
and repeating this for the lower part of the image UI element.

Turn Off AC

Context Resolver:
Uie.pressed == true

A Button UIe

A

(a) Interaction between smartwatch and TV

A Button UIe

Turn Off AC

Turn Off AC

A

Context Resolver:
Uie.pressed == true

(b) Interaction between smartwatch, TV
and smart light bulb

Figure 4.19: Support for interaction across smart technologies by using a signal link

Requirement 2.2 (R2.2). Support for creation, customisation and distribution of
cross-device and IoT user interfaces In order to fulfil this requirement, we first
described the UI development process with the eSPACE framework, which lay the first
stones towards enabling support for the creation, customisation and distribution of
cross-device and IoT user interfaces. As a next step we made the concepts introduced
in our framework more concrete by integrating them into our conceptual model, as
described before. Using these concepts we will now demonstrate how a final user
interface can be built. Therefore, we will use Lucy’s final user interface of the cats
application shown in Figure 4.20.

Structural links are used to build the structure of the interface as well as glueing all
components together. They are, for example, used to create the video player UIe
that is composed of a button UIe and a video frame UIe. A new AC has been
created using Structural Links as well, being the touch-and-throw AC that is a
combination of a touch AC with an accelerometer AC. The touch-and-throw AC is
used to distribute pictures and videos from the gallery view (on the phone) to the
smart TV. In order to distribute only certain video excerpts to the TV, a video selector
is used. In this case the selector allows distribution at a higher granularity level.

100

4.4. Model Functionality and Discussion

Spray Button UIe

Gallery Button UIe

Fun Button UIe
Show Stream AC

Video Frame UIe

Record Button UIe

Capture AC Record AC

Video Player UIe

Properties:
[(v-align: top),

]

Cat Video DComp

Notifier AC

FUI of Lucy

Property:
Button Style of Lucas

Touch-and-throw AC Gallery View UIe

Touch AC Accelerometer AC

Activate AC

Context Resolver:
User == Lucas

Video
Selector

TV

Navigational link

Parameter link

Signal link

LEGEND

Temperature DComp
...

Feeding Time DComp
...

Grid Layout

Property Set

Property:
Button Style of Lucy

(from Lucas)

(from Lucy)

Structural link

Show AC

Owner link

Properties:
[(v-align: bottom),

]

Water Spray

Context Resolver:
User == Lucas

Context Resolver:
User == Lucy

Is/Has Relationship

Parameter

name: contact list
type: array
value: [Lucas, Emy]

Phone

Property Set

Context Resolver:
Uie.pressed == true

Figure 4.20: Simplified instantiation of our model with the cats application FUI

Structural links are further used to structure the DComps (portrayed in orange) and
the FUI (yellow component). Note that the structural link forming the FUI has two
Property Set targets, one link target is created by Lucas and is not accessible by
Lucy and the other is created by Lucy and is not accessible by Lucas. Instead of using
access rights, context resolvers can also easily be used to make a resource or link seen
only by a specific user. Such a context resolver has been used on the spray button UIe,
the temperature DComp, the feeding time DComp and the parameter links of the
notifier AC. These components are only visible if the context of the context resolver
is satisfied. In order to keep the example model more readable, not all details are
shown, the parameters of the ACs and UIs are often omitted. We kept the parameter
of the notifier AC to show an example of how context resolvers can be used to reuse
the same parameter but with a different value. As explained before the value of a
parameter is kept on the parameter link and in this case will be [Lucas, Emy] for Lucy
and [Lucy] for Lucas. This metadata is however not shown in Figure 4.20.

In Section 4.2 we not only expressed the need to compose ACs and UI elements but
also to navigate between them. This is achieved by using the Navigational Links
already provided by the original RSL metamodel. One can link ACs via navigational
links to execute multiple actions after each other, as done between the touch-and-
throw AC and the Show AC. This type of link is also used to navigate between
UI views, as illustrated for the gallery button UIe and gallery view UIe.

101

Chapter 4. Reference Framework and Conceptual Model

Properties are used as already shown earlier in Figure 4.14 and styling properties are
grouped into property sets. For Lucy the styling properties would, for example, include
that she only wants blue and orange buttons instead of green and red ones.

As explained in the previous requirement, Signal Links are used to trigger (inter)ac-
tion, as depicted by the link between the spray button and the activate AC of the
water spray physical object. This link triggers the AC when the button is pressed
as shown by the context resolver. Again, note that, for readability purpose, not all
context resolvers are shown in the figure. The same is true for Owner Links which
are only shown for the TV and water spray but should be present for each AC. In
this case all ACs without Owner Link are ACs from the phone device.

With all the elements described above we ensure the creation, customisation and
distribution of user interfaces that can be used for cross-device and IoT interaction.
Of course, a next step should be taken in order to enable end users to create such a
complex model, therefore a layer of abstraction should be put on top of this model
using appropriate metaphors which will be investigated in the next chapter of this
dissertation.

Requirement 2.3 (R2.3). Offer fine granularity UI distribution In Section 4.2 we
explained that DComps are used to allow UI distribution and synchronisation among
devices. By creating a DComp composed of a UI element and an AC, one can
distribute at the level of granularity of UI elements. In order to promote even finer
granularity of the distribution, selectors can be used as explained in R2.2. An example
of finer UI distribution by using selectors is the use of a UIe selector, which could
distribute parts of a UI element such as the controls of a media player UIe.

Requirement 3 (R3). Shareability The original RSL metamodel provides the building
blocks for access management. Together with the RSL extension of the sharing rela-
tionship, both concepts can be used to provide different kinds of sharing functionality,
which are explained in our two subrequirements.

Requirement 3.1 (R3.1). Support for sharing and integration of apps in a central
smart apps repository The access management can be used to maintain a central
repository with all entities that are accessible to the “public”. Figure 4.21 shows how
this public repository can be used by a user Leo to create his own application reusing
two DComps of Lucas’ leaving home application. In order to reuse these DComps,
Leo simply has to create a structural link between his application and the DComps
in the public repository, as shown by the green arrow in the figure. He further has
to find a device providing the functionality of the two ACs or link the UI elements
with other ACs. Remember that an AC basically holds a piece of program code that

102

4.4. Model Functionality and Discussion

executes an action. Whenever an Owner Link is created between an AC and a device,
a compatibility check should be made to see whether the device can run the program
code of the AC.

Public Repository User Leo s Repository
Shared Repository of Lucas and

Lucy

Leaving Home FUI
...

Turn Off AC
Iron Button UIe

Light Button UIe

Turn Off AC

TV Button UIe

Turn Off AC

Iron Dcomp
...

Light Dcomp
...

TV Dcomp
...

Morning Routine FUI
...

...

Leaving Home FUI
...

Turn Off AC
Iron Button UIe

Light Button UIe

Turn Off AC

TV Button UIe

Turn Off AC

Iron Dcomp
...

Light Dcomp
...

TV Dcomp
...

Morning Routine FUI
...

Cats FUI
...

Leaving Office FUI
...

Turn Off AC
PC Button UIe

Computer Dcomp
...

Grocery Phone FUI
...

Grocery Fridge FUI
...

Figure 4.21: Example of a public and a shared repository

Since content is stored at a fine granularity level, users can reuse any part of an existing
application. Further, users can also decide to only make public smaller portions of an
application ranging from a UI element or DComp to a FUI or an entire Application.
Next to this, in order to search the public repository, one can use filters and ask to
only show certain entities such as UI elements.

Requirement 3.2 (R3.2). Enable sharing of applications, user interfaces or parts of a
user interface with specific users In Section 4.3.2 we explained how we extended the
original model to add an explicit sharing relationship between users. In contrast to
the previous requirement, when sharing entities with specific users, the Owner Link
between the AC and the device remains. This type of sharing is particularly interest-
ing for sharing applications between people of the same household as illustrated in
Figure 4.21, where we see the shared repository of Lucas and Lucy. Similar to sharing
to the public, sharing to specific users can happen at different levels of granularity,
which means that specific parts of a user interface can be shared instead of sharing
an entire application. The sharing of specific parts of an application can, for instance,
be used to make certain appliances accessible for children or guests.

103

Chapter 4. Reference Framework and Conceptual Model

Requirement 4 (R4). Extensibility One of the advantages of a model-based ap-
proach is flexibility and extensibility, as our conceptual components can be re-arranged
(using links) and extended over time.

Requirement 4.1 (R4.1). Offer extensibility at the level of communication protocols,
devices and user interfaces Using our model, any entities can be added at any time
by a developer, including support for new devices and user interfaces. Concerning the
communication protocol, devices communicate with each other by connecting to the
RSL server, which currently supports communication through a RESTful protocol and
WebSockets. The RSL server is implemented in such a way that new communication
methods can easily be added later on, which will be discussed in the next section. End
users should be able to add UIs and devices as well, but this is up to the front-end
authoring tool, which will be described in Chapter 6.

Requirement 4.2 (R4.2). Enable the integration of third-party applications In or-
der to support this requirement, we created the Service resource which has been
introduced earlier in this chapter. The Service resource represents third-party ap-
plications and owns a certain amount of ACs which represent the (inter)actions that
are available by this service. For instance, the train schedule service could have a
show scheduled trains AC with the parameters of a certain station and timespan.
New services and thus third-party application access can be added over time which
can then be retrieved from the public repository addressed by R3.1.

Requirement 4.3 (R4.3). Offer extensibility of adaptive behaviour and distribution
configurations The adaptive behaviour can be added to the model by using context
resolvers, context resources and user preferences. Using the context resolvers, the
view and/or actions of an application can change given a certain context, as shown
in Figure 4.20. The figure shows the use of context resolvers to hide or show parts of
the cats application FUI and to change the parameters of the notifier AC depending
on the user of the application. New context resolvers can be added over time to
extend the adaptive behaviour of applications. In order to define adaptive behaviour
with as trigger a certain context of use, context resources can be used as illustrated in
Figure 4.18. Additionally, user preferences can be used to add adaptations depending
on the preferences of a specific user. Note that compared to the CRF, our method to
adapt an entire model to context of use requires more “manual” work by the designer,
who has to make use of context resolver(s) where necessary. In contrast, the CRF
can use model transformation rules which are applied to the entire model and this can
be fully automated. Next, distribution configurations can be extended as well. By
adding a link between the touch-and-throw AC and a show AC of another device, one
can distribute the images and videos of the gallery view to another device. Further

104

4.4. Model Functionality and Discussion

the properties of DComps allow UIes to be distributed to any device at runtime as
explained in Section 4.2, which also allows flexible and new distribution configurations.
Some extra metadata could also be included in the DComp to specify how to handle
the distribution of UI elements to certain devices depending on their characteristics.
For example, if one would distribute the leaving home UI from Lucy’s smartphone to
a smartwatch then navigational links should be created between each button so that
each button is displayed separately on the screen and so that the user can navigate
between the three different views (each containing one button) as done for Lucas’
version of the leaving home UI. Notice that while we specify this information in the
form of metadata of DComps, the CRF uses transformation models or mapping rules
to do this.

Requirement 5 (R5). Reusability All concepts introduced in our conceptual model
can be reused in the same or different application models. As already shown in
Figure 4.20, the same context resolver is reused multiple times to omit certain parts
of the FUI for when Lucy is using the cats application. Other conceptual components
can be reused in a similar fashion by using links, as shown in Figure 4.21 with Leo’s
repository.

Requirement 5.1 (R5.1). Support for reuse and combination of existing user interfaces
UI elements can be reused multiple times in the same FUI as well as in other FUIs and
can be structured in a different way via structural links. It is up to the front-end
authoring environment to make this functionality available for end users.

Requirement 5.2 (5.2). Support for reuse and combination of existing functionality
Similar to previous requirement, ACs can be reused in the same as well as in other
applications. Multiple ACs can be combined to create new functionality, such as a
touch-and-throw AC. Making this functionality available for end users is up to the
front-end authoring solution.

Requirement 6 (R6). Portability In order to promote portability, we do not involve
devices until the very last step of the UI design process. Only a FUI is linked to a
certain device, which will optimise its components for that device. The structure a
FUI is made of can be reused by another device, which will have its own FUI tailored
for this device.

Requirement 6.1 (R6.1). Offer platform independence As explained above, FUIs are
adapted to a certain device and their components can be used on other compatible
devices. Checking for compatibility of the FUI’s components with a device should be

105

Chapter 4. Reference Framework and Conceptual Model

done using the device’s characteristics and making the applications compatible with
any platform will depend on the technologies used in the front-end authoring tool.

Requirement 6.2 (R6.2). Support for context awareness The adaptation of appli-
cations and UIes to users, platforms and environments can be achieved using context
resources and context resolvers, as explained in R4.3. Further, the RSL user pref-
erences can also be used to tailor the UIs of applications to the user that is using
them.

Requirement 7 (R7). Support for end-user development The eSPACE conceptual
model supports all previous requirements, but whether the functionality mentioned in
these requirements is simple to perform for end users is entirely up to the front-end
authoring solution, which has to provide appropriate abstractions for end users.

4.5 Implementation

We have used and extended a working RSL-based information system that has been
recently developed by our lab in Java 8 [185]. The implementation of this information
system demonstrates the viability of the concepts introduced in this chapter in prac-
tice. In contrast to previous RSL-based link servers such as iServer [202], the new
implementation has made some improvements in terms of reusability, extensibility and
maintainability. Since RSL is a common factor in our lab’s research, the new version
of RSL has been made available on our GitLab together with documentation on how
to use it. In this section we shortly explain the new design of RSL as a software frame-
work but more details can be found in [184]. While previous RSL implementations’
main issues were unmaintained dependencies and extensibility, the new implementa-
tion has been designed to be easily used by our students and other researchers and
therefore minimises the complexity of turning a conceptual RSL metamodel into a
working application. In order to avoid extensibility issues, the framework is imple-
mented as a set of decoupled modules which can be replaced or extended without the
need to refactor the entire codebase. Roels [184] designed the new RSL framework
such that it can be used in two ways. It can either be used as a software library or it
can be used as an external link service. In the first case, applications can embed the
library to make use of the hypermedia functionality provided by RSL. In the second
case, the same core RSL library is used, but it is wrapped inside a server component
that provides RSL functionality through RESTful or WebSocket interfaces, which is
the way we used it. Using this approach, we benefit from better compatibility with
application platforms and technologies, and it further allows us to have devices, users
and applications to operate on the same content repository [184].

106

4.5. Implementation

In order to easily add application-specific extensions, the new RSL link server has
been implemented as a reusable model-driven information system. This entails that
users can load their RSL-based models at runtime and the server will automatically
generate the related functionality without the need for adding any code related to
hypermedia concepts or persistence (which in our case is the storage of Java objects
to the object database). Models are described using a custom JSON-based format, as
shown in Listing 4.1 which represents a part of our eSPACE model, more specifically
the Parameter Resource and Parameter Link. Note that the original RSL-based
models could not support “list” as a property type. Since we needed this for our
eSPACE model, we extended the parser to support this kind of property type.

1 {
2 "name": "eSPACE",
3 "version": "0.0.1",
4
5 "resources": [
6 {
7 "name": "ParameterResource",
8 "properties": [
9 {"name": "type", "type": "string"},

10 {"name": "valuerange", "type": "list"},
11 {"name": "value", "type": "string"}
12]
13 },
14 ...
15],
16 "links": [
17 {
18 "name": "ParameterLink",
19 "sourceRestrictions": {"type": "whitelist", "list": ["ACResource", "

UIeResource", "ContextResource"]},
20 "targetRestrictions": {"type": "whitelist", "list": ["

ParameterResource"]},
21 "properties": [
22 {"name": "value", "type": "string"},
23 {"name": "dcompId", "type": "int64"}
24]
25 },
26 ...
27]
28 }

Listing 4.1: Parts of the eSPACE model described in JSON format

The JSON model description starts by defining the name of the model followed
by its version to keep track of model updates. The remainder of the JSON file
specifies the application-specific extensions of the Resource, Selector and Link
entities and their properties defined as a set of key/value pairs. Optionally, restrictions
can be provided on the sources and targets that a link can have, as shown with
the sourceRestrictions and targetRestrictions whitelist in Listing 4.1. The
whitelist specifies the allowed sources and targets for the ParameterLink. A blacklist
can also be used to specify which sources or targets are not allowed for a certain link
type. The general architecture of the RSL library is shown in Figure 4.22 with the
components we added to Roels [184] implementation coloured in purple, this includes

107

Chapter 4. Reference Framework and Conceptual Model

all concepts related to user management (see Figure 4.13). The core classes
module holds all core RSL entities and functionality described by the RSL metamodel,
these include but are not limited to the Resource, Selector, Link and User classes.
A user class has methods to get entities which are accessible, inaccessible or shared
by this user. This class further holds the group to which the user might belong
to as well as the user’s preferences. The original Entity class has methods to
manage its properties, incoming and outgoing links which is inherited by the Resource,
Selector and Link classes. We extended this Entity class implementation with
methods for user access, ownership and sharing. The Link class also has methods
to get, remove or modify its sources and targets. Keeping track of the incoming and
outgoing links of an Entity and the sources and targets of a Link allows for efficient
bidirectional link traversal, since a link can be followed from its target entity as well as
from its source entity. The synchronisation of such bidirectional associations is done
automatically and efficiently using the Java Persistence API (JPA), which is also used
to persist the data in an ObjectDB1 object database. The object persistence
module in Figure 4.22 shows different possibilities for permanent storage of the data.
Roels [184] choose an object database mainly for its performance compared to a
relational database and due to the fact that a graph database would not treat links
as first-class citizens making links to links, for instance, not possible. Since over time
one might find a better persistence approach, Roels created an abstract persistence
layer that is decoupled and can easily be replaced in the future.

In Listing 4.1, we showed how to represent parts of our eSPACE model using a custom
JSON-based format, given this model, the RSL library will use JavaPoet2 to generate
the corresponding Java classes as subtypes of the predefined core RSL classes from
which they inherit part of their functionality. For example, for the Parameter resource
(which is an extension of the resource entity), a ParameterResource Java class is
generated that inherits the functionality of the Resource class and will contain the
methods for managing the properties (getters and setters) defined in the JSON model,
which are the type, valuerange and value properties. The generated classes are
further dynamically compiled and (re)loaded at runtime. In order to interact with
instances of the new classes at runtime, high-level methods are provided that use
generics and reflection. Such high-level methods include the creation, modification
and deletion of instances as well as managing their links and access rights. Note
that multiple models can be loaded into the RSL library and can be used side by
side. An example of a model used in our lab is the MindXpres model for presentation
software [184]. Since all new entities introduced by the models are subtypes of the
same three superclasses, all instances from the different models can also be linked
with each other and used together in the same application.

1https://www.objectdb.com
2https://github.com/square/javapoet

108

https://www.objectdb.com
https://github.com/square/javapoet

4.5. Implementation

RSL Library

Publish-
Subscribe

Engine
Model Compiler

Application-specific Model Classes

Model: eSPACE
Application Resource
Signal Link
Device Resource
...

Model: MindXpres
Slide Container
Source Code Resource
Semantic Link
...

Model: ...
...

Core Classes

Resource
Selector
Link
User
Group
... Logging

Object Persistence

ObjectDB Neo4j MySQL db4o ...

Core Logic

Linking Querying

AccessContext

Figure 4.22: Overview of the model-driven RSL link service [185]

The remaining components further provide utility functions related to querying con-
tent by crawling the complex graph of linked data. This way content of interest can
efficiently be queried based on property values or object types. An example query
could be: “get all Application resources created by user Lucas”. Next, there is
also the publish-subscribe engine that coordinates various components and manages
the flow of events. For example, when an object is created, deleted or persisted, a
corresponding event is published to the eventbus in order that other components can
react if necessary. Finally, the logging component is used to create detailed logs of
these events.

As mentioned earlier, we use the RSL library wrapped inside a server component
in order to have a client-server architecture. The server wrapper architecture is
depicted in Figure 4.23. It includes the RSL software library from Figure 4.22 and
adds extra server functionality on top of it. In order to communicate with the server,
an application could use a RESTful interface or a WebSocket depending on the
application’s needs. Different interfaces are supported by the server and new ones
can be added if necessary as the system is built in an extensible manner. More
technical details can be found in [184] on how to add new interfaces.

109

Chapter 4. Reference Framework and Conceptual Model

RSL Server Wrapper

MicroServices

eSPACE
getApplication()
addDCompToFUI()
getOwner()
...

...

...

RSL Library

Publish-
Subscribe

Engine
...

Request Handler

Interfaces

REST Websocket TCP/IP ...

Logging

File Storage

HTTP Server

Figure 4.23: Overview of the RSL Server Wrapper [185]

MicroServices have been introduced to implement higher-level application-specific
functionality on top of the low-level hypermedia functionality provided by the
RSL library. We added the eSPACE microservice to the server, which provides multi-
ple high-level methods that are used by the eSPACE authoring tool and are related
to users and their user-defined applications as well as the applications’ structure. By
adding these methods as a microservice we also reduce the amount of requests made
to the server and thus enhance the performance as well. One of the methods, for
instance, adds a FUI to a specific Application resource. Therefore the method
either creates a structural link from application to FUI, or adds the FUI to an ex-
isting structural link. While this looks like a simple query it already involves a few
requests in order to first verify whether there already is a structural link with the
application as source, create this link if it does not yet exist and then set its source
the application and the target the FUI. In addition, this extra “layer of abstraction”
allows the use of more comprehensive methods using the terms of the application-
specific components, instead of generic RSL methods, such as createEntity(),
addLinkSources() or getAccessibleEntitiesByType(). These methods can, for
example, be renamed appropriately to createApplication(), addOwnerofAC() or
getAccessibleApplications().

Next to microservices, the server also provides file storage. If, for instance, an image
is associated to a resource, the image data should be stored in the file storage and
the resource class should store a pointer to the file instead of holding the image
data itself. The file can then be accessed via a URL that is returned by the built-in
HTTP server. Finally, in order to keep track of connecting and disconnecting clients

110

4.5. Implementation

as well as the requests made to the server, the server-specific logger is used to create
detailed logs. Note that thanks to an event-based approach, the requests can be
handled in an asynchronous and parallel manner and thus allow the server to handle
a large amount of requests simultaneously.

More details about the RSL implementation as well as its limitations are described
in [184]. Ideas about how to improve the current implementation are discussed as
well. A last thing worth mentioning is that Gradle1 is used to manage the project
and all its dependencies, which means that it can be built and used on any operating
system without having to worry about the setup.

Given our conceptual foundations, in the next chapter we will investigate how to make
this rich functionality of our data layer accessible to end users on the visualisation
layer. In doing so, we also investigate the best way to satisfy our last requirement
related to providing support for end-user development.

1https://gradle.org

111

https://gradle.org

Chapter 4. Reference Framework and Conceptual Model

112

Chapter 5

User Study

The broader one’s understanding of the human
experience, the better design we will have.

Steve Jobs, Apple

In this chapter we focus on answering our third research question which is related to
finding the right abstractions or metaphors to visualise cross-device and IoT interac-
tions. Finding the appropriate abstractions is also necessary to satisfy requirement 7
regarding support for end-user development. Therefore we take a similar approach as
Dey et al. [74] and McAweeney et al. [140] which consists of engaging users through
an exploratory elicitation study with as goal explore the mental models of people when
dealing with interaction across smart devices and things. Based on these mental rep-
resentations of XD and IoT interactions we then derive a number of characteristics
which we grouped into categories from which we ultimately present design guidelines
involving metaphors for the end-user authoring of cross-device and IoT applications.
In order to do this, we provided participants with a scenario including both XDI and
IoT concepts and asked them to visually represent the interactions described in the
scenario.

This scenario-based design has been chosen because scenarios are evocative, pro-
mote reflection, analysis and innovative thinking [189]. We recruited users with a
technical background—who studied or are studying computer sciences—as well as
non-technical participants. The mixed sampling was necessary since we wanted to
verify which metaphors would fit the mental models of both, technical as well as
non-technical users. In order to maintain an unbiased position, we further followed
the grounded theory method [54] for the data collection and analysis.

113

Chapter 5. User Study

This chapter will first concretely describe how RQ3 is divided into two subquestions
in order to better structure its answer. Further, the study setup will be explained as
well as the methodology that we have followed. We then present the results of the
study together with some concluding remarks concerning these results. Afterwards,
we introduce design guidelines for the design of XD and IoT end-user authoring tools,
which are based on the results of our study. Next, we check related work against
our design guidelines and finish this chapter with an analysis of people’s knowledge
regarding cross-device and IoT interactions.

5.1 Research Questions
We define two subquestions in order to provide a better answer to RQ3, which is
shown bellow as a recap:

Research Question 3 (RQ3) Which metaphors or abstractions should we use on
top of our model and implementation to allow end users to visualise and create their
unified cross-device and IoT interactions?

This question can be divided into the following subquestions. The first one is ad-
dressed in the following sections while the second one is addressed in the Section 5.5.

Research Question 3.1 (RQ3.1) What are the mental models of people when dealing
with XDI and IoT interaction?

In order to answer this question we performed the elicitation study presented in this
chapter. Thereby, we gained insights on how people visualise and understand inter-
actions across smart devices and things. The visualisation part is achieved by asking
people to draw interactions while the understanding part is accomplished through
a semi-structured interview that is carried out at the end of the study with each
participant.

Research Question 3.2 (RQ3.2) How can we interpret and use the identified mental
models from RQ3.1 to visualise and create XDI and IoT interaction?

This question is answered by analysing the participants’ drawings and interviews.
The analysis sought to find common patterns and differences which allowed us to
formulate design guidelines to help developers design end-user authoring tools that
represent XDI and IoT interactions in a way that fits the users’ mental models. As
explained in the introduction, the resulting design guidelines are then compared with
existing EUD authoring solutions and used to build our EUD authoring tool. More
about this phase of our dissertation is presented in Section 5.5 and Section 5.6.

114

5.2. Setup

5.2 Setup

The study setup consisted of a scenario around a student and fitness enthusiast called
Alex, who is interacting with various cross-device applications and IoT devices. The
scenario was described in a set of PowerPoint slides with a number of questions for
the participants on the last slide (see Appendix A.1). One of these slides is shown
in Figure 5.1. Another short presentation was used to first introduce participants to
the concept of cross-device interaction and the Internet of Things. Furthermore, a
consent form, interview questions, a questionnaire as well as a script of the study
procedure have been prepared. The scenario and questions have been reviewed in a
pilot study with four users (answers were not used in the final study), helping us to
improve our study setup. Note that the study has been performed in English as well
as in French and therefore all the study material is available in both languages.

After the movie finished, they turn off the TV and go to bed

When turning off the TV, the following actions take place:

• The TV turns off

• The ambient lights at the back of the TV turn off

• The light in the living room turns on

Figure 5.1: Example slide from the Scenario.pptx presentation

5.3 Methodology

Protocol

Each study session included two participants; either two technical persons, two non-
technical persons or a technical and a non-technical person. The participants first had
to fill in a consent form and then received a short presentation about the concepts
of XDI and IoT. Afterwards, the two participants where separated—each of them
with an individual observer—and asked to “graphically answer” a few questions based
on a presented scenario. After both participants finished drawing their answers, they
were asked to sit together and compare their drawings to potentially make some
improvements. This was followed by a short semi-structured interview with each
participant. Finally, participants were asked to fill in a questionnaire. Each session

115

Chapter 5. User Study

has been videotaped for later use during the analysis and the observers were taking
notes during the entire study.

XDI and IoT Presentation (10min)

One of the two observers gave a short presentation introducing the concepts of XDI
and IoT, with examples of both XDI (Spotify and Chromecast) and IoT (Philips
Hue and Amazon echo). In order to avoid bias in the experiment, participants were
not provided any examples of metaphors. After the presentation, participants were
explained that they will get a scenario along with some questions. They were further
asked to follow the think-aloud protocol and speak out their thoughts during the
experiment.

We suggested them to act as if they were talking with the observer who was sitting
with them, in order to avoid that they felt uncomfortable. They were further told
that any answer would be correct and that the study was in no way a test to measure
their intelligence.

Scenario Drawing (30–60min)

During this phase of the user study, the two participants were separated and assigned
to an individual observer. Each participant was given a hardcopy of the PowerPoint
slides containing the scenario and questions. They also received a number of blank
paper sheets as well as some pens and pencils. At any point, participants could
ask questions to their observer. In case of comprehension problems of the scenario
questions, each observer would reformulate the question according to their script.
While observing the participants, the observer could also ask questions to clarify some
of their drawings such as “Are these actions happening at the same time? How did you
indicate that?”. These questions evolved over the course of the study as suggested
in [54] and based on our analysis after each session, more directed questions such as
“How did you indicate that the movie playing on Alex’ phone is the same one as the
movie shown on the TV?” could be asked.

Note that the time for this phase was originally set to a maximum of 30 minutes, but
some participants needed more time to finish their drawings.

Comparison of Drawings (30min)

After completing the previous phase, both participants were asked to sit together and
compare their drawings. This way, we could get more insights on why some partici-
pants chose to draw certain concepts in a certain way and see whether by comparing
the drawings they could improve their own drawing or make a new one combining

116

5.3. Methodology

elements from both participants. At any time participants could ask questions to the
observers and if they had difficulties starting the comparison, the observers would ask
a few questions according to their script.

Interview and Questionnaire (10min)

Each participant was interviewed separately and asked five questions, with three of
the questions related to their drawings and potential difficulties during the study. An-
other question asked whether they think that they have enough control over existing
cross-device and IoT solutions. A final question investigated whether they had fur-
ther comments about the study. At the end of the session, participants also filled in
a questionnaire consisting of 15 questions. Five questions were dealing with demo-
graphic data and the participants’ education. Nine questions collected information
about their exposure to XDI, IoT and technology in general while a final question
asked them for feedback about the ease of completing the study.

Participants

Our user study included 30 participants (12 females and 18 males) with an average
age of 33.8 years (min=23, max=76, SD=11.4) who participated in pairs of two. As
mentioned before, an equal number of participants, with a technical and non-technical
background, were recruited as illustrated in Table 5.1. Note that we chose an equal
number of each group so that we could compare the drawings made by non-technical
people with the ones of more technical people.

Background Participant

Technical P1, P2, P8, P9, P11, P13, P16, P21, P22,
P25, P26, P27, P28, P29, P30

Non-technical P3, P4, P5, P6, P7, P10, P12, P14, P15,
P17, P18, P19, P20, P23, P24

Table 5.1: Background of participants

Most participants (27) had already heard about the term IoT and 15 participants
had some IoT devices at home. Only slightly more than half of the participants (17)
knew about the term cross-device interaction. One participant did not possess any
smart devices, 10 participants had only a smartphone and 19 participants had two or
more smart devices. In the following, we use the format p(t, n) to provide information
about participants, with p representing the total number of participants which can be
divided in t participants with a technical background and n non-technical participants.
Participants with a technical background were all people having studied computer
science.

117

Chapter 5. User Study

5.4 Results

Throughout the study, data has been collected via notes taken by both observers,
video recordings, the participants’ drawings, interview transcripts and the answers
filled in by the participants in the post-survey questionnaire. By analysing the draw-
ings, a coding guide has been established, which was then used by the two observers to
analyse the drawings. Over time, new categories and subcategories have been added
to the open coding. In the remainder of this section we review the final categories
with their subcategories representing our study findings. A summary of each subcate-
gory is shown at the end of the section in Figure 5.12. Note that some subcategories
might overlap and thus do not sum up to the total number of 30 participants for each
row in Figure 5.12. From the final categories described in this section we derived the
design guidelines presented in the next section.

5.4.1 Data Transfer and Synchronisation

(a) Grouping by participant P15 (b) Use of radio waves by participant P21

Figure 5.2: Drawing examples of data transfer and synchronisation

Data transfer was sometimes difficult to picture for non-technical participants as
mentioned in the interviews. For example, participant P19 explained that it was
difficult to represent “waves” since you cannot see them. 29 (14,15) participants
used arrows at least once to indicate data transfer and interaction between devices
and smart objects. One technical user (P22) focussed more on user interfaces on
the devices and only added arrows during the comparison phase of the study, after
comparing their drawings with the second participant. The arrows that P22 added
are meant to show how some events trigger specific actions and were thus neither
used for data transfer nor for synchronisation. From the 29 participants using arrows
for data transfer, we could see that 20 (11,9) annotated these arrows with data
that had to be transferred (18 (10,8)) or wrote/drew the transfer protocol on the
arrow (4 (3,1)). As can be seen with the previous numbers, two participants did both
wrote the data and transfer protocol on their arrows. 10 (3,7) participants did not
write the transferred data on an arrow but rather on the devices (3 (0,3)) or next

118

5.4. Results

to the devices (2 (1,1)). Further, 4 (2,2) participants defined the data as “input” by
drawing an arrow from the data to the device, as illustrated for the ‘calories’ as data
input for the smartphone in Figure 5.2a.

Different kinds of arrows were used by the participants and most did not use them
in a consistent way. For instance, participant P28 used dashed and solid arrows
and mentioned during the study that they were both used for the same purpose.
Some participants used radio waves in combination with arrows, such as illustrated
for participant P21 in Figure 5.2b, and a few participants also used double-lined
arrows (⇒), such as participant P28 using them for showing causality.

Slightly less than half of the participants (12 (8,4)) did not make a clear distinction
between transferring and synchronising data between two devices. 13 (4,9) partic-
ipants used a double-sided arrow (↔) to indicate synchronisation between two de-
vices, while only 2 (1,1) used a synchronisation symbol (�). Furthermore, 4 (3,1)
participants used the “sync” keyword and 2 (1,1) used two arrows going in opposite
directions (�) as shown in Figure 5.3a, where synchronisation is done between the
tablet and the laptop through an intermediary cloud service.

(a) Synchronisation using two arrows
going in opposite directions by par-
ticipant P25

(b) Data transfer using dashed arrow and
WiFi symbol by participant P28

Figure 5.3: Drawing examples of data transfer and synchronisation

5.4.2 Expressing State Changes

In the given scenario many devices change state through events and actions, such as
switching between an “on” and “off” state. The smartphone, for instance, also changes
state between a remote controller and a movie viewer, which has been difficult to show
by many participants. Participant P6 had to draw this part multiple times in order
to show that the smartphone could change state between showing the movie and
being a remote control. Their final version is shown in Figure 5.6a. In order to go
from one state to another, many participants (16 (9,7)) used regular arrows labelled
with the corresponding command for changing the state (e.g. “turn on”), as shown
in Figure 5.4. 17 (9,8) participants represented the state changes graphically by, for
instance, showing a light bulb emitting some rays of light. Only 4 (0,4) participants
did not clearly show any state changes. Overall, participants expressed that it was

119

Chapter 5. User Study

easier to show state changes when the “state change” event was triggered by another
device rather than when a device was changing its internal state to something else,
like switching the phone to “remote mode”.

Figure 5.4: Drawing example of state changes by participant P11

5.4.3 Time-based Actions

Throughout the scenario different sequential and concurrent actions take place. Not
all participants made a distinction between these time-based actions. Concurrent
actions were sometimes grouped together by the participants (11 (5,6)), either by
noting the concurrent actions on the same arrow or by grouping the actions in one
drawing which was sometimes also framed. An example of grouping on the same
arrow is depicted in Figure 5.2a, with grouping using the ‘+’ symbol on an arrow and
even in an ellipse: “lumière salon + télé”. 2 (2,0) participants used multi-target arrows,
as shown in Figure 5.5 with the arrow starting at “envoyerFilm” from the phone that
splits up into two target arrows. The first one points to the TV with “film” written on
it, while the second one targets the lights marked with “appel de fct” (function call),
to express that these actions happen at the same time. Only 1 (1,0) participant used
the same numbers next to actions to indicate that they happen at the same time.

Figure 5.5: Drawing example of a multi-target arrow expressing concurrent actions
by participant P9

120

5.4. Results

In order to demonstrate sequential actions, 9 (8,1) participants noted down the ac-
tions from left to right with an arrow in between, one of them did not use arrows
in between but just indicated at the top of their drawing that time was going from
left to right. Further, 2 (1,1) participants indicated time going from top to bottom,
one of them using a sequence diagram as illustrated in Figure 5.4. Last but not
least, 5 (2,3) participants used numbers to indicate the order of actions. Half of the
participants (15 (5,10)) did not clearly indicate sequential actions.

5.4.4 Multiple Instances of the Same Data

At one point in the scenario, a movie is shown on the TV and on Alex’ smartphone.
These two instances of the movie are supposed to be synchronised. 3 (0,3) partici-
pants made this clear by adding a double-sided arrow, as shown in Figure 5.6a. 6 (3,3)
participants used some keywords to show that the movie is duplicated on the phone,
including “copy”, “cast split”, “duplicate” or “‖”. A few participants (7 (3,4)) drew or
wrote the same thing on or next to both devices as shown in Figure 5.3a with the
same check-list drawing on the laptop and tablet. Further, 1 (1,0) participant just
wrote down the option that the film can be shown on both TV and smartphone.
15 (8,7) participants did not clearly indicate multiple instances of the same data.

(a) Showing multiple instances that are
synchronised by participant P5

(b) Location awareness by participant P3

Figure 5.6: Drawings examples of multiple instances and location awareness

Single Device Interactions

Some interactions in the scenario just happened on one device, such as the phone
becoming a remote controller and then a movie viewer, or the smartwatch monitoring

121

Chapter 5. User Study

Alex while running. In order to illustrate these kind of actions, 8 (6,2) participants
drew an arrow from one instance of a device to another. 3 (1,2) participants drew
an arrow going from the device to some text describing what is happening on this
device, while one computer scientist drew an arrow originating and ending at the same
device, as illustrated in Figure 5.4. 7 (2,5) participants drew an arrow from the device
to Alex, as shown in Figure 5.7, where the different interactions that are possible with
the watch are written on the arrow originating from the watch to Alex. In this case
the watch is currently tracking Alex’ GPS location on her running track, but can also
give Alex directives on the rest of the track and when to start sprinting (for the last
50 meters). Lastly, 9 (4,5) participants just wrote the actions of the device below the
device.

Figure 5.7: Drawing example of arrow to Alex to express what the watch can show,
by participant P11

5.4.5 Conditional Statements

Throughout the scenario, a couple of conditional statements were mentioned. Ex-
amples of conditions were, “Since Alex exceeded the 2200 kcal today, she receives
a notification on her smartwatch warning her about this excess” or “When Alex has
50 meters left to run, the smartwatch sends a vibration to motivate her to sprint
the last few meters”. Such conditions have been noted down by 4 (3,1) participants
by using the “IF” keyword or “SI” in French, as shown in Figure 5.8c. 15 (7,8) other
participants noted the conditions without the use of these keywords, for example, by
writing “>2200 kcal” on or in between arrows as shown in Figure 5.8a. A last group
just drew the conditions as shown in Figure 5.8b, where the first symbol indicates
that there is less than 50m left, the second symbol shows that then a “vibration” is
sent and the last symbol shows the smartwatch receiving the notification.

(a) Participant P12 (b) Participant P26 (c) Participant P11

Figure 5.8: Drawing example of conditions

122

5.4. Results

5.4.6 Location

The scenario took place at different locations, at the university in a classroom, at
home in the living room and kitchen, and outside in a park. 7 (1,6) participants
wrote down the location names where the interaction took place, even though it
was not playing a direct role in the interaction that was happening in the given
scenario. Likewise, in most of these drawings the written location did not matter,
only one of them mentioned that the location played a role for the interactions.
Rather than writing the location down, 3 (1,2) participants mentioned some form of
location awareness, for example by drawing a sensor and explaining that a certain
interaction happens when this sensor detects Alex leaving the room. Participant P3,
for instance, mentioned that when Alex was at a certain distance from her TV, her
smartphone would show the movie instead of just serve as a remote controller. This
distance between the phone and the TV is depicted in Figure 5.6b by the dashes on
the arrow between these two devices.

5.4.7 Presence of Actors

The drawings of 16 (6,10) participants included the presence of Alex, the main char-
acter of the scenario. She was either drawn by the participant as seen in Figure 5.7
or her name was written in textual form. Some participants (2 (2,0)) only drew Alex’
hand as shown in Figure 5.9a.

(a) Swiping by participant P13 (b) Pressing buttons by participant P3

Figure 5.9: Drawing example of interface interaction

5.4.8 Actor’s Interactions

Interactions between Alex and her devices, such as “swipe”, “touch” or “press”, were
noted down or drawn by many participants, as depicted in Figure 5.9b. 19 (9,10)
specified these kinds of interactions by either writing them next to Alex, on an arrow
or by drawing Alex performing the action. 6 (3,3) of them represented the inter-
actions graphically only, as shown in Figure 5.9a, where Alex’ finger is swiping her
tablet. Another 2 (0,2) participants only drew an arrow from Alex to a device without
specifying the type of interaction.

123

Chapter 5. User Study

5.4.9 Representation of Devices

Participants represented devices and smart appliances either graphically or in textual
form. 25 (12,13) participants used a realistic graphical representation of the devices as
shown in Figure 5.9a. 4 (2,2) participants wrote the device names into squared boxes,
as illustrated in Figure 5.5. Further, 7 (3,4) participants just wrote the name of the
devices, as shown in Figure 5.4 and one person wrote the device names into ellipses, as
depicted in Figure 5.2a. Some participants were not consistent in the representation
of devices, sometimes representing them in textual form and sometimes graphically.
Participant P15 even mixed the use of squares and ellipses to represent devices,
as shown in Figure 5.2a. When devices were represented graphically, participants
often (15 (8,7)) drew certain UI elements such as buttons for triggering actions on
the devices as well, as we have seen in Figure 5.9b. This is surprising given that
the scenario never mentioned buttons and the questions asked to the participants
focussed on the interaction between devices rather than on the UI of an individual
device.

5.4.10 Use of Symbols and Keywords

It is interesting to analyse the symbols and keywords used by the participants, since
only 6 (3,3) participants did not use symbols other than the devices and arrows. The
Wi-Fi and Bluetooth symbol were sometimes used to indicate whether the connection
had to be made via Wi-Fi or Bluetooth. The moon and sun were used by 2 (0,2)
participants to indicate day and night. Notifications were often shown by drawing a
vibration symbol next to or on a device with the corresponding message usually shown
on the device but also symbolised in different ways as highlighted in Figure 5.10.

(a) Participant P25 (b) Participant P13 (c) Participant P26 (d) Participant P28

Figure 5.10: Drawing examples of notifications

5.4.11 Informative Interview

In addition to the drawings, participants of our elicitation study were also interviewed.
In this section we shortly summarise the answers of our semi-structured interview that
took place at the end of the study. The interview was structured as follows. First
participants were asked two questions related to the part of the study where they

124

5.4. Results

had to draw cross-device and IoT interactions, which gave us further indications on
whether they drew based on previous experience and whether they had any difficulties.
The next two questions of the interview were asked in order to get insights on whether
or not participants would be interested in an authoring tool allowing them to create
cross-device and IoT applications. The participants were briefly explained what kind
of authoring tool it would be (i.e. being based on their drawings and mental models).
Then they were asked if they would use such an authoring tool and if they had
enough customisation possibilities with the current applications on the market. As
final question we also asked participants whether they had any comments about the
study in general. A summary of the interview questions is shown below:

• Question 1: How did you come up with such a drawing?

• Question 2: Did you have any difficulties during the study? If yes, which ones?

• Question 3: Do you think you would use an application proposing IoT and
cross-device interaction that you can create by using the components that you
drew? Why, Why not?

• Question 4: Do you think you have enough control to customise your interfaces
with existing applications?

• Question 5: Do you have any comments?

The analysis of these questions is discussed in this section. We will mainly focus on
question 3 and 4, as the other questions were meant to be primarily used for the
analysis of the participants’ drawings. Therefore we shortly summarise the answers
to the first question as follows: 10 (7,3) participants explicitly said they drew their
drawing based on what they know about technology or based on their background from
their university studies. 8 (4,4) said that they started by first representing all objects
present in the given scenario first to get an overview and 3 (2,1) other participants
mentioned that the scenario reflected chronological events and therefore drew a time
line type of diagram. The remaining 9 (2,7) participants simply told us they drew
what seemed more easy for them, either a schema when they did not want to draw
or just the opposite.

For the second question related to difficulties during the study, 10 (4,6) participants
mentioned no difficulties in general. Other participants had some minor difficulties,
3 (3,0) participants said that they had difficulties knowing which level of details was
required, 4 (3,1) expressed having complications for the representation of connectivity
in a graphical way and 2 (1,1) participants were first confused due to their focus on
the graphical user interface of the devices rather than on interaction between devices.

125

Chapter 5. User Study

In total 18 (12,6) participants were enthusiastic about having an authoring tool where
they could manage interaction across smart devices and objects using the abstractions
that they drew. Participants mentioned thinking about a drag-and-drop interface
where they could connect the components using arrows. One technical participant
mentioned that they were currently using the IFTTT interface but were lacking a more
graphical UI. Another technical participant also said that it would be nice to group
all technologies. A non-technical one mentioned that they could already imagine
customising their own smart environment a bit like in “construction mode” in the Sims
game. 2 (1,1) participants also mentioned they would only use such an authoring tool
if it is safe and does not contain any bugs.

12 (3,9) participants were not interested in an authoring tool, the main reason being
that they do not feel to have the need for it. 7 non-technical participants mentioned to
not being a “fan” of such technologies, when speaking about IoT. From these 7 people,
one even mentioned being scared of such applications that are “doing everything for
you” and one said they are not ready to depend on applications: “I don’t think I’m
ready to just rely on apps that run my life, I would feel like I’m in jail”. The other 5 out
of these 7 participants also mentioned either that they have no interest in technology
(one mentioned not even owning a smartphone), could not use technology or that
they want to stay in control and do not want to become lazy and dependent on
technology. The 2 remaining non-technical participants, simply said that they were
not interested having such a tool for themselves but found the concept interesting.
From the 3 technical participants, one mentioned not having enough devices or smart
objects for needing such a tool and the others expressed that they would rather
program it themselves, one explicitly saying that they would trust it more if making
it themselves. One of these 3 participants further mentioned a preference for textual
rather than graphical user interfaces, as they would be faster. A bar chart summarising
the answers of question 3 and 4 is shown in Figure 5.11.

12

3

5

10

6

9 9

6

YES NO YES NO

Q3: INTEREST IN TOOL? Q4: ENOUGH CONTROL?

T NT

Figure 5.11: Summary of interview question 3 and 4

126

5.4. Results

Regarding question 4, 16 (10,6) participants said they did not have enough control
to customise their interfaces and gave some examples. One participant mentioned
having problems when controlling the Netflix application using the Google Home voice
interface, which does not allow users to specify which user profile should play which
TV show. Another participant mentioned having YouTube recommendations for her
husband instead of for herself. Two participants also focussed on the fact that they
do not have enough control about their privacy, not knowing what data the applica-
tions were using. One also gave an example about the ‘Apple TV’ application UI that
cannot be personalised. On the other hand, the remaining 14 (5,9) participants men-
tioned having enough control for customisation of their interfaces; one non-technical
participant even mentioned having too much control. 6 (2,4) participants said that
they did not use many applications so they never experienced anything lacking with
the ones they were using. One technical participant expressed that whenever some-
thing was lacking in one application, they just tried finding another one. Lastly, one
non-technical participant said they managed to get the control that they wanted over
their devices by combining multiple applications.

In summary, as we can see from Figure 5.11, the answers of questions 3 and 4 are
quite mixed, even between technical and non-technical users. We noticed that many
of the participants that were not interested in an authoring tool for the control and
creation of cross-device and IoT interactions, were often simply not interested in this
kind of technologies and therefore also answered having enough control over their
user interfaces for question 4. Out of the 30 participants, 22 had opposite answers
for question 3 and 4, which means that whenever they had an interest in the authoring
tool they also said they did not have enough customisation control, or whenever they
were not interested in the tool they also expressed having enough control over their
current applications.

As last note, we would like to point out that even though we never mentioned anything
about security and privacy of cross-device and IoT interactions, 6 (2,4) participants
raised concerns about these issues during our interviews. 4 (0,4) participants also
mentioned bugs and update issues in general with applications they used, which could
have influenced their current use of applications and were reluctant in trusting appli-
cations due to these known problems.

5.4.12 Concluding Remarks

While we primarily performed a qualitative study, we still checked for any correlation
and differences between technical and non-technical participants per category identi-
fied in Section 5.4 and summarised in Figure 5.12. There is not enough data in every
subcategory to run statistically significant tests, however already with little data we

127

Chapter 5. User Study

can see that there is a fairly high correlation between both groups of participants’
drawings in each category except for the sequential actions which seem to be mainly
depicted by technical users. The Pearson correlation coefficients varied between 0.65
and 0.95 with 0.12 as lowest value for sequential actions. Finally, on a side note, while
the comparison of drawings phase allowed participants to improve their drawings, only
minor changes where made during this part of the study. Sometimes some arrows or
a symbol or two were added. Therefore we did not go into a detailed analysis of this
phase of the study.

not done (8)

not done (5)

not done (15)

not done (15)

not done (17)

not done (4)

not done (12)

same on both devices (7) used keyword (6)

left to right (9) numbers (5)

numbers
(1)

top to
bottom (2)

grouping (11)
forked arrow

(2)

data on arrow (18) data not on arrow (10) protocol on arrow (4)
GUI
(1)

↔ symbol (3)

↔ symbol (13) sync written (4)
↻ symbol

(2)
two

arrows (2)

language (20) picture (3)

state on arrow (16)

written under device (9) multiple instances (8) arrow to Alex (7) other (5)

other
(1)

other

(1)

arrow to
text (3)

arrow to
itself (1)

graphical (25)

graphical (17)

textual (7)
squared boxes

(4)
ellipses

(1)

yes (15)

yes (19)

yes (16)

yes (10)

no (15)

no (11)

no (14)

no (20)

UI PRESENT?

DEVICE
REPRESENTATION

ACTOR'S ACTIONS
PRESENT?

ACTOR PRESENT?

LOCATION
PRESENT?

CONDITIONAL
STATEMENTS

SINGLE DEVICE
INTERACTION

SAME INSTANCES
OF DATA

SEQUENTIAL
ACTIONS

CONCURRENT
ACTIONS

STATE CHANGES

SYNCHRONISATION

DATA TRANSFER

Figure 5.12: Overview of study results

In the next section, we introduce design guidelines based on our study findings in
order to answer RQ3.2. We further check existing work in the XDI and IoT research
domains introduced in Chapter 2 against our design guidelines in Section 5.6 and finish
by discussing the results of our study questionnaire. Note that since the drawings of
technical and non-technical participants had a fairly high correlation, we therefore do
not distinguish between the two groups in the remainder of this chapter.

5.5 Design Guidelines

Based on our study findings and the investigation of related work, we defined a number
of initial design guidelines for cross-device and IoT end-user authoring tools. While
these guidelines serve developers to create end-user authoring tools based on what
end users prefer, understand and expect when dealing with XDI and IoT interactions,
they might be extended and further refined over time.

128

5.5. Design Guidelines

5.5.1 G1: Use Pipeline Metaphor to Represent Interactions

We recommend the use of the pipeline or graph metaphor to represent interactions
in an end-user authoring tool, given the fact that all but one of the study participants
used arrows to represent interactions between smart devices and things (see Sec-
tion 5.4.1). The pipeline metaphor graphically represents applications as directed
graphs where nodes correspond to elementary services with interconnecting links
(i.e. pipelines) [67]. To further facilitate the use of the pipeline metaphor, com-
patible inputs and outputs should use the same colour as done in [66], in order to
prevent end users from linking incompatible devices and services. Finally, popup win-
dows can be used to gather data about the configuration of an interaction as done
in the E-Wired prototype [72].

5.5.2 G2: Use Different Arrow Types for Different Interaction Types

Related to the previous guideline, we advocate assigning a specific arrow type to
a certain type of interaction. Uni-directional interactions should be represented by
regular arrows, while synchronisation between multiple smart technologies should be
represented by double-sided arrows. Optionally, a difference could also be made be-
tween user-initiated (e.g. button press) and contextual interactions (e.g. time). This
guideline stems from the fact that of the 18 participants who represented synchroni-
sation, 13 used double-sided arrows (see Section 5.4.1). Further, by using different
arrow types, users could identify the different interaction types present in the author-
ing environment at first sight. Participant P28, who drew different types of arrows,
also mentioned that they could have used these different arrows to represent various
types of interaction, which would have improved their drawing. Lastly, in order to
differentiate user-initiated and contextual interactions, one could use regular arrows
for user-initiated interactions and dashed arrows for contextual interactions, given
that our participants used these dashed arrows second most after the regular ones.

5.5.3 G3: Provide a Realistic Graphical Device Representation

An authoring tool should provide a realistic graphical representation of the available
smart devices and things, as done by 25 participants of our study (see Section 5.4.9).
Moreover, during our interviews, some participants who did not draw the devices
mentioned that they would have done so if they had better drawing skills. Ideally,
a user should be able to choose these graphical representations in order to easily
recognise their smart technologies. Note that this kind of representation offers the
possibility to also show graphical user interface components on the screen of the
graphical device representations, as done by many participants (15).

129

Chapter 5. User Study

5.5.4 G4: Provide a Graphical Representation of Users

An authoring tool should integrate the graphical representation of users, either as
individuals or groups of users. Ideally the action that the user is performing to trigger
an interaction, such as pressing a button, should be expressed as well. This represen-
tation of users should also be used to show contextual interactions involving the user,
such as “If Alex is at home turn on the Wi-Fi on her phone”. This guideline is derived
from the fact that, even though our scenario did not include specific user-dependent
interactions, Alex the main actor of our scenario was still depicted by 16 partici-
pants (see Section 5.4.7). Further Alex’ actions were visualised by 19 participants
(e.g. drawing Alex’ finger swiping an interface), as described in Section 5.4.8.

5.5.5 G5: Represent Sequential Interactions from Left to Right and
Group Concurrent Interactions

We recommend the use of an implicit timeline by representing sequential interactions
graphically from left to right. For more complex interactions, optional numbering
could also be used to avoid confusion. We further recommend grouping to repre-
sent concurrent triggers and actions of an interaction. This can, for example, be
done either by grouping the actions on one arrow when possible or by representing
the elements involved in the actions below each other (optionally framed). Next to
the fact that timelines are widely used for organising information in chronological
order [199], of the 15 participants who clearly showed sequential interactions, 9 de-
picted these interactions from left to right and 5 used numbering (see Section 5.4.3).
Further, participants who depicted concurrent interactions grouped these interactions
either on the same arrow, underneath each other, using numbers or using other sym-
bols (e.g. ‘+’). Finally, this grouping is also in line with the similarity and proximity
Gestalt principles [115].

5.5.6 G6: Provide Textual as well as Graphical Representations for
Conditional Statements

The representation of conditional statements in an authoring tool should be both tex-
tual as well as graphical. Regarding the graphical representation, conditional state-
ments should be represented via graphical elements accompanied by extra textual
information, such as the condition of a rule. This stems from the fact that most
study participants (20) mixed both representations in their drawings, by, for example,
writing down the condition in textual form (e.g. “sum of calories > 2200 kcal”) on
arrows, in between arrows or on devices (see Section 5.4.5). Further, as suggested
by Dey et al. [74], we recommend making these conditional statements available in
textual form for better comprehension. In order to represent conditional statements

130

5.6. Checking Related Work Against Guidelines

in textual form, IF-THEN statements could be used. While only 4 participants used
the “IF” keyword to show conditional statements, it has been shown by Ur et al. [213]
that If This Then That (IFTTT)1 can quickly be learned by inexperienced users to
create programs containing multiple triggers or actions. In addition, we have seen
from related work in Chapter 2 that the rules metaphor was used by many end-user
authoring tools to represent conditional statements, such as in [74, 83, 92, 93]. More-
over, guidelines for rule composition have been provided by Desolda et al. [72] with
the Rule_5W model. Finally, note that end users should also be able to freely switch
between those two representations in the authoring tool.

5.5.7 G7: Support UI Design

An authoring tool should offer users the possibility to create their own user interface
such as in [92, 147], given that half of our study participants represented concrete
UI elements such as buttons (see Section 5.4.9). This allows for more customisation
and provides the possibility to create UI-triggered interactions as often depicted by
our participants.

5.5.8 G8: Use of Symbols and Annotations

The authoring environment should include symbols as well as support for annotations.
The symbols and annotations should not always have to be linked to functionality,
but might rather serve as a way for end users to better understand and remember
what is represented in the authoring space. We derived this guideline based on the
fact that only 6 participants did not use symbols other than devices and arrows
(see Section 5.4.10). Further, a few participants mentioned that they liked having
icons and symbols to represent all kinds of interactions between devices. For instance,
Participant P21, mentioned that they preferred using icons or animations instead of
text to show what was happening in the scenario.

5.6 Checking Related Work Against Guidelines
In this section we compare related end-user authoring tools in the domains of cross-
device interaction and IoT with the presented design guidelines and investigate what
they might imply for existing as well as future end-user authoring tools. We start by
shortly introducing our selected related work from the background chapter including
the more prominent XD and IoT end-user authoring tools and then check for their
compliance with our guidelines as summarised in Table 5.2. All the described cross-

1https://ifttt.com

131

https://ifttt.com

Chapter 5. User Study

device authoring tools are shown first in alphabetical order, separated by a double line
from all the IoT authoring tools which are also sorted in alphabetical order.

Systems G1 G2 G3 G4 G5 G6 G7 G8
ACCORD [183]
Direwolf [121]
Ghiani et al. [92] ?
Interplay [149]
Jelly [147]

Platform Composition [171]
SmartComposition [123]
XDBrowser 2.0 [154]
a CAPpella [73]
AppsGate [60]
Atooma1
CMT [212]

Direwolf 3.0.0 [120] ? ? ? ? ? ?
E-Wired [72] ?

EPIDOSITE [125]
HomeRules [190] ?

iCAP [74]
IFTTT2

ImAtHome [83]
Keep Doing It [68]

Puzzle [66] ?
SmartFit [17]
T4Tags 2.0 [19] ?
TARE [93] ?
Tasker3

TouchCompozr [124] ? ?
Versatile [103]
ViSiT [7]
Zipato4 ?

Legend
Not fulfilling guideline
Partially fulfilling guideline
Completely fulfilling guideline

Functionality not present
? Not specified

Table 5.2: Compliance of XD and IoT authoring tools with guidelines G1–G8

1https://resonance-ai.com/about.html
2https://ifttt.com
3https://play.google.com/store/apps/details?id=net.dinglisch.android.taskerm&hl=en
4https://www.zipato.com

132

https://resonance-ai.com/about.html
https://ifttt.com
https://play.google.com/store/apps/details?id=net.dinglisch.android.taskerm&hl=en
https://www.zipato.com

5.6. Checking Related Work Against Guidelines

5.6.1 Authoring of Cross-Device Applications

As we have seen in Chapter 2, many web-based tools such as XDBrowser [155, 154],
SmartComposition [123] and DireWolf [121], have emerged over the years. Further,
after analysing the metaphors that these tools are using, we have seen that none
of them use the pipeline metaphor, meaning that none of them is compliant with
guideline G1. XDBrowser 2.0 which allows users to re-author exisitng web pages by
distributing them across several devices using a selection tool, uses a metaphor close
to the copy/paste metaphor. SmartComposition [123] and DireWolf [121] use the
drag-and-drop metaphor to distribute widgets across devices. Furthermore, looking
at the other presented solutions, we notice that Jelly [147] also uses the copy/paste
metaphor to copy part of the UI from one device to another and thus does not satisfy
G1 either. However, Jelly provides more freedom in the interface design by offering
a design environment where UIs can be designed for multiple platforms in parallel
and therefore it complies to G7. While these tools all integrate the concepts of
multiple devices, only XDBrowser 2.0 shows these devices graphically by the use of
icons and is therefore fully compliant with guideline G3. Since SmartComposition,
DireWolf, XDBrowser 2.0 and Jelly do not include the notion of user, time and condi-
tional statements, guidelines G4 to G6 are represented by dashed circles in Table 5.2.
As mentioned above, Jelly fully complies to G7, compared to SmartComposition,
DireWolf and XDBrowser 2.0 which all only partially satisfy G7, since the UI design
is limited to widgets and tiles where these widgets can be placed, which reduces the
flexibility in the UI creation process for the end user. Except for XDBrowser 2.0,
the three other solutions include some pre-defined symbols and annotation possibility.
However, these symbols and annotations are always linked to some functionality and
therefore do not fully comply to guideline G8.

Next, the authoring environment by Ghiani et al. [92] allowing users to create con-
textual, adaptation and distribution rules, does also not use the pipeline metaphor.
The authors presented two versions of their tool, one for advanced users and one
for domain experts or end users. The latter will be used to compare their tool to
our guidelines. While rules are primarily represented textually in the main authoring
environment, the second version of their tool provides a more graphical but less ex-
pressive view for creating rules. Nonetheless, this graphical view does not offer a
textual representation of rules, making guideline G6 only partially fulfilled. Whereas
the tool groups the triggers and actions in separate frames, the sequence of actions
is not represented from left to right, making guideline G5 also partially fulfilled. It is
unclear whether a simplified version of the UI creation part is offered as well, and the
conformance with guideline G7 is therefore unspecified.

133

Chapter 5. User Study

(a) Overview of the task composition screen
of Interplay [149]

(b) Overview of interaction representa-
tion in ACCORD [183]

Figure 5.13: Cross-device solutions

Interplay by Messer et al. [149] is one of the simplest systems we have seen in related
work, allowing users to issue commands through pseudo-English sentences to control
connected devices in their home. Since most of the interface is in textual form only
(see Figure 5.13a), and the concepts of time and conditions are not present, all our
guidelines are either unsatisfied or the functionality of the guideline is not present.

Still not using the pipeline metaphor, the ACCORD editor by Humble et al. [106, 183]
uses the jigsaw metaphor, to enable users to configure their ubiquitous computer
environments and thus does not comply with G1. In contrast to the pipeline metaphor
suggested in guideline G1, the jigsaw metaphor’s expressiveness is limited by the
number of sides of a puzzle piece. As shown in Figure 5.13b, in this case puzzle
pieces can only have one input and one output. The interaction shown in this figure
represents a push-button (the doorbell) being used to signal the webcam to take
a picture and display it on the portable display. ACCORD provides a good visual
overview of the interactions to the end users by showing devices and user actions,
such as a “finger pressing a button”. Guidelines G3 and G4 are thus fulfilled. Further,
time is also shown graphically from left to right by left-to-right couplings of puzzle
pieces. However the grouping of concurrent interactions is not supported, therefore
guideline G5 is only partially fulfilled. While some textual explanation is provided
below each puzzle piece in the menu, the connected pieces’ configuration is only
visible graphically, which makes it difficult to recall how the pieces are configured,
meaning that guideline G6 is only partially fulfilled. Since ACCORD does not provide
a way to design UIs, G7 is marked with a dashed circle.

Coming closer to the pipeline metaphor, the Platform Composition by
Pering et al. [171] uses the join-the-dots metaphor, where connections between a
device and a service is shown by drawing a line between them. However, these lines
are not directed and thus do not show the direction of the interaction flow, which is

134

5.6. Checking Related Work Against Guidelines

understandable since the lines in this case represent resource sharing. Therefore, we
consider G1 partially satisfied. The tool provides a graphical overview of all available
devices and their services and outlines the entire system state. However, since devices
are represented as circles with their services graphically represented by icons, guide-
line G3 is not fully addressed. Further, users are only represented textually, making
guideline G4 unfulfilled. Guidelines G5 to G7 are represented by dashed circles since
the notion of time, conditional statements and UI creation are not present. Simi-
lar to Ghiani et al.’s tool [92] and ACCORD [106, 183] that we described earlier,
Platform Composition includes some icons, but these are tied to some functionality,
which only partially satisfies guideline G8.

Concerning guideline G2, which refer to using different arrow types for different types
of interaction, it has been marked for all cross-device systems by a dashed circle,
since this guideline can only be fulfilled if guideline G1 is fully satisfied, which is not
the case for all these systems.

5.6.2 Authoring of Internet of Things Applications

From our background research in Chapter 2, we found that many commercial solutions
allowing users to configure their smart environments where using Event-Condition-
Action (ECA) rules as metaphor. In their original mobile user interface, the well-
known IFTTT shows these rules half textually and half graphically as depicted in
Figure 5.14. However, this interface changed end of 2016 when IFTTT introduced
applets showing the rules in a more textual form with some icon next to it, making
guideline G6 partially fulfilled since a visual representation of the rules is missing.

Figure 5.14: Older mobile IFTTT interface

Since device icons are shown on the bottom right of an applet, we consider guide-
line G3 fulfilled. While users are not graphically represented, the action of pressing
a button is illustrated by an icon, therefore guideline G4 is marked as partially ful-
filled. Given that time is not represented graphically from left to right, and there is
no grouping of concurrent actions, as there can only be one trigger and one action,
IFTTT does not fulfil guideline G5.

135

Chapter 5. User Study

(a) Overview of the a CAPpella UI [73] (b) ViSiT’s interaction representation [7]

Figure 5.15: IoT solutions

The majority of other solutions that we described in our background chapter, do
support multiple triggers and actions. However, only a few of them, including
a CAPpella [73], Puzzle [66] and ViSiT [7], depict the sequence of an interaction
(trigger-action) as described in guideline G5 by grouping concurrent actions and
showing sequential actions graphically from left to right. Figure 5.15a shows the
a CAPpella user interface with concurrent actions grouped under each other in the
actions area, in this case the icons mean that the light and the computer turns on
at the same time. Actions happening later in time are placed more to the right.
Figure 5.15b illustrates an interaction created using ViSiT, where a Link wires the
LowStock event of the refrigerator to the PlaceOrder Shopping service method. This
interaction is depicted from left to right. Further by selecting the Link puzzle piece
this interaction can be detailed using if, then, else puzzle pieces to define the value of
certain variables. When multiple variables are required, they are grouped below each
other. While the if, then, else puzzle pieces end up being placed below each other due
to place constraints, they are still meant to be interpreted from left to right, which
is why we still indicated that ViSiT satisfies guideline G5.

Next to the grouping of events and actions below each other, it has been done by
using the ‘+’ symbol in Atooma, and Keep Doing It [68], as shown in Figure 5.16a.
HomeRules [190] also uses the ‘+’ symbol but to group events together with condi-
tions, further grouping to represent interactions happening at the same time is done
by placing all elements below each other, as outlined in Figure 5.16b. iCAP [74] on
the other hand uses frames to group concurrent triggers and actions. The frame
containing the triggers is placed on top of the one containing the actions, making
guideline G5 only partially fulfilled as sequential interaction is not shown from left to
right, but from top to bottom.

136

5.6. Checking Related Work Against Guidelines

(a) Keep Doing It rule represen-
tation [68]

(b) HomeRules rule representation [190]

Figure 5.16: IoT solutions

We have seen that many IoT authoring tools are using the rule metaphor to repre-
sent conditional statements. Compared to IFTTT, tools often offer a more graph-
ical representation using text and icons, such as in Atooma, HomeRules [190],
ImAtHome [83], Keep Doing It [68] and Tasker. Examples of such mixed repre-
sentations are shown in Figure 5.16. However, except for Keep Doing It, there is no
support to see the rule either textually or graphically, which makes those tools not
entirely compliant to guideline G6. Nevertheless, since all the above mentioned tools
show devices in a graphical form, they all do comply to guideline G3. Further, only
ImAtHome partially satisfies G4, as the user is only represented in an action, which is
coming and leaving home, but the concept of users represented graphically on their
own is missing. The other tools except HomeRules, for which no information about
the representation of users was found, do neither represent users nor user actions in
a graphical way.

While most IoT tools do not offer support for UI creation, IFTTT proposes a button
widget that can be linked to some functionality and thus has a limited fulfilment of
guideline G7. Tasker goes a step further and supports the UI creation for popup
screens on mobile devices. The rest of the above mentioned tools do not provide
any UI design functionality. From the non-commercial tools discussed in Chapter 2,
TARE [93] is the only one supporting UI modifications and distribution, however it
is unknown whether or not the tool supports UI design, therefore we marked guide-
line G7 as not specified. Since the authoring environment of TARE is textual rather
than graphical, it does not comply to our other guidelines. The same goes for
EPIDOSITE [125] which uses a textual script to show automated interactions on

137

Chapter 5. User Study

a smartphone. The end-user development interface by Kubitza and Schmidt [124]
called TouchCompozr is also mainly textual with fields that can be entered trough
physical demonstration for if-then-else rules, which are presented from top to bottom
and thus does not comply with G5. The only graphical part of the interface is an
icon showing a button press and since not much information is available about this
tool, G3 and G4 are left as unspecified.

A more graphical and visual representation of the rules is presented by
Bellucci et al. [19] in T4Tags, where users define trigger-actions rules by going
through radial menu user interface. The chosen triggers are grouped on the left
while the actions are placed on the right, hereby complying to guideline G5. Most of
the user interface of T4Tags is using icons to represent devices, and device actions
or states. It is however not clear how users are represented in the system during
rule creation. Therefore, we marked guideline G3 as satisfied but left guideline G4 as
unknown. When users create a rule in T4Tags they can assign this rule a picture to
describe the goal of the rule as well as a textual description of the rule. Since the
textual description is not necessarily a textual counterpart of the graphical represen-
tation of the rule, we indicate guideline G6 as partially fulfilled. Further, the pipeline
metaphor is not used and UI design is not supported, so guidelines G1, G2 and G7 are
either considered as not fulfilled or not supported. Since the tool uses many symbols
but no free-form annotations, guideline G8 is partially fulfilled.

Using the timeline metaphor, a CAPpella [73] uses programming-by-demonstration
but in contrast to TouchCompozr and EPIDOSITE, it provides a more graphical UI,
as already shown in Figure 5.15a. Since a CAPpella shows a graphical representation
of devices it fulfils guideline G3, but it does not fulfil guideline G4 since users are
not graphically represented in the UI. Further, given that a CAPpella is based on
behaviour recognition and not rules, the functionality for guideline G6 is not present.
From the same first author of a CAPpella, iCAP [74] is again a rule-based system,
but in contrast to previous systems, rules are represented entirely graphically and thus
complies with guidelines G3 and G4. While this visual UI has been proven simple and
intuitive for end users by the authors’ study, it lacks some textual counterparts and
therefore does not fully satisfy guideline G6.

Going for a few different metaphors, AppsGate [60] uses mainly rules for allowing
users to control their smart homes using a pseudo-natural language but it also allows
users to monitor the state of the home via timelines and see the relationships between
devices through a dependency graph, as shown in Figure 5.17. Figure 5.17a shows
the history of when the yellow entrance smart plug has been triggered by a program
in the late evening. In this case the progam “Start-stop-entrance-light” is changing
the state of the plug at the indicated time (red line), and Figure 5.17b shows the
dependency graph focussing on the Yellow-entrance-smartplug which is located at the

138

5.6. Checking Related Work Against Guidelines

entrance and is involved in multiple programs indicated by dashed circles and a play
and stop symbol to represent whether the program is currently running or not. More
details about these different visualisations can be found in [60].

(a) AppsGate timeline interface (b) AppsGate dependency
graph representation [60]

Figure 5.17: AppsGate user interfaces [60]

Since the timelines and graph view cannot be modified and thus have an impact
on the created program or rules, it does not satisfy our guidelines G5 and G1. In
the rule authoring environment, grouping is supported but interactions are read from
top to bottom making guideline G5 partially fulfilled. While devices are represented
as circles in the dependency graph they are not represented in a realistic graphical
way, making guideline G3 unfulfilled. Guideline G4 is not satisfied as well since users
are only represented textually. Concerning guideline G6, we marked it as partially
compliant because there is no graphical representation of a rule on their own but
rather representations of when they are triggered or running (see Figure 5.17).

Still using rules as a metaphor, the Context Modelling Toolkit (CMT) [212] provides
a drag-and-drop environment to create IF-THEN rules by using the AND template
in the main rule creation interface. While the main rule creation view does not make
use of the pipeline metaphor, the CMT template authoring view allowing expert
users to define new templates does use a metaphor similar to the pipeline metaphor.
Figure 5.18 shows how the “sleeping” template is created by using this view. The
different components of the template are linked to each other using undirected arrows,
therefore we consider guideline G1 as partially fulfilled for CMT. Further, we indicated
guideline G2 by a dashed circle since CMT does not provide directed links. Most of
the UI of CMT is textual, making guidelines G2, G3 and G8 unfulfilled. CMT groups
triggers and actions with the triggers always illustrated on the left and actions on the
right, which is compliant to guideline G5. The toolkit shows the rules by arranging
different blocks of text in a template block, but does not provide a textual counterpart.
Guideline G6 is thus only partially satisfied. UI design is not supported and is therefore
marked with a dashed circle.

139

Chapter 5. User Study

Figure 5.18: CMT template authoring view depicting the creation of the “sleeping”
template by filling in the “room” and “hour” parameters using undirected links [212]

While most of the previously described systems use rules to express conditional state-
ments, these tools do not make use of the pipeline metaphor to show interaction
across devices, making them not compliant to our guideline G1 and thus marking
guideline G2 with a dashed circle. In contrast, the authoring environment called
Versatile, of Heo et al.’s IoT Mashup Application Platform (IoT-MAP) [103] does
use the pipeline metaphor as main metaphor to allow users to compose IoT inter-
actions, as shown in Figure 5.19a. The composition UI is based on Node-RED1.
However, since there are no arrows to indicate the direction of the data flow, guide-
line G1 is only partially fulfilled. Guideline G2 is thus also indicated by a dashed
circle. Further, Versatile’s UI does not include a graphical representation of devices
nor symbols, making guidelines G3 and G8 unsatisfied. The tool does not include the
concept of users and UI design functionality, which results in guidelines G4 and G7
being represented with dashed circles in our table. Concurrent actions in Versatile
are not grouped and sequential interaction is not shown from left to right which
is not compliant with guideline G5. Finally, since there is no graphical and textual
representation of the interactions, guideline G6 is unsatisfied as well.

(a) Versatile user interface [103] (b) E-Wired popup interface [72]

Figure 5.19: IoT solutions

1https://nodered.org

140

https://nodered.org

5.6. Checking Related Work Against Guidelines

The only prototype from all the discussed solutions in Chapter 2 that fully supports
guideline G1 is the E-Wired authoring environment presented by Desolda et al. [72]. In
order to gather information about the interaction, popup windows are used, as shown
in Figure 5.19b. The arrows of this prototype represent cause-effect relationships and
the authors do not sub-divide arrows in multiple categories to represent different kinds
of interactions, making guideline G2 unfulfilled. Given that E-Wired does not include
a lot of graphical elements, devices are not represented in a realistic graphical manner
and symbols or icons are not present, therefore guidelines G3 and G8 are unsatisfied.
Since there is no mention of a representation of the user in the tool by the authors, we
marked guideline G4 as unknown. Concerning the representation of interactions, they
can be grouped and represented from left to right, thereby complying to guideline G5.
Further, guideline G6 is not entirely supported since conditional statements are not
both graphically and textually represented.

As discussed in our background chapter, some tools such as Puzzle [66] and the
Zipato Rule Creator, are using the jigsaw puzzle metaphor, which is not compliant to
G1 and marks G2 as functionality that is not present. While Puzzle does not include
a realistic graphical representation of devices, Zipato does, the latter thus satisfying
guideline G3. It is unclear whether Puzzle has a graphical representation of users, we
therefore marked guideline G4 as unspecified. Zipato’s only representation of a user is
a user icon, but it is unclear if users can be involved in an interaction, which is why we
also indicated guideline G4 as unspecified. Puzzle fully supports guideline G5 since
it allows grouping and shows the interactions from left to right. Zipato, however,
shows the interaction flow from top to bottom, but supports grouping and therefore
partially complies to guideline G5. Both tools do not include a textual counterpart
to their graphical representation of the interaction, making guideline G6 only partially
completed. Zipato does provide a textual explanation of the rule but it is up to the user
to give this description and therefore does not correspond to a textual counterpart.

Lastly, we discussed the component-based web mashup approach by Koren and
Klamma [120], called DireWolf 3.0.0 that integrates Web of Things (WoT) devices
including their own UI components which should be configurable and draggable in
the DireWolf UI view. Although the system sounds promising, little information is
available on the status and use of this prototype.

As a final note, similar to the tools introduced in the previous section, symbols or
icons are used by many tools but never to freely annotate the authoring environment
and therefore guideline G8 is only partially fulfilled for these tools.

141

Chapter 5. User Study

5.6.3 Concluding Analysis

While some guidelines are more present in related work than others, it is quite striking
that almost none of the presented authoring solutions supports our first guideline G1
promoting the use of the pipeline metaphor for the representation of interactions.
This might be due to the fact that some studies have shown that this metaphor
requires more cognitive effort [65, 72]. However, as illustrated by our study results, it
seems to be the first thing popping into people’s mind when speaking about interaction
across devices. The use of colour coding as explained in guideline G1 in combination
with the visual representation of devices (G3) might further reduce the cognitive
effort. None of the existing authoring tools supports guideline G2, mainly because
it is closely related to G1. The E-Wired prototype supports the pipeline metaphor
but does not provide different arrows for different kinds of interaction. Guideline G3
is the most supported guideline by the presented tools. While devices are often
realistically graphically represented, this is not the case for users, which are fully or
partially represented graphically only by 4 of the authoring tools. When the concept
of time is present in authoring tools, they are often at least partially compliant with
guideline G5. Most tools that do not fulfil this guideline at all, either are not graphical
such as EPIDOSITE [125], or tools which only support single trigger and action rules,
like IFTTT and TouchCompozr [124]. Guideline G6 is almost always partially fulfilled
when the functionality is supported by the tool and only 4 solutions do not fulfil this
guideline at all. The reason why guideline G6 is only entirely satisfied by one solution,
is because tools often offer a mix of textual and graphical representations of rules
but never a way to switch between them, which is quite important since a visual
representation does not include details about the rule that might be needed when
reconfiguring a rule. The functionality to allow end users to create and customise
their own UI (G7) is often missing in existing authoring tools, and if present it is
frequently limited to widgets. Finally, guideline G8 is at least partially fulfilled by
most systems. However, for none of the tools symbols and annotations can be used
to simply add extra information to the authoring environment without affecting any
interactions.

On a sidenote, as mentioned earlier our guidelines might still need to be refined over
time. It could, for example, be interesting to perform a study with people with a
different culturel background, which could lead to an extension of the guidelines.
Such culture-dependent guidelines exist for user interface design in general [141], but
have not been discussed much in the related work that we have investigated.

142

5.7. Cross-device and IoT Knowledge Analysis

5.7 Cross-device and IoT Knowledge Analysis

We end this chapter with an analysis of people’s knowledge about cross-device inter-
action and the Internet of Things. In order to get a better idea of the amount of smart
technologies people have, we also asked them which smart devices and things they
own. This data has been collected by asking participants of our elicitation study as
well as other volunteers to fill in a questionnaire, which can be found in Appendix A.2.
The questionnaire involved questions about the person’s background, the smart tech-
nologies they own, their knowledge about technology, cross-device interaction and the
Internet of Things. Further participants were asked about their way of transferring
a picture between devices (e.g. between a phone and a computer). Note that, in
the original questionnaire the last question (regarding the elicitation study) has been
removed from the questionnaire for people who did not attend this study. In this
section we discuss the results of the questionnaire.

In total we collected 70 filled in questionnaires of volunteers with different back-
grounds. We found participants amongst friends, family and university students and
staff. 35 participants had some technical background, a majority of them a computer
science background, while others had different engineering sciences backgrounds. The
remaining 35 participants had more diverse backgrounds not related to computer sci-
ence or engineering. The questionnaire has been filled in by 39 males and 31 females.

The term Internet of Things was quite well known, as 59 participants marked that
they had already heard this term. In contrast, participants were less familiar with
the term cross-device interaction, as only 44 people had heard about this term. All
participants however performed some cross-device interactions, as they all responded
to the question related to how they usually transfer pictures from one device to
another. Still a large number of people do not know this term. When looking at
how people transfer pictures across devices, we noticed that the most used methods
are by using an USB stick and via email, which are relatively ancient methods and
are not very fast. In Figure 5.20 we illustrate the top five most popular methods for
transferring pictures written down by participants. The third most popular method
was by making use of an USB cable, which is also an old method. Google Photos and
Google Drive have been written down by 23 participants, as people often wrote down
only one of those two methods except for 3 participants that wrote both methods
down. This is approximately one third of the people who filled in the survey and we
notice that the majority of people still prefer to rely on older already known methods
rather than using newer and more efficient ones. Relying on well-known interaction
styles instead of using more effective techniques has been already identified in other
studies [36, 114, 174] and represents the effects of legacy bias. Some people also
“misuse” certain services to transfer their picture across devices, such as sending

143

Chapter 5. User Study

the pictures to themselves using Facebook, which is done by 10 participants. Some
other transferring methods included but were not limited to the use of Bluetooth (9),
Dropbox (8) and WeTransfer (5). Note, that the average number of transfer methods
given by participants was 2.1 methods.

23 23

19

14
12

USB-stick Email USB Cable Google Photos Google Drive

Figure 5.20: Transfer methods used for transferring pictures across devices

The average number of smart devices per person derived from our questionnaire was
2.2 devices on average in general and very similar for male and female, with 2.3 devices
on average for males and 2.1 for females. These numbers are a bit lower than the
numbers presented by Google in 2017, who calculated an average of 2.9 devices per
person1. The reason behind this difference could be the kind of devices that are
taken into account as “smart devices”. In the questionnaire by Google when asking
people which devices they use, they take into consideration the following devices:
mobile phones, smartphones, computers, tablets, internet-enabled TVs, MP3 players,
handheld gaming devices and eReaders. In contrast, we considered smartphones,
smartwatchs, smartbands, tablets, smart TVs and eReaders as smart devices. We
summarise the list of smart devices owned by our participants in Figure 5.21a and
show the number of smart devices per person in Figure 5.21b. Thereby, we notice that
only one participant did not own a smartphone and that half of our participants own
a tablet. Smart TVs are getting popular as well, with nearly half of our participants
possessing one. The eReader was the least popular one. However this could be due
to the fact that people might not think of an eReader as a smart device. From
Figure 5.21b we can derive that 52 participants own more than one device, this
number would have certainly been higher if we would have counted a computer into
our smart devices as well.

From the people who filled in our questionnaire, 28 had some kind of IoT device at
home. We distinguished 11 different IoT devices, namely smart speakers, Bluetooth
speakers, smart scales, cameras, Chromecasts2, smart vacuum cleaners, smart lawn-
mowers, smart thermostats and smart light bulbs. We hesitated to keep Bluetooth
1https://www.thinkwithgoogle.com/intl/en-gb/advertising-channels/mobile/consumer-
barometer-study-2017-year-mobile-majority/

2https://store.google.com/product/chromecast

144

https://www.thinkwithgoogle.com/intl/en-gb/advertising-channels/mobile/consumer-barometer-study-2017-year-mobile-majority/
https://www.thinkwithgoogle.com/intl/en-gb/advertising-channels/mobile/consumer-barometer-study-2017-year-mobile-majority/
https://store.google.com/product/chromecast

5.7. Cross-device and IoT Knowledge Analysis

69

35

24
18

5 4

Smartphone Tablet Smart TV Smartwatch Smartband Ereader

(a) Smart devices owned by people

1

17

28

16

6 2

0 1 2 3 4 5 Devices

(b) Number of smart devices per person

Figure 5.21: Smart devices analysis

speakers as IoT device, but since these devices could also come with some voice con-
trol, such as the Sonos speakers1, we kept them in our list. In Figure 5.22a we show
the top five most popular types of IoT devices, which includes the Chromecast, smart
light bulbs, vacuum cleaners, thermostats and cameras. Figure 5.22b depicts the
number of IoT device types per person. We clearly see that many of our participants
do not own any IoT devices. Note that we speak about the number of IoT device
types per person, not counting the number of instances per device type, given that
users often have multiple instances of certain device types (e.g. smart light bulbs).

9

7

6

4 4

Chromecast Light bulb Vacuum
cleaner

Thermostat Camera

(a) Top five most popular IoT devices

42

17

4 4 2 1

0 1 2 3 4 5 IoT
Devices

(b) Number of IoT device types per person

Figure 5.22: IoT devices analysis

We conclude this analysis that clearly shows that we live in a multi-device world.
Many people nowadays possess at least two smart devices (74%). Further, while
many of our participants do not yet own any IoT devices (60%), we believe that the
number of people with IoT devices will grow as predicted by multiple studies, such as
Deloitte’s study [182] and a study by Ericsson [46] which was presented in Chapter 1.
It is evident that people will soon need effective and unified ways to communicate
with all these smart technologies in an intuitive manner as we already argued in our
problem statement and research questions.

1https://www.sonos.com

145

https://www.sonos.com

Chapter 5. User Study

146

Chapter 6

End-User Authoring Tool

Good UI design gives users a comprehensible
sense of power that consistently helps them

feel in control.

Jim Nielsen

In this chapter we present the result of the investigation and work done in the pre-
vious chapters by describing our end-user authoring tool prototype, called eSPACE
(end-user Smart PlACE), for the design and development of cross-device and IoT ap-
plications. We choose the name eSPACE also as a reference to ‘space’ in terms of
userspace in English or in French called espace utilisateur, which refers to the part of
a system memory that is reserved for user processes, where user mode applications
run as opposed to the kernel space, which is the part of memory where the kernel,
being the core of the OS, runs, where users are not allowed to interfere1. This can
also be seen as user mode versus supervisor mode, explained in layman’s term.

This interlude aside, let us come back on topic, as everything that we have introduced
in the previous chapters finally comes together in order to create our EUD authoring
tool. We combined our knowledge of related work, the requirements derived from this
related work and from our use case scenario, our reference framework and concep-
tual model together with the design guidelines that we have defined in the previous
chapter, in order to design the eSPACE authoring tool presented in this chapter. The
development of eSPACE is part of the answer to our last research question. We
complete the answer to RQ4 by describing and demonstrating the functionality of
the eSPACE authoring tool and performing an initial evaluation of the tool, which is
1https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-
and-kernel-mode

147

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode

Chapter 6. End-User Authoring Tool

detailed in the next chapter. Note that the creation of the eSPACE authoring tool
also serves as a way to validate the different research artefacts that resulted from our
previous research questions.

In this chapter we first present the different views of the frontend of our eSPACE
authoring tool. After reviewing the front-end user interfaces, we highlight the ar-
chitecture of the tool which uses the server part that has been introduced at the
end of Chapter 4 and the new frontend. We further describe the implementation of
the eSPACE authoring tool and finish with a section demonstrating the functionality
provided by our proof-of-concept eSPACE prototype with a number of examples.

6.1 eSPACE Authoring Tool
We designed the eSPACE prototype based on our elicitation study, the presented
design guidelines and the existing body of related work. eSPACE provides visual tools
allowing end users to author their own XD and IoT applications. The eSPACE client
runs in a web browser and thus requires no prior installation. We structured the
authoring tool into four views, the home, UI design, interaction and rules view. The
home view provides an overview of all the user-defined applications, rules, devices
and other users, while the UI design view allows users to design user interfaces. The
other two views serve for defining the XDI and IoT interaction. As suggested by
Dey et al. [74] and guideline G6, our authoring environment supports both a visual
and textual specification of rules or interactions. The more graphical one is presented
in the interaction view while the more textual one is managed by the rules view.
Lastly, the user-defined applications can be seen in the app view, which will retrieve
the application model and interpret it in order to generate the final user interface(s).
The five views together with their functionality are explained in more details in the
following subsections.

6.1.1 Home View

The home view can be seen as a dashboard-like overview as also used in other author-
ing tools [60, 83, 93]. In addition, during our elicitation study, participants who own
smart devices also expressed the need for a way to group their applications rather than
having to switch between them to use different smarthome appliances. Participants
also often started to draw an overview of the connected devices, but then continued
with more specific drawings.

The home view is illustrated in Figure 6.1 and groups the user-defined applications,
rules and devices as well as other users in different dropdowns (e.g. applications or
rules dropdown). Applications can be created by pressing the Add App... button,

148

6.1. eSPACE Authoring Tool

which will prompt the user to enter a name and description of the application. The
user is then redirected to the interaction view where they can start designing the
app. By selecting an application in the applications dropdown, users can access their
user-defined applications which will be opened in another browser tab, called the app
view. Since an application might consist of multiple FUIs for different devices, a
browser tab will be opened for showing each of these UIs. Note that, in the future,
an improved version of the tool could deploy the FUIs directly to the involved devices.
For instance, the grocery list application (described in Chapter 3) consists of two
FUIs, one on the smartphone and one on the fridge. With the current version of
the authoring tool these two FUIs will open in two browser tabs of the device that is
running the eSPACE authoring environment. In the future, it should be possible to
show these FUIs directly on the smartphone and fridge. Any existing application can
be modified by pressing its Edit button in the applications dropdown. The interaction
view of the corresponding application will then be opened.

If a user wants to create a rule, they can press the Add Rule... button. A popup
will then ask the user to select to which of the existing applications the new rule will
belong to, or whether the rule will be part of a new application. After that, the rules
view will be opened, where the user can start creating a new rule. Existing rules can
be modified simply by pressing the Edit button of a rule in the rules dropdown, which
will open the selected rule in the rules view.

Next, the devices of a user can be seen in the devices dropdown. When pressing a
device’s Edit button, a popup screen will appear where users can change the graphical
representation of a device. While we added the Add Device... button, we did not
implement the functionality to actually add new devices using the GUI, as it falls
beyond the scope of this dissertation. Our authoring tool is meant as a prototype
to see whether users could create interactions across smart devices and appliances
by using it, and therefore does not focus on how to add new devices to the system.
However, note that adding devices to the system can easily be done by developers
using the RESTful API described in our implementation section. Further notice that
in the authoring tool we use the term “device” to refer to smart devices as well as
things, this term will be more understandable for end users than the term “smart
technologies”.

Lastly, a user can access their friends’ profiles by using the users dropdown. Similar to
the Add Device... button, the functionality behind the Add User... button is not
yet implemented. On the other hand, the application sharing functionality is provided
by pressing the share button, which will prompt the user with a popup asking which
application the user wants to share with the selected user. It should be noted that
the home view is accessible from all other authoring views by pressing the app icon
in the upper left corner of any page.

149

Chapter 6. End-User Authoring Tool

Figure 6.1: Home view with user cursor hovering over the Simple Control App

6.1.2 UI Design View

In the UI design view users can design simple graphical user interfaces for their ap-
plications. The design environment is depicted in Figure 6.2 with UI elements in the
sidebar on the left that can be dragged and dropped on the device screen on the
right. The toolbar on top of the design space allows for easy copy/paste, undo/redo,
deletion and grouping of UI elements. It further provides a preview of the UI in
a new web page when pressing the Preview UI button. In order to design a user
interface, the user must first choose for which device they are creating this UI, as

150

6.1. eSPACE Authoring Tool

seen in GUMMY [148]. The device screen, represented by a window element, will be
illustrated according to the size of the screen of the chosen device. Note that even
though the UI will be tailored for this specific device, it can still be viewed on other
compatible devices. This typical drag-and-drop design environment has also been
seen in the authoring tool of Ghiani et al. [92] and in Jelly [147]. While the UI design
view allows end users to design a personalised user interface for a certain device, it
only creates the view, in the sense that there is no functionality linked to any of the
UI elements. The functionality of a UI element can be added in the interaction view,
where users can define any interaction that is, for example, triggered via UI events
(e.g. button press). Allowing end users to create their own UIs makes sense since
many participants of our elicitation study drew UI elements even though none where
mentioned in the given scenario that they received. Some participants further men-
tioned that they needed some button to press in order to trigger interaction because
they wanted “to stay in control”.

Figure 6.2: UI design view

6.1.3 Interaction View

The interaction view shown in Figure 6.3 allows end users to graphically represent
interactions across devices. On the left hand side of the view, a panel is shown
containing the elements that users can drag-and-drop to the authoring space on the
right. The elements are grouped into five categories. The first category contains the
Devices containing the smart devices as well as smart appliances of the user. The
second category contains Services such as a weather forecast service. The next

151

Chapter 6. End-User Authoring Tool

one groups the contextual elements, comprising user, time and location. A fourth
category consists of the different types of arrows to create different types of inter-
actions between devices. Regular arrows are used to represent all actions happening
between devices, except for synchronisation which is represented via double-sided ar-
rows. Dashed arrows are further used for contextual interactions, which always have
one of the contextual elements as a source. The last category includes Symbols and
annotations. They do not offer any extra functionality, but can help end users to
better remember their defined interactions by for example adding some annotations,
as illustrated on the double-sided arrow.

Devices and users are represented graphically using icons. The device icons can
be changed in the home view as explained before. Devices that are placed in the
authoring space are visualised as shown in Figure 6.3. The magnifying glass in the
top right corner of each device allows users to switch between this view and the
UI design view, where they can design the UI for the selected device. When selecting
an arrow in the side panel, elements that can be connected in the authoring space will
be surrounded by green dots and the ones that cannot be connected by this type of
arrow will be surrounded by red dots. After selecting a source element by clicking on
a green dot, users can join the dots by selecting another green dot which surrounds
the target device, as illustrated in Figure 6.16a. An arrow will then appear between
both elements and depending on the type of arrow, a popup window (inspired by the
work of Desolda et al. [72]) will ask users to fill in parameters such as the data to be
synchronised or the time when the synchronisation should take place.

An example interaction could be “when home, synchronise my pictures between my
phone and my computer”, as shown in Figure 6.3. In the authoring space depicted in
this figure we see a time contextual element that is linked to the smartphone device
by using a dashed arrow which represents contextual interaction. The smartphone
is further linked to the laptop with a double-sided arrow that represents the syn-
chronisation between the two devices. All interactions shown in the authoring space
are also described in terms of trigger-action rules and shown in the bottom container
of this view. In Figure 6.3 the rules container describes our example rule as “When
Home sync photos: IF location is Home THEN Alex Smartphone synchronises with
Alex Laptop the files: C:\fakepath\pictures”. The first part before the “IF” is the
name of the rule given by the end users when creating this rule. When clicking on
a rule or on the Add Rule... button, users will be taken to the rules view which
can be used to create or modify a rule. Rules defined in this view are graphically
represented in the interaction view. The two views offer a consistent graphical and
textual representation of interaction rules. Rules created in the rules view will be
shown graphically in the interaction view with the elements of a rule shown from left
to right.

152

6.1. eSPACE Authoring Tool

Fi
gu

re
6.
3:

In
te
ra
ct
io
n
vie

w

153

Chapter 6. End-User Authoring Tool

6.1.4 Rules View

Interactions can be defined using the rules view as well. The way to define interaction
rules in this view is depicted in Figure 6.4. The rules view offers a more textual
representation where interaction is defined in the form of trigger-action rules.

The tile-based view illustrated in Figure 6.4 has been inspired by Ghiani et al.’s Trigger-
Action Rule Editor (TARE) [93] that uses tiles to group elements belonging to the
same category. When selecting a tile, the options related to the selected tile will
appear in the dropdowns on the IF or THEN-side. For instance, when selecting
the Location tile, the different location options will appear in the dropdowns on
the IF-side, as shown in Figure 6.4. An overview of the current rule defined in the
dropdown is shown in a sentence above the tiles. The sentence is generated based
on the selected content of the dropdowns, once the user selects another option in
a dropdown this sentence will be updated. We named the tiles according to the
Rule_5W model [72]. The 5 “Ws” stand for Which services are involved in the rule,
Who triggers the events and actions, When are they triggered and Where. The last
“W” stands for Why, which is used to provide a short description explaining the be-
haviour of the rule. Rather than using the 5Ws as such, we renamed them as follows
in order to allow for a better understanding of the rule composition by end users:
Devices (which), Users (who), Time (when), Location (where) and Description
(why). Note that Devices in this view refers to services and devices as done by
Wisner and Kalofonos [222] who believe that end users think more easily in terms
of devices. Additionally, we added saved triggers and actions to promote reuse, as
done by Trullemans and Signer [212]. Similar to the IFTTT recipes, we used IF
<trigger_expression> THEN <action_expression> but also allow for com-
plex expressions using the boolean AND and OR operators. Future versions of the
tool could also include the NOT operator. Users can add multiple triggers or actions
to the rule by pressing the + symbol and remove them by pressing the - symbol. While
users could add an unlimited amount of triggers and actions using the + symbol, our
current version of the tool only supports up to two triggers and two actions.

154

6.1. eSPACE Authoring Tool

Fi
gu

re
6.
4:

Ru
les

vie
w

155

Chapter 6. End-User Authoring Tool

6.1.5 App View

In this view, a user-defined final user interface will be interpreted and shown to the
users. Users are directed to this view by selecting an application from the applications
dropdown in the home view which will open a tab for each FUI involved in the selected
application, as explained earlier. In Section 6.3 we explain how exactly a FUI model is
interpreted by this view. An example of a simple user-defined application to control
lights is shown in Figure 6.5.

Figure 6.5: Simple lights application

By longpressing a UI element in this view, a popup window will appear, allowing users
to distribute the selected element to another device on which the eSPACE authoring
tool is currently running. Once the target device selected, the UI element will be
added to the application that is currently running on this device. On the server side,
this is done by adding the UI element to the FUI of the running application on the
target device. Therefore, in order to see the distributed UI element on the target
device, the user must refresh the application page. Ideally, in a future version of
the tool a popup should appear asking the user of the target device whether they
want to accept this distributed UI element. More detailed explanation about the
implementation of such UI distribution is provided in Section 6.3.

6.2 Architecture
In this section we present the general architecture of the eSPACE authoring tool,
which follows a client-server architecture and is highlighted in Figure 6.6. To sum-
marise the figure, we see the three main components represented by the eSPACE
Authoring (client), the RSL link Server and the eSPACE Application (client). The
RSL link Server, that has been introduced in Chapter 4, serves as backend, stores

156

6.3. Implementation

all application data and provides a way to communicate with this data through a
RESTful API. The eSPACE authoring component is one of the front-end interfaces
providing the authoring environment for end users and containing some authoring
logic. Lastly, the eSPACE application represents the applications created by the end
users via the eSPACE authoring environment. More specifically, the application logic
and application view corresponds to what the user has defined as interaction and as
user interface, respectively. Since all data is kept in the RSL library, both the eSPACE
authoring as well as the eSPACE applications get access to the data via the API men-
tioned earlier. A more detailed explanation of these three components is provided in
the next section.

eSPACE Authoring

 Authoring Logic

RSL Link Server

 Authoring View RSL Library

 eSPACE API

RSL Server Wrapper

MicroServices

eSPACE
getApplication()
addDCompToFUI()
getOwner()
...

...

...

RSL Library

Publish-
Subscribe

Engine
...

Request Handler

Interfaces

REST Websocket TCP/IP ...

Logging

File Storage

HTTP Server

Amazon API
Gateway

eSPACE Application

 Application Logic

 Application View

Mobile
Devices

Figure 6.6: eSPACE authoring tool architecture with RSL-based link Server backend

6.3 Implementation
In order to fulfil the portability requirement (R6) we implemented the eSPACE au-
thoring tool using web technologies, including JavaScript, HTML5, CSS3 and some
additional JavaScript libraries (e.g. canvasutilities1 and the mxGraph diagramming
library2). The resulting applications created by the end users are also in the form of
websites, which can be opened on any device supporting a web browser. In this section
we provide more details on how our end-user authoring tool has been implemented.

6.3.1 eSPACE Authoring Views

In the eSPACE authoring environment end users can design their own cross-device and
IoT applications by using the different views described in Section 6.1. Each view has
their corresponding HTML page, an individual stylesheet, in the format of an external
CSS file, for defining the look and feel of the page, and some JavaScript libraries for
providing the functionality of the page. In addition, Bootstrap3 and CSS Grid Layout4
1http://dbp-consulting.com/scripts/canvasutilities.js
2https://jgraph.github.io/mxgraph
3https://getbootstrap.com
4https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

157

http://dbp-consulting.com/scripts/canvasutilities.js
https://jgraph.github.io/mxgraph
https://getbootstrap.com
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

Chapter 6. End-User Authoring Tool

are used to manage the layout and structure of the pages. Retrieving data from
the server is done by using the jQuery API1 for sending requests to the server and
parsing the incoming data. In order to orchestrate all incoming data, we further
use JavaScript Promises2. A simple example of the use of promises is depicted in
Listing 6.1, which illustrates some of the promises required for filling the dropdowns
of the home view. The current version of the eSPACE authoring tool does not
provide a login screen and for now, we always have user Alex logged in with id
userID. Therefore, to fill the dropdowns with all the applications and rules this user
has access to as well as the devices the user owns, we make a request to the RSL link
Server to only get all their accessible entities. Note that the interaction rules defined
in the authoring tool are stored as components of a DComp with a trigger and action
component in our underlying model. This is why line 9 in our listing depicts a post
request to get all entities of type DCompResource of the user with id userID.

1 let promiseApps = new Promise((resolve) => {
2 //get applications of user
3 $.post(url, {query: JSON.stringify({"command":"

getAccessibleEntitiesByType", "parameters":{"id": userID, "type": "
ApplicationResource"} })}, function (data, status) {

4 resolve(JSON.parse(data).result);
5 });
6 });
7 let promiseRules = new Promise((resolve) => {
8 //get rules of user
9 $.post(url, {query: JSON.stringify({"command":"

getAccessibleEntitiesByType", "parameters":{"id": userID, "type": "
DCompResource"} })}, function (data, status) {

10 resolve(JSON.parse(data).result);
11 });
12 });
13 let promiseDevices = new Promise((resolve) => {
14 //get devices of user
15 $.post(url, {query: JSON.stringify({"command":"

getAccessibleEntitiesByType", "parameters":{"id": userID, "type": "
DeviceResource"} })}, function (data, status) {

16 resolve(JSON.parse(data).result);
17 });
18 });
19 ...
20 Promise.all([promiseApps , promiseDevices , promiseRules , promiseUsers]).

then(values => {
21 ...
22 //fill dropdowns
23 fillContainers(document.getElementById("appsSubmenu"), applications , "

interaction -design.html", "app");
24 fillContainers(document.getElementById("devicesSubmenu"), devices , "

devices.html", "device");
25 fillContainers(document.getElementById("rulesSubmenu"), rules, "rules.

html", "rule");
26 fillContainers(document.getElementById("usersSubmenu"), users, "users.

html", "user");
27 });

Listing 6.1: JavaScript Promises example of home view

1https://api.jquery.com
2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Promise

158

https://api.jquery.com
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

6.3. Implementation

In the remainder of this section, we will shortly mention some implementation de-
tails for each of our more complex views. We therefore do not describe the home
view, since this view did not require additional JavaScript libraries nor particularly
challenging coding.

UI Design View

The UI design view has been implemented using the mxGraph JavaScript library, which
is a diagramming library using SVG and HTML for rendering. A popular production
grade example that has been implemented using this library is draw.io1. While we could
reuse most of the toolbar’s original functionality (see top of Figure 6.2), we had to
define custom UI elements for filling in the left sidebar since pre-defined elements
mostly included geometrical shapes (e.g. rectangles and circles). Listing 6.2 shows
how a part of the UI elements have been defined using mxGraph.

1 function CustomStyles() {
2 this.labelButton = 'laBtn;perimeter=ellipsePerimeter;shape=label;

rounded=1;align=center;verticalLabelPosition=mxConstants.
ALIGN_MIDDLE;verticalAlign=middle;spacingTop=4;labelColor=#fff;
fillColor=#337ab7;strokeColor=#2e6da4;spacing=0;spacingLeft=0;
spacingTop=0;fontColor=#fff;fontSize=16;fontStyle=0';

3 this.label = 'label;perimeter=rectanglePerimeter;shape=label;align=
center;fontSize=50;autosize=1';

4 this.image = 'image;perimeter=rectanglePerimeter;shape=image;
ImageAlign=center;image=img/img.png';

5 ...
6 }
7 ...
8 // adding UIes to sidebar
9 Sidebar.prototype.init = function() {

10 this.addSection("Buttons");
11 this.addVertex('images/UIe/labelButton.png', 100, 40, this.

customstyles.labelButton , 'Button with label', this.customlabels.
UIe1);

12 ...
13 this.addSection("Labels");
14 this.addVertex('images/UIe/labelBlack.png', 100, 40, this.customstyles

.label, 'Text field', this.customlabels.UIe5);
15 ...
16 this.addSection("Custom images");
17 this.addVertex('images/UIe/img.png', 100, 40, this.customstyles.image,

'Image', this.customlabels.UIe7);
18 }

Listing 6.2: JavaScript mxGraph example for the creation of custom UI elements

When the Save Changes button is pressed in this view, each element on the drawing
canvas—which represents a device’s screen—will be saved as a UI element in the
RSL link Server. Further these UIes will be added to the FUI of the device for which
the UI is being designed using a DComp as shown in Figure 6.9.

1https://www.draw.io

159

https://www.draw.io

Chapter 6. End-User Authoring Tool

Interaction View

For the implementation of the interaction view, the connectingLine.js1 jQuery
plugin, has been used and modified. The plugin is used for the joint-the-dots func-
tionality when linking elements on the authoring canvas. As explained earlier, when
an interaction arrow is selected in the sidebar, the elements on the authoring canvas
that can be linked using this arrow will be surrounded by green dots while elements
that cannot, will be surrounded by red dots. By selecting a green dot surrounding
an element, this element will be set as source of the interaction and the elements
which can be used as target will be surrounded by green dots. When the user selects
the dot surrounding the target element, the interaction arrow will appear between
the two elements. In order to draw the different types of arrows between elements
on the authoring canvas, we combined both this connectingLine.js jQuery plugin
with the canvasutilities.js2 JavaScript library.

When two canvas elements are linked using an interaction arrow, a popup window
appears asking users for information about the interaction they want to define between
these two elements. Figure 6.7 depicts the popup window that will appear when a
regular interaction arrow is used to link a smart TV and a smart light bulb. The

Figure 6.7: Example popup when connecting the smart TV to the living room smart
light bulb via an interaction arrow

1https://github.com/gunjankothari/jquery.connectingLine
2http://dbp-consulting.com/scripts/canvasutilities.js

160

https://github.com/gunjankothari/jquery.connectingLine
http://dbp-consulting.com/scripts/canvasutilities.js

6.3. Implementation

From and To form elements are pre-filled with the name of the source and target
devices. The When dropdown is meant to ask users when they want a certain action
to take place, this corresponds to the trigger of the interaction. The dropdown will
give the following choices to the user: On device action or On button click1.
Depending on which option is selected the next dropdown will either show the possible
device actions and the parameters needed for these actions or the UIes available on
the source device. Note that, to make UIes available, one needs to create a UI for
the source device in the UI design view, otherwise this dropdown will be empty. The
actions of a device correspond to the ACs which were defined in Chapter 4. All devices
and services have their own actions that they can perform, with different parameters
to be filled in. Figure 6.7 shows that the user selected the On device action as
trigger, with the action being Change status to with parameter status ON. After
selecting the trigger, users can define the action by choosing either an action of the
target device or an action of a third-party service. If the user chooses the service, the
actions available for this service will be shown to the user in another dropdown menu
and when pressing the save button, a new arrow will appear between the target device
and the selected service. In our example popup, the user selected a device-specific
action, which is the change colour to with the parameter colour: blue. Lastly,
as can be seen in Figure 6.7, users can give a name to the interaction (in the top part
of the popup). If no name is provided, it will simply get the default name depending
on the kind of interaction, such as “contextual interaction” for interactions involving a
contextual element. Note that the trigger and action must be compatible. Therefore
whenever a trigger is selected, only compatible actions are shown to the user. The
compatibility check is done on the server side by matching the input and output slots,
as explained in the following sections.

When the Save Changes button is pressed, the different elements on the authoring
canvas are saved into the canvaselements and canvaslines properties of the ap-
plication for which the interactions are designed. Further, for each screen device, a
FUI is linked to the application if a UI has been designed for this screen device by the
user. UIes are saved in a DComp which is attached to the FUI. Each interaction is
saved into a DComp that consist of a trigger and action component. In Figure 6.8 we
illustrate how our example popup data will be saved into the database, we left out
some metadata as well as the ACs’ parameters for clarity since these were already
illustrated in the Chapter 4 (see Figure 4.18). As users might forget to save before
going to the UI design view by pressing a magnifying icon next to a device, we also
save all interaction to the database before redirecting users to the UI design view.

1This is the only implemented UI action, as it is the most used one

161

Chapter 6. End-User Authoring Tool

Description: when
watching TV light

blue

DComp

Device: smart TV

FUI

Name: example app

Application

Name: Change
status to

AC
Name: Change

colour to

AC
Signal link

LEGEND

Structural link

Owner link

Figure 6.8: Example interaction saved as model into the RSL link Server (simplified)

Rules View

The rules view does not make use of any additional third-party JavaScript libraries.
The view is mainly implemented by using Bootstrap for the layout of the different
tiles and the dropdowns that have to be filled in to create a rule. One of the most
challenging parts of the implementation of this view is filling in the different dropdowns
when a user wants to view or modify an existing rule. In contrast to the interaction
view, interaction rules in the rules view can be modified and can contain multiple
triggers and actions. The current implementation can recognise two triggers and two
actions. However, in anticipation of an extension of our tool, we already allow users to
add more than two triggers or actions using our rules view. These additional triggers
or actions will be ignored when saving the rule in our current version of the authoring
tool. Adding the possibility for rules with more than two triggers or actions is not
only challenging to show in the interaction view but also represents challenges for the
interpretation and execution of these rules in the app view. Given that Dey et al.’s
study [74] showed that users usually do not define very complex interactions, we did
not deem it necessary to implement this functionality in our initial proof-of-concept
prototype.

As previously mentioned, a preview of the rule is shown on top of the tiles which
is generated by parsing the content of the dropdowns. Note that this preview “IF-
THEN sentence” could be made more readable in future versions of the authoring
tool. Finally, when a user saves their rule, the same methods are used than for saving
the interactions in the interaction view. All interactions that are either defined by
using an arrow in the interaction view or by using IF-THEN sentences in this rules
view, are saved as components of DComps of a FUI belonging to a specific application.
The user-defined applications that have been built according to the eSPACE reference
framework and by using the concepts introduced in the eSPACE conceptual model
can then be viewed in the app view. This view will interpret a FUI model in order to
build the user-defined application as explained in Section 6.3.3.

162

6.3. Implementation

6.3.2 RSL Link Server

The RSL link Server and library has been introduced at the end of Chapter 4. There,
we explained how the different components of our eSPACE model and framework are
stored as RSL entities via the RSL library. We further described the creation of an
eSPACE microservice providing specific functionality to create, modify and manage
these different model components and that is intended to be used by the authoring
tool. The microservice’s functionality is accessible through the RESTful API of the
RSL link Server. An example of some specific functions are updateFUIofDComp(),
getParasofAC() or setOwner(). As mentioned before, such functions allow the
authoring tool to make less requests to the server when requiring complex information.
Next to functions for managing and accessing the data needed by the authoring
environments, we also added some functions related to UI distribution among screen
devices which are currently represented by different app view browser tabs. Given
that an app view tab displays a certain FUI of an application, whenever this view is
opened, we add the FUI to a list on the server. This list will contain all FUIs that
are currently opened, whenever an app view tab is closed, the corresponding FUI will
be removed from this list. We called the list of running FUIs the subscribers list.
When a user wants to distribute a UI element to another device, a request is made to
the server to return this list. The entire UI distribution process is explained in more
details in the UI Distribution subsection of Section 6.3.3.

6.3.3 eSPACE User-defined Application

An eSPACE application is an application created by the end user with the help of our
authoring tool. Once a user wants to test or deploy their application, the author-
ing tool will create the user-defined application based on the underlying application
model resulting from the users’ UI design and interaction design in the authoring en-
vironment. The generated application is a web application that is optimised for the
device for which it has been designed for by the user, but can of course be opened on
any other device supporting a web browser. Device optimisation is currently limited
to UIs made for a specific device screen size. In this section we first explain how a
user-defined application is created from an application model. Then we explain how
UI distribution can be performed in an app view at the implementation level.

App Creation Process

As explained before, we follow the layers that we defined in the eSPACE reference
framework to structure a user-defined application, therefore an application consists
of several FUIs which in turn contain DComp elements that are made up of at
least one UIe or AC. An app view corresponds to the FUI of an application model.

163

Chapter 6. End-User Authoring Tool

Therefore, whenever a user-defined application is opened via the home view, our
eSPACE authoring tool will open as many app view tabs as there are FUIs in this
user-defined application. The app view will be given the fuiID and appID in order to
retrieve and interpret the FUI model of the corresponding application. This is done by
the application logic component shown in Figure 6.6 which interprets the FUI model
in order to build the view and interaction of the app view. Throughout this section
we will use the example FUI model illustrated in Figure 6.9 to explain how such a
model is interpreted in the app view.

Parameter link

Signal link

LEGEND

Structural link

Is/Has Relationship

Example FUI

Button UIe

Light On

My Example FUI

Light On

Type: UI

...

DComp

Type: Rule

...

DComp

Preview:

sourceCode:...

Label UIe

Preview:

sourceCode:...

Image UIe

Preview:

sourceCode:...

My Example FUI
sourceCode:...

TurnLight AC

Context Resolver:
ClickEvent

inputSlot: [...]
...

Parameter

name: state
type: String
valuerange: [ON, OFF]

Properties:
[(DCompId: 12357),

(Value: ‘‘ON’’)]

Figure 6.9: Example FUI model

We illustrate the flowchart of the model interpretation process in Figure 6.11. The
app view will start by requesting the DComps of the given fuiID from the server. A
DComp can either contain a number of UIes that are not tied to any functionality or
it can consist of the trigger(s) and action(s) of an interaction rule. We differentiate
the DComps of the first category as DComps of type UI and the second category
as DComps of type rule, as depicted in Figure 6.9. For each DComp of type UI
we simply place all its UIes on the HTML page. This is done using the UIe’s source
code. All UIes and ACs have a property sourceCode which contains a JavaScript
class with either a function displayUI() for UIes or a function execute() for ACs.
In Figure 6.9 we left out the Parameter links of the UIes for clarity reasons, but left
the one for the TurnLight AC as a reminder of how parameters and their values are
modelled. Both the Label and Button UIe, for example, have the parameter label
with the value “My Example FUI” and “Light On” respectively.

For DComps of the type Rule, we first verify whether the rule has multiple triggers or
actions. This type of DComps always have a structural link with two targets, the first
target points to the trigger(s) while the second one points to the action(s) of a rule.
If the first target points to a structural link, it means the rule has multiple targets, as
shown in Figure 6.10a. If the second target points to a structural link, then the rule
has multiple actions, as illustrated in Figure 6.10b. We then need to get the target

164

6.3. Implementation

of these structural links to retrieve the actual triggers and actions, once this is done,
we push all triggers and actions into two separate array, the triggersArray and the
actionsArray.

Button UIe

Light On

Type: Rule

...

DComp

Preview:

sourceCode:... sourceCode:...

TurnLight AC

inputSlot: [...]
...

Time Context

Preview:

Properties:
[(Boolean: OR)]

(a) DComp with multiple triggers

Button UIe

TV On

Type: Rule

...

DComp

Preview:

sourceCode:...

sourceCode:...

TurnTV AC

inputSlot: [...]
...

sourceCode:...

TurnLight AC

inputSlot: [...]
...

Properties:
[(Boolean: AND)]

(b) DComp with multiple actions

Figure 6.10: DComp of type Rule simplified model examples

We then iterate over the actionArray in order to retrieve the JavaScript class of
each AC, add the class to the HTML page and pushing it with the correct parameters
in the acCodeArray, which will contain all AC classes after this iteration. Note that
the current version of the authoring tool does not support the NOT boolean operator
for combining different triggers or actions but only the OR and AND operators are
supported. Next, we iterate over the triggersArray, depending on the type of
trigger, a different trigger function will be pushed into the triggerCodeArray. With
our current implementation we keep our contextual information on the client side,
which means that the app view verifies whether a certain context is true or not.
Whenever this app view is closed the rule will become inactive. In order for rules
to stay activated we would need to verify contextual information on the server side,
possibly by using a rule engine.

After filling in the acCodeArray and triggerCodeArray, we verify whether the in-
teraction rule contains multiple triggers. If this is not the case we simply combine
the trigger code with the execution of the ACs in the acCodeArray by verifying the
context resolver on the signal link. Listing 6.3 illustrates how the DComp with type
Rule of our example FUI model would be interpreted. Since the trigger is a but-
ton UIe’s click event, we link a click listener to the button UIe using its id1 and call
the execute() function of all ACs. In our example, this code snipped would only call
the execute() function of the TurnLight AC.

1UIes placed in the HTML page will get the same id as their database id

165

Chapter 6. End-User Authoring Tool

RuleUIes
DComp type?

Place all UIes in the
HTML page

No

Class trigger is
structural link

Get classes of trigger
and action

Begin:
Given appID, fuiID

Get DComps of FUI

two types of dcomps:
- one that will hold all UIes that are

not linked to functionality
- one that holds an interaction

TODO: now we have overlap with
the ones in topUIe and the ones
linked to functionality!! so check

here with ID of UIe if it's already in
in the view!!

For each DComp

Yes Get classes of targets
of structural link

No

Class action is
structural link

Place action and target
class(es) in two arrays

Yes Get classes of targets
of structural link

acCodeArray will contain all dif
JS classes of ACs:

e.g. [new TurnLight([{...value: "
new UIeSync({[{...value: UIeID

For each trigger in triggersArray

Get triggerValue

Check class of
trigger

Get triggerValue &
triggerName

Add sourceCode to
innerHTML

ContextResource ACResource

UIeResource

Check
triggerName

user

time

Push timeCheck function
with triggerValue as

parameter into
triggerCodeArray Push userCheck function

with triggerValue into
triggerCodeArray

triggerValue is logged in userID?
triggerValue should be on the Signal
Link!! So either time or location for
other two contexts, or clickEvent for
button... etc.

triggerCodeArray will contain
functions that are listeners or just
giving true or false if the case for
user

location

current version does not support the
NOT boolean

Push userCheck function
with triggerValue into

triggerCodeArray

Get
acParaFromDComp

Push AC class component
with its parameters into

triggerCodeArray

no error handling here so if rule is
weird not sure what will come out of

it...
When AND then always first UIClick

trigger check then rest (nested)
compared to OR which is not nested

Push UIfunction with
triggerValue into
triggerCodeArray

If multiple
triggers check booleanGet triggerCode

No Yes

call andTriggers
functionAND

call orTriggers
function

OR

Link trigger(s) to
execution of ACs

from acCodeArray

assume each UI class has a
displayUI() function and each AC

has an execute() function

Add sourceCode to
innerHTML

For each action in actionsArray

Get
acParaFromDComp

Push AC class component
with its parameters into

acCodeArray

might need to push some co

Figure 6.11: Flowchart of the app view implementation with the starting block of
each iteration marked with an orange background for clarity

166

6.3. Implementation

1 $("#" + trigger[i].id).click(function () {
2 //executes all ACs
3 for (let j = 0; j < acCodeArray.length; j++) {
4 let paras = acCodeArray[j].paras;
5 acCodeArray[j].execute(paras);
6 }
7 });

Listing 6.3: JavaScript code snippet for executing actions on button click

If the interaction rule contains multiple triggers, we verify whether these are linked
with an OR operator or AND operator. Depending on this information different code
will be produced for the triggers. For an OR operator different signal links will be
present as shown in Figure 6.10a. We will then follow each of them and end up with
similar code as for single target interaction rules. Lastly, if the triggers are combined
with the AND boolean, nested code will be created based on the different triggers.
More explanation about signal links is given in the next subsection.

Functionality Linking Process

In this subsection we shortly explain how we use Signal Links to trigger certain
actions depending on a specific event. The event could be a contextual event de-
pending on time, location or user, but it could also be a user-initiated event such
as a button click. We further also explain the compatibility check that is performed
before linking a trigger and an action with a signal link. We based ourselves on the
signal and slot architecture to verify whether a trigger and an action can be linked.
The principle of this architecture is to link a signal with a compatible slot. A signal is
emitted on state change of an object and a slot is the function that is called whenever
the signal is received. As an example we take a button UI element as trigger of the
action “turn light on”, as illustrated in Figure 6.12. A button UIe can emit multiple
signals including a signal as result of a ClickEvent, LongPressEvent, or some other
button related events1. The execute() function of an AC represents the slot. In
order to link a signal with a slot, the signature of the signal must match the one of
the receiving slot. Whenever a user selects a trigger in a popup of the interaction
view or in a dropdown of the rules view, a request is sent to the server to look up
the compatible ACs. These ACs will appear as possible options that a user can select
as action of an interaction rule. In order to find these compatible ACs, the server
will verify which signals can be sent by the trigger and verify which ACs can “accept”
these signal events. An AC that accepts a signal from an Event can be linked to
any other events, since it is the most generic event. However, an AC that accepts
a signal only from a showEvent can only be linked to a component emitting a signal
from a showEvent. Each AC has a property inputSlot containing a list of events

1Only ClickEvents are supported in current version of our authoring tool

167

Chapter 6. End-User Authoring Tool

that can be accepted by this AC. Next, an AC also has a property outputSignal
containing a list of all signals that this AC can emit. For example, the turnLight AC
emits a lightOn and LightOff signal. These two same properties are also present in
each UIe and ContextResource. Figure 6.12 shows that the ClickEvent signal is
linked to the turnLight AC slot. In the previous subsection, we have seen that this
means that a listener will be created with as function to be executed when the click
event is triggered, the execute() function of the turnLight AC, by using the code
snippet shown in Listing 6.3.

Further, an interaction rule might contain multiple triggers or actions. If multiple
triggers are combined using an OR boolean, it will treat the interaction rule as multiple
separate interaction rules, which means that for each trigger a signal link will be
created with as source that trigger and as target the action of the interaction rule.
An example of such an interaction rule is depicted in Figure 6.10a. On the other hand
if the AND boolean is used to combine the multiple triggers, only one signal link is
created. The signal link will have as sources the triggers and as target the action of the
interaction rule. This signal link will further contain multiple context resolvers—one
per trigger—to indicate which signal event is selected for each trigger. An interaction
rule can also have multiple actions, if this is the case a signal link is created with as
source the trigger and as targets the actions, as shown in Figure 6.10b.

Name: Turn light
Parameters: [{name: ‘‘state’’,
value: ‘‘on’’, type: ‘‘String’’}]

Label: Light On
Size: 20px
...

Button UI element turnLight AC

ClickEvent

LongClickEvent

...

Event LightOnEvent

LightOffEvent

Figure 6.12: Linking of a button UI element and turnLight AC based on signal and
slot architecture

UI Distribution Support

As a last part of the eSPACE user-defined application functionality, we would like to
discuss how UI distribution is supported. We briefly mentioned in Section 6.3.2 that
the RSL link Server is keeping track of every app view that is opened and manages a
list of all running FUIs called subscribers. In the app view, all UIes contained in a
DComp with the distributable property set on true can be distributed to another app
view. Note that the distributable property of all DComps are set on true by default
in our current prototype. In future versions of our tool end users should be given
the possibility to decide whether or not a UIe can be distributed while creating their
user interfaces. In order to distribute a UI element from the app view, the user has
to perform a longpress on this element. When the user performs this action, they

168

6.3. Implementation

will be prompted with the names of the available devices together with the names of
their opened applications (i.e. app views) to which the UI element can be distributed.
These device names are derived from the list of FUIs that are kept on the server.
Concretely, the distribution of a UI element happens as described by the sequence
diagram shown in Figure 6.13. When the app view detects a longpress, it will send a
request to the server, asking which devices are currently using the eSPACE app view.
The list is shown to the user in a popup, where users can select the target device
and application to which they want to distribute the chosen UI element. Notice that
a device can have multiple FUIs or thus app views opened at the same time. Once
a target device and FUI have been selected, the app view will send a request to the
server containing the ids of the UIe that needs to be distributed, the FUI of the app
view and the target device with its target FUI. The server will then add the UI element
to the FUI that is currently running on the target device, by first verifying to which
DComp it belongs to on the source device and add this DComp to the target device’s
FUI using a structural link. By doing so the UIe also maintains its functionality
on the target device. This means that if the UIe is a button that can be used to turn
on the light, it will still have this ability once distributed to the target device. In order
to see the new UIe on the target device the user will have to reload the app view on
the target device.

return	DComp

return	done

show	confirmation	msg

return	subscribedFUIs

select	tDeviceFUI

App	View

createDeviceFUIList(FUIs)

RSL	Link	Server
API Database

long	press	UIe
checkRunningFUIs()

User

show	DeviceFUIList

sendUIe(UIe,	FUI,	tDevice,	tFUI)

AddDCompToFUI(DComp,	tFUI)

subscribe(FUI)

lookupSubscribers()

lookupDComp(UIe,	FUI)

return	done

Figure 6.13: Sequence diagram representing the UI distribution

Note that an improved version of the eSPACE authoring tool should use an event
system for the UI distribution by, for example, using WebSockets to push information
from the server to the clients, hereby avoiding a page refresh to see the changes.
Further, a popup should also first ask the user of the target device if they want to
accept the distributed UIe before automatically adding the element to their FUI.

169

Chapter 6. End-User Authoring Tool

6.4 Design Discussion

In this section we describe how our eSPACE authoring tool fulfils all the design guide-
lines introduced in Chapter 5. We therefore briefly explain how each guideline is
addressed by using some examples.

G1: Use Pipeline Metaphor to Represent Interactions This guideline is fulfilled in
the interaction view, where users can connect smart devices, IoT appliances, context
elements and services using arrows. When selecting an arrow, the elements that could
serve as source of that arrow are surrounded by green dots while the ones that are
incompatible will be surrounded by red dots. The same is true when selecting a target
element. Finally, as done in the E-Wired prototype [72], we use popup windows to
gather more data about the interaction.

G2: Use Different Arrow Types for Different Interaction Types Still in the interac-
tion view, we followed this guideline by presenting different arrow types for different
interaction types. Regular arrows are used for interaction between all kinds of de-
vices and services. Dashed arrows are used for contextual interaction, when linking
a contextual element to any device or service. Hereby, we also fulfil the optional dif-
ferentiation between user-initiated triggers (regular arrows) and contextual triggers
(dashed arrows). Lastly, double-sided arrows represent synchronisation between data
or UI elements of two smart devices, as recommended in this guideline and illustrated
in Figure 6.3.

G3: Provide a Realistic Graphical Device Representation We followed this guideline
by representing devices by using realistic icons for the default device representation
in the interaction view. As explained before, this representation can be changed in
the home view. A more abstract representation of a device screen is shown in the
UI design view, which could be more realistic by adding a more device-like frame
instead of a simple window element (see “Alex Smartphone” screen representation in
Figure 6.2).

G4: Provide a Graphical Representation of Users All users are represented through
a user symbol allowing users or groups of users to be part of a contextual interaction
or rule. Accordingly, we fulfill this guideline as well. Although more graphical user
interaction representations, such as having an icon showing a user pressing a button,
could be added in the future depending on the outcome of a usability study. These
kind of icons have, for example, been added in ACCORD [183].

170

6.4. Design Discussion

G5: Represent Sequential Interactions from Left to Right and Group Concurrent
Interactions When creating a textual rule of an interaction in the rules view, the
corresponding interaction will be created in the interaction view, in order to get a
more visual representation. The trigger elements of the interaction are then always
represented on the left while action elements are displayed on the right. If multiple
triggers are defined they will be shown under each other in the interaction view.
The same is true for an interaction rule containing multiple actions, as shown in
Figure 6.14. However, when users are creating their interactions in the interaction
view, they could place the trigger and action element anywhere on the canvas. We
do not enforce the placement of triggers on the left-hand side and actions on the
right-hand side, which might be needed in the future to avoid confusion when, for
example, sharing interaction rules with other users.

Figure 6.14: Example interaction of a tablet which triggers the TV to turn on and
the light to turn off

G6: Provide Textual as well as Graphical Representations for Conditional Statements
By creating the interaction and the rules view, we fulfilled this design guideline. As
the interaction view shows a graphical representation of interaction rule or conditional
statements using the pipeline metaphor, while the rules view provides the textual
representation. Note that another textual representation of the rules can be found
in the home view in the rules dropdown, and in the UI design, interaction and rules
view in the bottom container.

G7: Support UI Design Through the UI design view end users can create their own
user interfaces for a certain target device. Further the UI elements that are used
in these interfaces can be used as trigger of an action, as explained in the previous
sections. We therefore fully satisfy this guideline.

171

Chapter 6. End-User Authoring Tool

G8: Use of Symbols and Annotations Using the symbols dropdown in the sidebar
of the interaction view, users can drag and drop different symbols or labels that will
serve as extra annotations in the authoring space. As specified in this guideline, these
symbols and annotations will not influence the interactions defined in the authoring
environment but rather serve as “notes” for the end users to better remember the
interaction that they defined. Further studies of the authoring tools could point out
recurrent symbols that could then be added automatically when defining a certain
interaction rule.

Our initial eSPACE end-user authoring prototype for cross-device and Internet of
Things applications is thus fully compliant with the proposed design guidelines G1–G8.
While an initial study is presented in Chapter 7 additional user studies will have to be
conducted in order to assess the usability of the end-user authoring tool.

6.5 Discussion of the Functionality
Next to design guidelines, we discuss how our tool supports the requirements that
have been presented in Chapter 2, Chapter 3 and Chapter 4. A summary of the
requirements and their fulfilment by our eSPACE model and tool is presented in
Table 6.1. In this section we further explain how each requirement is fully or partially
fulfilled.

Requirement 1 (R1). Provide an overview of the smart technologies, environments
and applications The overview of all smart devices, rules and applications can be
found in the home view. Note that, the smart environment itself could have been
represented in a more graphical manner as done in Platform Composition [172], we
just represented it in the form of different dropdown lists.

Requirement 2 (R2). Interaction support The interaction across all types of devices
is the main focus of the eSPACE authoring tool. Different types of interactions can
be defined, such as contextual interaction (dashed arrow), synchronisation interaction
(double-sided arrow) and user-initiated interaction (regular arrow).

Requirement 2.1 (R2.1). Support for interaction across multiple smart technolo-
gies By using the interaction and rules view, users can define interactions across
devices and things either through the use of arrows or through the use of IF-THEN
statements.

172

6.5. Discussion of the Functionality

Requirements eSPACE Model eSPACE Tool
Requirement 1 (R1). Provide an overview of the smart technologies, environments
and applications
Requirement 2 (R2). Interaction support
Requirement 2.1 (R2.1). Support for interaction across multiple smart technologies
Requirement 2.2 (R2.2). Support for creation, customisation and distribution of
cross-device and IoT user interfaces
Requirement 2.3 (R2.3). Offer fine granularity UI distribution
Requirement 3 (R3). Shareability
Requirement 3.1 (R3.1). Support for sharing and integration of apps in a central
smart apps repository
Requirement 3.2 (R3.2). Enable sharing of applications, user interfaces or
parts of a user interface with specific users
Requirement 4 (R4). Extensibility
Requirement 4.1 (R4.1). Offer extensibility at the level of communication
protocols, devices and user interfaces
Requirement 4.2 (R4.2). Enable the integration of third-party applications
Requirement 4.3 (R4.3). Offer extensibility of adaptive behaviour and
distribution configurations
Requirement 5 (R5). Reuseability
Requirement 5.1 (R5.1). Support for reuse and combination of existing
user interfaces
Requirement 5.2 (R5.2). Support for reuse and combination of existing
functionality
Requirement 6 (R6). Portability
Requirement 6.1 (R6.1). Offer platform independence
Requirement 6.2 (R6.2). Support for context awareness
Requirement 7 (R7). Support for end-user development
Legend

Not fulfilling requirement Partially fulfilling requirement Completely fulfilling requirement

Table 6.1: Requirements addressed by the eSPACE model and authoring tool

Requirement 2.2 (R2.2). Support for creation, customisation and distribution of
cross-device and IoT user interfaces The creation of user interfaces is possible in the
UI design view, where users can design and customise their own UIs by dragging and
dropping different UI elements to the authoring canvas. With our current prototype,
the distribution of user interfaces can be done only at runtime by longpressing a
UI element in the app view and selecting the device to which it has to be distributed.
Note that we do not support distribution of UI elements across different RSL link
servers but only across applications hosted on the same server.

Requirement 2.3 (R2.3). Offer fine granularity UI distribution Since all UI elements
can be distributed in the app view, we support distribution at a fine level of granularity.
The distribution is triggered once the user has longpressed a UI element and selected
a target device. The target device must have the app view opened in its browser and
will show the distributed UI element after a page refresh, as explained in Section 6.3.3.
It should be noted that in the current version of our authoring tool it is up to the
developer to decide whether or not a UIe can be distributed by using the distributable
property of a DComp. In future versions we should enable end users to decide which
UIe can be distributed and which ones cannot. Further, other distribution properties

173

Chapter 6. End-User Authoring Tool

could also be exploited such as defining whether a UI element is splittable and how
or when it should be split or adapted to the target device to which it is distributed.

Requirement 3 (R3). Shareability Sharing is the main weakness of our eSPACE
prototype. While this requirement is supported on the server side, it has not yet been
fully implemented in the client side authoring environment.

Requirement 3.1 (R3.1). Support for sharing and integration of apps in a central
smart apps repository A central apps repository is located on the server and con-
tains all user-defined applications. However, the functionality to share applications by
making them public using the authoring environment is not present.

Requirement 3.2 (R3.2). Enable sharing of applications, user interfaces or parts
of a user interface with specific users By using the home view, users can share an
application with another user by selecting the share option next to the corresponding
user. This will add the application to the shared entities of the chosen user.
However, we do not implement the sharing of a specific UI or parts of a user interface
in our eSPACE GUI. Further, we did not yet provide a login page for users to switch
accounts and currently a certain user is logged in by default.

Requirement 4 (R4). Extensibility This requirement is fully supported for developers
and almost fully supported for end users as explained below.

Requirement 4.1 (R4.1). Offer extensibility at the level of communication protocols,
devices and user interfaces This requirement is mainly fulfilled on the server side
where developers can add new communication protocols, devices and UI elements. In
the UI design view users can add their own images as well. These can be used as extra
icons in a UI. As mentioned before, devices cannot be added by end users for now
because “adding new devices to the tool” was not the main focus of this dissertation,
which focusses more on the interaction part.

Requirement 4.2 (R4.2). Enable the integration of third-party applications Devel-
opers can add ACs to the pool of active components on the server. These ACs can
be an action that is performed by an external service or third-party application. The
weather service, for example, includes weather-related functionality in the form of
ACs, which can be used by the user when defining an interaction in the interaction or
rules view.

174

6.5. Discussion of the Functionality

Requirement 4.3 (R4.3). Offer extensibility of adaptive behaviour and distribution
configurations Adaptive behaviour can be added through contextual rules or inter-
actions. The current adaptations are quite limited but can be extended over time
by, for example, using the users’ preferences to change the font size or colour of a
UIe according to their needs. Note that the concept of preferences is present on the
server side but currently not used on the client side. Our initial prototype supports
adaptations such as “when Lucy uses a button then action A is triggered, but when
Lucas uses the same button action B is triggered instead”. Actions can also be trig-
gered depending on the environment, for example, “if outside then set brightness of
smartphone screen to 90%”. Finally, actions can be triggered in function of time. In
order to address the extensibility of the distribution configuration we allow users to
distribute UI elements at runtime, as explained in R2.3.

Requirement 5 (R5). Reuseability In order to fulfil this requirement, we provide a
clear separation between UI elements and their tasks or functionality. The view of an
application’s user interface is done in the UI design view where users choose which
UI elements will be part of their UI. After that, users can define functionality for a
UI element in the interaction or rules view.

Requirement 5.1 (R5.1). Support for reuse and combination of existing user inter-
faces All components of the sidebar in the UI design view can be reused for multiple
applications. While the grouping of UI elements is possible to move or copy/paste
multiple elements at once, we plan to provide users with the possibility of grouping
UI elements and saving them into the sidebar for later reuse of these elements in
other applications. Therefore, we see this requirement only as partially fulfilled.

Requirement 5.2 (R5.2). Support for reuse and combination of existing functional-
ity Functionality is represented by active components in our model and server, but
is presented to the end users either as option in a popup window when creating an
interaction in the interaction view or as option in the different dropdowns in the rules
view. The same functionality can be reused and combined with other functionality
multiple times using rules or interaction arrows. However, only the rules view pro-
vides easy reuse of existing interactions by providing a button to access the saved
triggers and one to access the saved actions. Note that for now, all triggers
and actions of created rules are accessible by pressing one of these buttons, allowing
users to select the desired trigger or action in a dropdown. In the future, it might
be better to let users decide whether to save a certain trigger or action. Given that
this easy reuse is not possible in the interaction view, we consider this requirement
as partially fulfilled.

175

Chapter 6. End-User Authoring Tool

Requirement 6 (R6). Portability The general portability requirement is supported
since the eSPACE authoring tool generates web application that can be opened on
any devices that supports a web browser.

Requirement 6.1 (R6.1). Offer platform independence Given that a user-defined
application can be used through a simple web browser, we allow a large range of
smart devices to run the users’ applications. However, while all UIs can run on any
device’s web browser, some UIs might become unusable due to, for example, buttons
that are too small because the UI has been originally designed for a tablet but has been
opened on a smartwatch. Users could create multiple versions of the same UI using
the UI design view, but since our tool does not detect on which device the app view
is opened the user still have to manually select the right tab in the web browser.
Therefore, we marked this requirement as partially fulfilled. By detecting the device
one could also automatically adapt the UI depending on the device’s characteristics
on which it is opened, as explained in our next requirement.

Requirement 6.2 (R6.2). Support for context awareness Interactions can be defined
using a contextual element, representing either a user, location or time, as trigger.
Depending on this trigger, some user-defined action will then take place. Such inter-
actions can be defined in the interaction or rules view. The detection of a specific
context of use is only done when an app view of an application containing a contextual
trigger is opened. Since our context detection is done at the client side, whenever
the app view is closed, the contextual rule will be deactivated. As mentioned before,
future versions of our tool should perform the context detection on the server side.
Further, the tool should also be able to adapt a UI depending on the device on which
the UI is opened. Since our tool does not yet detect the type of device, this adapta-
tion is not yet possible. Additionally this device detection could also be used to only
open the app view created for this specific device, or let users choose how to open
and adapt a UI originally made for another device.

Requirement 7 (R7). Support for end-user development The eSPACE authoring
tool provides multiple abstractions, namely the pipeline and rules metaphors, in order
to hide the technical details from end users. Accordingly, end users do not require
any technical skills to use our tool. As will be demonstrated in Section 6.6, none
of the functionality has to be performed using any programming code or complex
representations as used in some other model-based approaches. However, given that
the support for shareability, extensibility and reusability could still be improved for the
end users, we marked this requirements as partially satisfied.

176

6.5. Discussion of the Functionality

6.5.1 Limitations

We finish this discussion section with a short summary of the limitations of our initial
eSPACE authoring prototype. As explained in this discussion, our eSPACE model
has been designed to be reusable, flexible and extensible. While we designed our
eSPACE authoring tool with these same criteria in mind, we did not yet implement
all the rich functionality described in Chapter 4. We therefore shortly describe which
elements of the model we did not yet use and how they could be used in a future
version of our eSPACE authoring tool.

Resources

In our current prototype we used all resources of our domain-specific conceptual
model, with as exception the Layout resource. By using the Layout resource one
could store more complex UI designs and thus allow end users to create a UI using a
pre-defined layout, such as a List layout or Grid layout.

Links

We used all link types introduced by our domain-specific extension of the RSL meta-
model. However, we did not use the original Navigational Links. Thereby, we
limited our eSPACE prototype to only single page applications, as navigation between
different views is not yet integrated. Navigational Links could play an important
role when adapting or distributing UIs from a large screen device to a device with
less screen space, where the UI might need to be split over multiple views that need
navigation between them. An example is the leaving home application on Lucy’s
phone that requires only one view compared to Lucas’ version on the smartwatch
which requires three views.

Selectors

Our current prototype does not make use of RSL Selectors. It could be interesting
to create and integrate an image or video selector so that end users could allocate
actions to only part of an image or video. By linking an image selector to the top of
an image one could define an interaction rule with as trigger “clicked at the top of
the image”. This way, a user could define an interaction triggering a different action
depending on where the user clicks on an image.

Users

As mentioned in requirements R3 and R4.3, user management is the main weakness of
our initial prototype. We do make use of the accessibility and sharing relationship, but

177

Chapter 6. End-User Authoring Tool

we do not use it to its full potential. Future versions of our authoring tool should also
allow sharing at a finer granularity, meaning not only sharing of an entire application
but also of specific parts of an application, such as a certain FUI. Further, a public
repository where users could make their entities (e.g. UI designs, FUIs, DComps)
accessible to an online community would greatly increase the reusability. Therefore,
the Group component of our model, which is currently not applied, should be used.
Next, we also do not yet take advantage of the Preferences of a user, which could be
used to tailor the user-defined application or some of the authoring views depending
on these preferences. One could for example use a larger fontsize for users with a
poor eyesight or adapt the interface according to their favourite colour scheme.

6.6 Use Case Demonstration
We finish this chapter by presenting some use cases, which demonstrate how to use
the tool in a stepwise manner. In this section, we also show that our database,
based on our conceptual model, can be populated with concrete data in the way as
described in Chapter 4, and that it can be used by the authoring tool following the
UI development process presented by our reference framework. As explained earlier in
this chapter, each final user interface that has been built using links of the conceptual
model in the way described by the reference framework is transformed into executable
code by the authoring tool and will be shown in the app view. Note that the use cases
presented in this section are based on our use case scenario presented in Chapter 3
and the smart technology we had at our disposal.

Smart Environment

In this section we shortly explain all smart technologies present in the smart environ-
ment of our use cases. We differentiate between the following screen devices: Alex
Smartphone, Living Room Tablet, Mason Smartphone, Alex Laptop, Smart TV
and Smart Fridge. For these devices a user can create a user interface. The re-
maining smart technologies that can be controlled include three Philips Hue smart
light bulbs1 used for the Living Room Light, the Bed Room Light and the Desk Light,
one WiFi light bulb2 serving as the Cat Room Light, a decorative Light Tree and a
Water Boiler. Note that the last two objects can be controlled by using TP-Link
Smart Plugs3 which are used to connect these objects to the power supply.

1https://www2.meethue.com
2https://www.amazon.fr/gp/product/B013DJYYYW
3https://www.tp-link.com/fr-be/home-networking/smart-plug/hs100

178

https://www2.meethue.com
https://www.amazon.fr/gp/product/B013DJYYYW
https://www.tp-link.com/fr-be/home-networking/smart-plug/hs100

6.6. Use Case Demonstration

In order to control these smart technologies, we implemented a number of ACs.
For controlling the smart TV, ACs have been created using the Pylips Python API1.
Further we used the TP-Link SmartPlug API wrapper2 for implementing ACs that can
control the two smart plugs and thereby control the decorative light tree and water
boiler. The ACs to control the lights make use of the official Philips Hue API3 for the
Philips Hue light bulbs and the led_flux Python API4 for controlling the WiFi light
bulb in the cat room.

Regarding contextual interaction rules, we used HTML Geolocation5 for defining mul-
tiple locations based on coordinate ranges. We kept it simple by only providing home
and not home as locations. Next, we use the JavaScript setInterval() function
for implementing time constraints. When an interaction rule includes a user con-
straint, meaning that an action could, for example, only be triggered by a specific
user, we simply verify which user is logged in. We are aware that the implementation
of contextual rules should still be improved, as already discussed in Section 6.3.3.

Further, we implemented two ACs for synchronisation, one for the synchronisation
of the files of a folder and another one for UIe synchronisation. For synchronising
folders we used the Windows command line xcopy command. Note that we limited
this synchronisation to a certain directory, which means that one can only synchronise
folders within this directory. We choose to do this to avoid overwriting folders on
the computer by making mistakes in our rules. For keeping UIes on different devices
(i.e. app view tabs) synchronised, we used the PubNub JavaScript library6.

Lastly, we included an AC that allows users to see the weather of a certain city.
The AC has been added to illustrate the functionality of third-party services, which
in this case is the weather forecast. The implementation of this AC uses the
OpenWeather API7 to retrieve the weather of a given city.

Simple Controller App

We start by demonstrating how to create a simple device controller application. The
application is meant to be used on the Living Room Tablet and should be able to
control the TV, the ceiling light of the living room and the decorative light tree next
to the TV. In order to do this, user Alex will create a user interface consisting of
three buttons, one to control each of these smart technologies.

1https://github.com/eslavnov/pylips
2https://github.com/vrachieru/tplink-smartplug-api
3https://developers.meethue.com/develop/hue-api/lights-api
4https://github.com/Danielhiversen/flux_led
5https://www.w3schools.com/html/html5_geolocation.asp
6https://www.pubnub.com/docs/web-javascript/pubnub-javascript-sdk
7https://openweathermap.org/api

179

https://github.com/eslavnov/pylips
https://github.com/vrachieru/tplink-smartplug-api
https://developers.meethue.com/develop/hue-api/lights-api
https://github.com/Danielhiversen/flux_led
https://www.w3schools.com/html/html5_geolocation.asp
https://www.pubnub.com/docs/web-javascript/pubnub-javascript-sdk
https://openweathermap.org/api

Chapter 6. End-User Authoring Tool

Figure 6.15: Example user interface for the Simple Control App

Alex starts in the home view, where she presses the Add App... button, fills in the
name of the application (Simple Control App) in a popup window and gets redi-
rected to the interaction view. In this view she starts by dragging and dropping the
Living Room Tablet element on the authoring canvas and then clicks the magnify-
ing glass of this tablet element, in order to go to the UI design view where she can
start designing the tablet UI. An example UI for the Simple Control App is shown
in Figure 6.15. Once the UI design is saved, she goes back to the interaction view to
add functionality to the created buttons, by pressing the magnifying button.

(a) Closeup of the process of connecting a tablet
element with the light tree (cursor is hovering
the green dot)

(b) Popup for defining the interaction be-
tween the Living Room Tablet and
Smart TV

Figure 6.16: Creating the Simple Control App interactions

180

6.6. Use Case Demonstration

In the interaction view she places the Smart TV, Living Smart Light and Light
Tree elements on the authoring canvas where she then links the tablet with each of
these smart technologies. Figure 6.16a shows how Alex is going to connect the tablet
element with the light tree (cursor is hovering the green dot). Once the green dot
of the light tree selected, a popup window will appear. When all information in the
popup is filled in and the save button is pressed, all dots will disappear.

Instead of linking the different smart technologies in the interaction view, Alex could
also use the rules view to define the interaction. Once finishing the UI design, she
could press the Add Rule... button in the bottom container of the view, which will
redirect Alex to the rules view. Figure 6.17 shows how to allow the smart TV to
be turned on and off using one of the power buttons created in the UI design view.
As a comparison, the popup window for defining the same interaction is shown in
Figure 6.16b. While the name of the rule can be given directly in the popup window
in the interaction view, in the rules view the name can only be given after saving the
rule.

Figure 6.17: Interaction rule for controlling the smart TV on button press

181

Chapter 6. End-User Authoring Tool

Synchronisation of Grocery List

The Grocery List use case application is based on the grocery list application from
Chapter 3. The application’s UI is distributed across two devices, the smartphone
and the fridge. The smartphone UI simply contains a list of groceries, while the fridge
UI depicts this same list together with some pictures. With this application we show
the use of the double-sided interaction arrow representing synchronisation.

(a) Preview of the Fridge UI (b) Popup for defining the synchronisation

Figure 6.18: Creating the Grocery List App interactions

Similar to the creation of the previous application, Alex clicks the Add App button
in the home view, fills in the name of the app, then adds the smartphone element
to the authoring canvas in the interaction view, presses the magnifying button and
creates the UI for the smartphone. After that, she also creates the UI for the fridge
(see Figure 6.18a), saves this UI design and comes back to the interaction view where
she connects the smartphone element to the fridge element on the authoring canvas
using a double-sided arrow. A popup window then appears, where Alex fills in the
information regarding the grocery list UI which should be synchronised between the
two devices, as illustrated in Figure 6.18b. Note that in the current version of our
authoring tool we assume that the selected UI element that should be synchronised is
present in both UI designs of the smartphone and fridge, which could cause problems
if this is not the case.

182

6.6. Use Case Demonstration

Morning Routine

The Morning Routine use case application is a simplified version of the morning rou-
tine application described in Chapter 3. The application consists of a smartphone UI
showing the weather in Brussels and allowing to control the bedroom light and water
boiler. Further the application also triggers the light of the bedroom and the water
boiler to turn on at 8 a.m. With this application we illustrate a more complex applica-
tion which uses user-initiated interactions as well as a contextual interaction involving
multiple actions that should be triggered at the same time given a certain situation.
We further also included our third-party service, being the weather forecast.

(a) Morning Routine App UI design (b) Popup for defining when to show the
weather forecast

Figure 6.19: Defining the Morning Routine App interactions

Again Alex, uses the home view to create an application. Once in the interaction
view Alex drops the smartphone element on the authoring canvas and presses the
magnifying glass. In the UI design view she designs the desired UI for her application.
Figure 6.19a illustrates an example UI design. After saving the design and going
back to the interaction view, Alex drags and drops the weather forecast service to
the authoring canvas next to the smartphone element. After that, she uses a regular
arrow to connect the smartphone to the weather forecast service and fills in the
additional information in the popup window, which is depicted in Figure 7.3b. Then
Alex adds the functionality for the buttons of her interface in the same way as already
explained in the previous use cases such that the buttons can be used to turn on or
off the bedroom light and water boiler.

183

Chapter 6. End-User Authoring Tool

Finally, in order to add the contextual interaction she can use the dashed arrow and
link a Time contextual element to the bedroom light element and then add another
dashed arrow between this Time contextual element and the water boiler element.
By using the interaction view Alex would have to fill in two different popups since
defining multiple actions are not supported in this view. Therefore, a faster way to
define this interaction is by using the rules view where the rule can be defined as “IF
time is 8 a.m., THEN turn on the bedroom light AND turn on the water boiler ”, as
shown in Figure 6.20.

Figure 6.20: Interaction rule to turn on bedroom light and water boiler at 8 a.m.

With these three applications we demonstrated the diverse functionality provided by
our unified XD and IoT end-user authoring tool. In order to verify whether end users
can build such applications using the eSPACE authoring tool we performed an initial
user evaluation, which is described in the next chapter.

184

Chapter 7

Evaluation

Any darn fool can make something complex; it
takes a genius to make something simple.

Albert Einstein

In this chapter we present an initial evaluation of the eSPACE proof-of-concept end-
user authoring tool. While our first user study focussed on finding the right ab-
stractions and design guidelines for an end-user authoring tool allowing the creation
of cross-device and IoT applications, this second study will give us insights on the
end users’ first impressions concerning our authoring tool. The study will also indi-
cate whether or not end users can create cross-device and IoT applications by using
eSPACE. Therefore, we asked eight volunteers without programming skills to design
three applications using eSPACE, examined how well they performed and captured
their first impressions. In order to capture their first thoughts about our tool we used
the Microsoft Desirability Toolkit or Microsoft Reaction Cards Method as explained
later in this chapter. In addition, we let participants fill in a series of questions to get
an idea of the current user satisfaction and to ask participants whether they preferred
the interaction or rules eSPACE authoring view. Based on our observations and the
results of the post-study questionnaires, we end this chapter with a summary as well
as some design implications and future work.

185

Chapter 7. Evaluation

7.1 Setup
In this user study we used the eSPACE authoring tool with the same smart envi-
ronment as the one described in Section 6.6 of our previous chapter. The smart
environment was set up at our apartment, where users were supposed to perform the
user study. Due to exceptional circumstances1, we had to perform the study remotely,
which more than likely had an impact on the users’ experience. We discuss this in
more details later in Section 7.5.

7.2 Participants
Eight participants (5 females) aged 22 to 56 years (M=32.3, SD=10.2) were re-
cruited from our entourage. Since our target group are people without programming
knowledge, we chose candidates with limited to no programming skills. The only
requirement for each participant was to possess a personal computer at home with
a decent Internet connection. Half of the participants were native French-speaking
people while the other half were native Dutch-speaking people.

7.3 Protocol
Participants were asked to perform a series of tasks by using the eSPACE authoring
tool. Since eSPACE is running as localhost on our computer and set up to commu-
nicate with our smart home environment, in order to let candidates interact with the
tool, we gave them remote access and control over our computer using TeamViewer2.
After completing the tasks with eSPACE, we concluded with a questionnaire and a
short interview.

eSPACE Presentation (15–20 min)

Each participant received a PDF document explaining our smart home setup, the
available devices and different views of the eSPACE authoring tool (see Appendix B.1).
Note that this document has been translated into French to make it more understand-
able for participants with limited English skills. Participants also received a short
demonstration video3 that explained how to use eSPACE through the creation of a
small example application. The document and video were available at all times during
the study.

1Covid-19 social distancing measures
2https://www.teamviewer.com
3https://www.youtube.com/watch?v=NnQ9auXKj68

186

https://www.teamviewer.com
https://www.youtube.com/watch?v=NnQ9auXKj68

7.3. Protocol

Tasks Execution (40–50 min)

Participants were asked to play the role of Alex who lives in the smart home described
in the PDF document. Alex wishes to make her smart technologies communicate with
each other using a couple of applications. Participants were therefore asked to create
such applications using eSPACE. We chose the same three applications as described
in Section 6.6 of the previous chapter:

1. The Simple Controller Application

2. The Grocery List Application

3. The Morning Routine Application

These applications were chosen since they cover most of the functionality offered
by our authoring tool, ranging from simple buttons to control smart appliances to
synchronisation of UI elements and the use of a contextual element (time) as well as
an external service (weather forecast).

After reading the PDF document with the description of each application and
after having watched the tutorial video, participants were given access to the
eSPACE authoring tool via the web browser. They were told to inform the study
supervisor when something was unclear and to not hesitate to ask questions when
they were stuck. The study supervisor followed the actions of the participants during
the whole study and noted down when they had to intervene, help or clarify cer-
tain things. Lastly, for every finished application, participants were told to try the
application in order to see whether it had the expected behaviour.

Questionnaire and Interview (15 min)

In order to capture the first impressions of the participants and the desirability of our
authoring tool, we used the Microsoft Reaction Card method [20] which consists of
giving participants a set of words from which they have to select the ones that best
describe the tool they just used. The word set contains negative, neutral and positive
words. While the original set contains 118 cards, it is recommended to shorten this list
depending on which words are more relevant for the tool being evaluated. We chose
to keep 40 words that are shown in Appendix B.2.1. Participants could select between
5 to 10 of these words and classify them either as highly relevant or just relevant with
a maximum of 5 words per category. Note that the set of words has been randomised
for each participant. Next, participants had to fill in the Post-Study System Usability
Questionnaire (PSSUQ)1 in order to have an indication of the system usefulness,
information quality and interface quality of eSPACE. This questionnaire is shown in

1https://uiuxtrend.com/pssuq-post-study-system-usability-questionnaire/

187

https://uiuxtrend.com/pssuq-post-study-system-usability-questionnaire/

Chapter 7. Evaluation

Appendix B.2.2 and consists of 16 questions to be answered via a 7-point Likert
scale and an n/a option. Since questions 7 and 8 are not applicable to our authoring
tool, given that we neither provide error messages nor allow users to easily recover
from mistakes, we marked them as n/a for all participants. Participants concluded the
study by a last questionnaire asking them how easy it was to perform each task, which
view they preferred and whether they had any comments or suggestions to improve
the tool. This questionnaire is available in Appendix B.2.3. Finally, we performed a
short interview asking participants about the reason why they selected specific words
from the reaction cards and why they classified them in a certain category.

7.4 Results

In this section we first go through the words selected by the participants to best
describe their experience with the eSPACE authoring tool. After that, we go through
the results of our questionnaires and finish by describing our study observations.

7.4.1 Microsoft Reaction Cards

Figure 7.1 depicts a wordcloud which represents the selection of reaction cards chosen
by the participants during the last phase of our study. The bigger a word the more
often the word has been selected by our participants. Further, a word classified as
highly relevant has been given a larger weight than a word that has been placed in
the relevant category. Concretely, a word in the relevant category has a weight of
1, while a word in category highly relevant has a weight of 1.5. During the interview
with each participant, we asked them why they selected these words to describe their
experience with eSPACE. In this section we discuss the reason behind a majority of
the words represented in the wordcloud.

Figure 7.1: Wordcloud representing how participants described eSPACE

188

7.4. Results

The word that was chosen the most is Organised. 6 participants mentioned that they
selected organised because the tool classified information in multiple categories that
were well organised in the views. Thereby, they were referring to the categories in the
left sidebar in the interaction view and the different options in the rules view. One
participant said “with everything per theme, we can find what we are looking for ”.

The second most selected word is Useful, which has been chosen by 5 participants.
Some participant mentioned it would be handy to have such a tool given that we are
becoming more “lazy”. Others said the tool would be useful to control their smart
devices. Next, 4 participants placed the word Effective in the highly relevant category,
mainly because the tool was working and participants could control the smart devices
as they wanted with the applications they created. A participant further mentioned:
“the tool is doing what it should do.” The term Easy to use has also been picked by
4 participants. This word was often placed in the relevant category, the 3 participants
that did so explained that they did not put it into the highly relevant category because
they first had to take some time to get use to the tool, but “once you get it, it is
easy to use”. The participant that placed Easy to use in the highly relevant category
mentioned that they placed it there because “one video of 5 minutes is enough to
start using the tool”.

3 participants selected the word Flexible and explained that the tool offered quite some
flexibility in terms of what they want or could do with it. Participant P3 expressed
that “the tool offered a multitude of possibilities”. The word Attractive has also been
chosen by 3 participants. A participant that chose this word mentioned that the tool
made them want to create more connections between devices and another one said
that the study made them want to use the authoring tool more.

Participants P2 and P6 selected the word Confusing, because they found some of the
menu options not easy to understand and thus confusing. They were both referring
to certain dropdown options in the popup menu of the interaction view and the ones
in the rules view. For the same reasons they both also chose the word Complex.
Participant P6 further selected Difficult, as they had difficulties using the tool in the
beginning, but mentioned that “after a while it was ok”. The word Stressful has
also been selected by participant P6 because in the beginning they felt a bit lost.
A possible factor that may have played a role is that this participant performed the
study at a later timeslot than originally planned, because they had a busy day at work,
which could have impacted their level of stress.

Efficient has been picked by 2 participants. One of them said “it works well and it
goes to the point”, when speaking about the authoring tool. A couple of participants
selected the word creative because you could create your own applications with the
tool and be creative. Further, 2 participants chose the word Exciting, as they both

189

Chapter 7. Evaluation

found eSPACE fun to use. The word Advanced was also selected by 2 participants
saying that the tool provided functionality they were not used to, therefore they
perceived the tool as quite advanced. Inspiring has been indicated by a participant
because it gave them some ideas of interactions that could be done with their smart
devices. Satisfying was noted down by another participant because they had a feeling
of satisfaction when creating their own applications. Participant P8 selected the word
Simplistic, considering that the tool was “relatively simple”, they further mentioned
that there were “not too many bells and whistles”, which was seen as a good thing
by the participant. The word Unpredictable has also been chosen by participant P8,
just because of the bugs that they encountered. This participant, for example, found
a bug which made the rules view not able to save a certain rule.

The word Time-Consuming has been selected by one participant that mentioned that
it still took quite some time in the end: “one hour to create three applications”.
Another participant did not interpret the word well and said that they chose this word
because they could quickly make use of the tool. This participant also selected the
word Approachable which resembles more to what they meant, as they mentioned
believing that “everyone could easily master the authoring tool” as reason for selecting
Approachable.

Note that we did not translate these words to French for the French-speaking par-
ticipants, because we did not want to risk having different meanings for some words
when translating them. Therefore, we told participants to ask us when a word was
unclear for them. However, the lack of translation led to some words that were inter-
preted differently. For example the word Consistent was chosen by two participants
who interpreted it more as “consistant” in French and explained that the authoring
tool was offering a lot of possibility and that there were lots of things to do with it.

7.4.2 Questionnaire

The first part of the questionnaire consisted of the post-study system usability ques-
tionnaire (PSSUQ). Although this user study has been conducted in order to examine
how users will behave and interact with our tool as well as see whether they can create
applications with it, we still gave them this questionnaire to have an indication of the
current usability of our tool. However, since participants are all acquaintances, we will
handle the results with a grain of salt. The PSSUQ gives an overall score correspond-
ing to the user’s perceived satisfaction of the tool, but it can be further broken down
into three subcategories, being the system usefulness (SYSUSE) (average scores of
questions 1 to 6), the information quality (INFOQUAL) (average scores of ques-
tions 7 to 12) and the interface quality (INTERQUAL) (average scores of questions
13 to 15). Figure 7.2 shows the means per question and the means per subcategories
according the responses of our participants. The lower the value the better.

190

7.4. Results

0

1

2

3

4

5

6

7

PSSUQ Means Per Question and Subcategories

Figure 7.2: Results of the post-study system usability questionnaire

Based on Figure 7.2, we see that the mean for each question is between 2 and 4,
which implies that participants answers to the questions tend to be on the positive
side, as the 4-score represents “neutral”. Question 6 that asked participants whether
they believe they could be productive quickly by using our tool, has the best score,
which is 2.13 on the 7-point Likert scale. The next best rated questions are ques-
tion 11 and question 14 with an average score of 2.25. Question 11 was related
to whether the information received by the participant was effective in helping them
completing their tasks. Therefore, we believe that the demo video and tutorial doc-
ument served their purpose well. Question 14 asked participants if they liked using
the interface of our authoring tool. Since this question has the second best rating,
we can estimate that the interface of our authoring tool was pleasant to use for our
participants. The question that has the worst score, is question 3 with a score of 3.63
and is related to the time for completing the tasks. More concretely, participants had
to indicate whether they were able to accomplish the tasks quickly using our tool.
Some participants mentioned that it still took almost an hour to create the three ap-
plications and therefore gave a higher score to this question. Future studies could be
performed to compare how quickly users can create these applications using another
authoring tool. The next worst score of 3.38 was attributed to question 2, which
asked participants whether the tool was simple to use. Participants who indicated a
score of 3 or more, expressed having difficulties at the beginning of the study and
needed some time to get use to the eSPACE authoring environment, after a while
they mentioned it was getting easier. These difficulties in the beginning of the study
were mostly the reason why participants tended to give a higher score to question 2.

191

Chapter 7. Evaluation

Overall our authoring tool scored quite well, with a score of 2.69. The authoring
tool scores best on the interface quality, followed by the information quality and as
lowest the system usefulness. As mentioned above, participants liked the interface
of our tool which is most likely why this subcategory scored best. By removing two
questions related to information quality (question 7 and question 8) as they were not
applicable to our tool, the authoring tool still performed well on this category mainly
thanks to the demo video and tutorial document. The system usefulness has the
lowest score mainly because of the questions 2 and 3 discussed earlier.

We further interpret our results by comparing the means per category to the norm
defined by Sauro and Lewis [195] based on 21 studies and 210 participants. By looking
at Table 7.1 we see that our means are similar to the ones of Sauro and Lewis, which
means that the user satisfaction of eSPACE is quite good. Of course, these results
are merely a first indication of the user satisfaction as we had a low number of
participants and participants were taken from people that we know, which introduces
a bias. The low number of participants is also reflected in the error bars shown in
Figure 7.2 representing the relatively large standard deviation, indicating that the
individual responses strongly deviate from the mean values. However, it still gives us
some confidence that the initial version of our authoring tool is already on the right
track for further improvements.

Sauro and Lewis [195] Our study
SYSUSE 2.80 2.91
INFOQUAL 3.02 2.56
INTERQUAL 2.49 2.46
Overall 2.82 2.69

Table 7.1: Comparing results with Sauro and Lewis [195].

The second part of the questionnaire consisted of rating the difficulty of the creation
of each of the three applications. While the Simple Controller application is the
most simple application of the three, not all participants marked it as easy. The
3 participants who marked the app as neutral or difficult said that the reason behind
this was that they were not yet used to the eSPACE authoring tool. Therefore
participant P2 indicated the two first apps as neutral and the last one as easy, since
by then they were more accustomed to the tool. Participant P6 followed a similar
train of thoughts by noting the first app as difficult, the second one as neutral and
the last one as easy. Lastly, participant P7 marked the first app as difficult and
the remaining ones as easy. The 5 other participants expressed that they had some
difficulties in the beginning but that when reflecting back on it, the app was quite
easy to create and therefore indicated the first app as easy. 2 participants mentioned
that the Morning Routine was the most difficult one because it also involved new

192

7.4. Results

concepts such as the time and the use of the weather forecast service. Therefore
they indicated this app as neutral or difficult. The remaining participants marked the
Grocery List and Morning Routine as easy and one even indicated very easy. An
overview of the responses of the participants is shown in Table 7.2.

Participant Simple Controller Grocery List Morning Routine
P1 Easy Easy Easy
P2 Neutral Neutral Easy
P3 Easy Easy Very easy
P4 Easy Easy Neutral
P5 Easy Easy Difficult
P6 Difficult Neutral Easy
P7 Difficult Easy Easy
P8 Easy Easy Easy

Table 7.2: Results of the degree of difficulty for each application per participant

In the next part of the questionnaire, we simply asked participants whether they
preferred the interaction or rules view. The possible answers to this question were:
“interaction view”, “rules view”, “both equally preferred” or “both equally disliked”.
Half of our participants mentioned that they preferred the interaction view, while
the other half said they preferred both views equally. During our observation we did
notice participants having more difficulties with the rules view, however some of them
still chose both views as equally preferred. A more detailed discussion regarding our
observations is presented in the next section.

The last part of the questionnaire included two open questions. The first one asked
participants if they had any suggestions to improve our authoring tool, while the
second one just invited participants to give some general comments. 2 participants
requested help menus to clarify some of the dropdown choices in the interaction view
popups and in the rules view. One of these participants also suggested a “game-like”
walkthrough of the authoring tool for people that are using the tool for the first
time. Participant P8 proposed interesting suggestions, namely to add “auto save”
functionality, some zoom-in and zoom-out effect when pressing the magnifying icons
in the interaction and UI design views as well as adding a button to switch between
the rules and interaction view. These were some good suggestions, since we indeed
do not provide a way to go back to the interaction view once in the rules view. The
auto save functionality is for now only present when pressing the magnifying button
in the interaction view. In a first instance we did not add this functionality due to
some of the bugs we had. For example, if the user misses the target dot of the
target device when they create an interaction with an arrow in the interaction view,
the arrow will remain on the canvas with no target element and cannot be deleted.
As a solution we simply refresh the page, which would not be possible if the arrow
was saved automatically. Finally some general comments were “easily learnable and

193

Chapter 7. Evaluation

has multiple applications”; “useful application in daily life, the management of devices
and connection between them is simple and effective”; “looking forward to using the
app when finished”. Based on the collected data of these questionnaires we provide
a short summary of the results in Section 7.5 and present design implications and
future work in Section 7.6.

7.4.3 Observations and Discussion

While participants were performing their tasks, we observed certain recurrent be-
haviours and difficulties which will be discussed in this section. When creating the
first application, we asked participants to create one interaction using the interac-
tion view and one with the rules view. After that, they could chose which view they
wanted to use. However, for their first interaction we let them choose which view
to use. If they used the interaction view, we asked them to use the rules view for
defining the second interaction, and vice versa. Only one participant started with the
rules view first.

The first notable difficulty which we observed is the selection of the trigger in the
rules view. 4 participants indicated as trigger User = Alex. These participants said
they selected user Alex because she is performing the action or because the action
was supposed to be performed by her smartphone. While selecting user Alex as trigger
is not wrong in itself, selecting user Alex as only trigger is wrong, since the trigger
in the first application is on button click. One participant further mentioned that
they thought they had to go through all different categories of the “IF-side”. Some
participants also had the tendency to fill in the action in the trigger part and were
then stuck when they had to fill in the action part (THEN-side).

In the interaction view, participants quickly understood how to use the arrows to cre-
ate an interaction between two devices. However almost all participants had troubles
when selecting the target device. They needed to drop the arrow on a green dot, but
on their first try dropped it somewhere next to this dot, with the consequence that
the tool did not register the target device. Some participants said that the application
was lagging, which could be the cause. Another participant said they also had a small
screen making it difficult to read the text and drop the arrows on the dots. In order
to make the interface more readable for this participant, we used the scaling option
in Chrome, which solved the unreadable text issue.

Regarding the popup window in the interaction view, 2 participants mentioned that the
when dropdown, was not always clear. For example, the on button click was more
interpreted as button of the phone rather than a button of the user interface. When
creating the interactions for the Simple Controller application, many participants
chose the action turn with parameter on for the action part, instead of toggle,

194

7.4. Results

resulting in making a button that could only turn on a device. A participant mentioned
that they would have chosen toggle if the turn on option was not pre-selected.
The eSPACE authoring tool always selects the first action available of the device in
the dropdown, by clicking this dropdown participants can select the desired actions,
however they often omitted this action when seeing that the selected option was
turn on.

Almost all participant did not know which trigger to select for the synchronisation
of the grocery list in the second application they had to create. Our tool provided
the UI Change option in the interaction view and the On Change option in the rules
view. We therefore should find a more appropriate label or manner to indicate the
correct trigger of UI synchronisation. A participant suggested that “always” would be
better in the when dropdown of the popup window in the interaction view instead of
the UI Change as shown in Figure 7.3a. Further studies should be performed in order
to investigate better menu options.

(a) Popup window for synchronisation in the
interaction view

(b) Popup window when dropping the
weather UI element on the canvas in the
UI design view

Figure 7.3: Popup windows

All participants had difficulties with the weather service of the last application. Some
said it would be more logical connecting the weather service to the phone, while others
found it logical to connect the phone to the weather service. When participants used
the rules view they again had the tendency to fill in the “show weather” action in the
“IF-side” instead of in the “THEN-side”. We anticipated the difficulty of defining the
trigger for the weather service and therefore had added a note for the users when
they placed the weather UI element on the phone’s user interface which is shown in

195

Chapter 7. Evaluation

Figure 7.3b. However, most of our participants did not see this note, or needed a
reminder after asking what the trigger should be. One participant explicitly said they
could not imagine what “on UI creation” meant because these are not terms they are
used to work with. A participant suggested “on app startup” as alternative, but further
investigation should be done in order to find a label that is more straightforward and
understood by people.

Similar to our first user study, participants had the tendency to first place all the
devices on the canvas before starting to design a UI or to define an interaction rule.
When participants needed a contextual element, such as time for the last application,
this element was usually added afterwards, when deciding to create the interaction
related to time.

For defining the interaction involving time, namely turning on the water boiler and
light at 8 a.m., 4 participants chose to use the rules view. 3 of them created one
interaction rule with two actions while the remaining participant created two different
interaction rules. 4 participants used the interaction view, 3 of them easily figured
out that the contextual arrow had to be used while the remaining participant needed
some guidance and explanation on what a context represents.

Symbols and annotations in the interaction view were noticed by 3 participants, one
used an image icon that they placed on the smartphone element on the canvas. In our
introduction video and tutorial document we did not introduce the sidebar elements
in details which could be the reason why participants did not pay attention to this
part of the sidebar. In future user studies, the sidebar functionality in the interaction
view should be better presented to the participants.

We end this observation section with some final minor remarks. Only one participant
added a rule via the home screen, all participants did it via the Add Rule... button
in the interaction view. One participant used this button while in the UI design
view. Many participants clicked at least once the application in the applications
dropdown of the home view they originally meant to edit. With this action they
opened the application instead of editing it. Further, it was unclear for participants
that when opening an app, the authoring tool opened new tabs corresponding to the
devices on which the user interfaces of the application are running. This might be
because the TeamViewer option bar at the top of the screen was hiding the tabs
for some participants, as shown in Figure 7.4. All participants watched the demo
video twice, the second time mostly to find a specific action, some followed along,
trying to reproduce the actions from the video. For most participants it was hard to
juggle between the document describing the applications they had to create and the
authoring tool, which led to some annoyance. Participant P2 placed the document
on the left and the view of the tool on the right of the screen, but thereby made

196

7.5. Summary

Figure 7.4: TeamViewer screenshot of a participants’ view of the home view

the rules view not very usable, as this view is better employed in full screen. Some
participants made a screenshot of the description of the apps they had to create
and could then go back to this description using the screenshot more easily than
switching between the document and the authoring tool in TeamViewer. Printouts
of this document would have given participants a better experience. Last but not
least, as our authoring tool is still in the prototype phase, we still had some bugs and
missing functionality. Some participants encountered more bugs than others, which
has played a role in the participant’s experience with the tool as well.

7.5 Summary

While our study environment was not ideal—given that people had to cope with
some lags, small screen sizes and sometimes even a connection interruption (2 par-
ticipants)—we could still gain some insights into peoples’ behaviour with our
eSPACE authoring tool and get valuable feedback. In this section we summarise
the results of our evaluation.

Overall, our authoring tool received a lot of positive feedback. The most recurring
words of our wordcloud were positive, such as organised, useful and easy to use. The
more negative words, such as confusing and unpredictable, were often chosen because
of the bugs rather than a bad design. The main criticism concerning the design was

197

Chapter 7. Evaluation

more about some word choices in the dropdowns such as UI change and UI creation,
which was unclear for participants, since indeed those terms were too technical for
them to understand.

The results of the PSSUQ should be taken lightly, given the small number of partici-
pant, the large error bars and the fact that participants were all acquaintances which
may introduce some bias. We did not perform this user study to test the usability
of our tool, but still asked participants to quickly fill in this questionnaire to have an
indication of which subcategory and questions would be rated better than others. We
have seen that all three categories, of system usefulness, information quality and in-
terface quality scored between 2.46 and 2.91, which according to the norm are really
good scores. We have seen with this questionnaire, that many participants believed
they could become quickly productive with our tool.

While the last application that participants had to create was the most difficult one,
it was only perceived as difficult or neutral by two participants, which means that
using new functionality such as contextual interaction and interaction involving a
service, was not perceived as difficult by many participants even though some had
requested some guidance. This also confirms the statement from the questionnaire
we mentioned above, about participants believing they can become productive quickly
with the tool. It further is also in line with the results of the question about whether
or not the tool was easy to learn.

Half of the participants preferred both views equally, while the other half preferred the
interaction view. This is in accordance with our first study, which showed that when
thinking about interaction across devices, people think about arrows, which were more
natural to use than the IF-THEN statements in the rules view. A participant further
mentioned that connecting devices with arrows was more intuitive and that they did
not have the logical mindset to directly understand the rules view, but probably could
get there with some time and practice. Nevertheless, this participant still noted that
they equally liked both views afterwards. Therefore, we think both views could not
only be seen as equivalents but more as complementary. Since the interaction view
does not yet offer the functionality to edit a rule, participants used the rules view
to adapt wrong interaction rules. This behaviour could become common practice as
modifying a rule seemed more easy for participants to grasp in the rules view than
creating a rule from scratch using this view.

Finally, our observations gave us insights about the behaviour of participants with our
tool. We noticed difficulties with the rules views as well as difficulties with terminology
of certain dropdowns. It was very surprising that all participants could not drop the
arrow on the green dot of the target device, as explained before this could be due to
lags and small screens but further investigation should be performed in order to see

198

7.6. Design Implications and Future Work

whether there is a real issue with the size of the dots surrounding the target device.
Throughout the study participants sometimes discovered some new bugs, which are
mostly fixed by now. However, a thorough examination should still be performed in
order to eliminate all bugs once and for all.

7.6 Design Implications and Future Work

While some of the feedback we received on the design of our tool might need further
investigation, in this section we start by discussing the feedback that can already be
applied. Overall, there are no big design changes required which is good news and
means that our design guidelines certainly helped for designing something intuitive
for end users.

Create an application
by clicking the ‘‘Add

App’’ button

Figure 7.5: Home view with a walkthrough layer showing end users how to build a
demo application

We first discuss how to improve the demonstration and explanation of the authoring
tools’ functionality. Next to the demonstration video, there should be the option to
follow a walkthrough tutorial of the authoring tool. Thereby, we would provide end
users with an on-tool explanation of the functionality of the tool. Users would then
follow a step-by-step tutorial to build their first demo application. Figure 7.5 illustrates
how users could follow the steps to create a demo app and Figure 7.6 shows a possible
way of explaining the different functionality of the tool while following these steps.
This could provide a better hands-on experience and further lower the learning curve
as well as build more confidence. Such a learning by example is popular in games.
According to Schell [196], males prefer a trial-and-error approach, while females tend

199

Chapter 7. Evaluation

to prefer clear step-by-step tutorials so that when attempting a task they know what
they are supposed to do.

Contextual elements for
defining interaction rules

involving a specfic context
related to time, location or

user

Figure 7.6: Interaction view with a walkthrough layer showing the functionality of the
contextual elements in the sidebar

In order to further provide an explanation about the tools’ functionality, some help
icons should be provided next to the dropdown options in our different views, mainly
in the interaction and rules view. When hovering such a help icon (?○), users would
be prompted with a short explanatory text in a speech bubble above the icon.

Next, we consider making the Edit buttons in the home view wider since participants
were often clicking the application instead of the edit button and mentioned that this
button was quite far away from the name of the application. An additional solution is
adding an Open button next to the Edit button, which also could further indicate the
presence of the editing and opening options. In general we plan to make the labels
and buttons of the authoring tool a bit larger, as it seems to be borderline too small
for many users. Some labels will also be renamed, for instance the on UI creation
option should be renamed to “on app startup”, however, as mentioned before some
studies are necessary in order to find the most appropriate labels for defining certain
interaction rules.

In terms of functionality, apart from the missing functionality described in Section 6.5
of the previous chapter, we shortly mention some lacking functionality experienced
by the participants of our study and which should be added before performing further
studies. As explained earlier, participants had some trouble when selecting the target
dot in the interaction view, resulting in the creation of an interaction arrow without

200

7.6. Design Implications and Future Work

target that could not easily be removed by the participant. Therefore, the interaction
view should provide a way for participants to either delete arrows or undo their last
actions as provided in the UI Design view. Ideally the tool would of course provide
both options. Further, some feedback should be given to the user when hovering on a
dot, which will also help them to know when they correctly selected a target dot. Such
feedback could be given by the cursor that could show a different symbol depending on
the user’s action. For example, when dragging the arrow, the cursor would be a closed
hand icon and when hovering a target dot it would transform into an open hand icon.
Additionally the target dot could take another colour once hovered, to indicate that
the user can drop the arrow on colour change. Related to the interaction view, one
could make clear that when pressing the magnifying glass icon next to a device,
we actually “zoom into” the device to create a UI for this device by adding a zoom-in
effect, as often done in Prezi1 presentations for instance. Another indication could
be including a preview of the UI on the devices in the interaction view, which was our
original idea but could not be explored due to lack of time. This idea is illustrated in
Figure 7.7 and is based on Shneiderman’s mantra: “overview first, zoom and filter,
then details-on-demand” [199], where an overview is given in the interaction view and
details are provided in the UI design view.

//////////////
///////

/////////
/////////

/////////
/////////

/////////
/////////

Figure 7.7: Interaction view with a preview of the smartphone’s UI created in the
UI design view

The toolbar provided in the UI Design view allowing to delete, undo, copy and preview
the user interface was not used a lot by participants. Since keyboard shortcuts were
also working in this view, such as Ctrl+C to copy or Del for deleting, participants
principally used those. Only one participant used the copy option for copying buttons,
but this caused some issues afterwards when they had to select a button for a specific
1https://prezi.com

201

https://prezi.com

Chapter 7. Evaluation

interaction. Since the user copied the buttons they all had the same name and were
thus undistinguishable in the dropdown menu. In order to avoid such a situation, we
should automatically add a number after the name of a button when the user copies
this button and also allow users to see the name of the buttons when hovering over
them. Lastly, for now a rule is only active when the application containing this rule is
opened in a browser tab. We already explained in the previous chapter that in future
versions of the tool rules should run on the server-side and remain active even when
the application is not opened. Therefore, we should also provide a way to activate
or deactivate certain rules, by, for example, adding a toggle button next to each rule
in the home view. The toggle button can then be set on active or inactive to show
the state of the rule. A participant even asked the question how to deactivate a rule,
explaining that when waking up earlier than 8 a.m., they would not want the light and
water boiler to turn on at that time anymore. This functionality should certainly be
added in a next version of our tool.

(a) Interaction view showing time-related in-
teraction as well as interaction involving
the weather forecast

(b) Interaction view showing all interaction of
the Morning Routine application with the
time contextual element moved to the right

Figure 7.8: Interaction view of participant P8 for the Morning Routine application

We end this section, on a last remark we received from a participant. Since when
linking devices in the interaction view we create a link between two dots, when moving
the elements on the canvas the arrow might end up traversing the different canvas
elements. This is illustrated in Figure 7.8, where originally the elements were linked
as in Figure 7.8a and the participant wanted to move the time element as shown in
Figure 7.8b when adding the two extra arrows. A possible solution would be to link
the arrows to the center of the canvas elements instead of to the dots. However,
we chose the dots so that interactions with the same trigger could be grouped on
the same dot, which could become an issue if the arrows only take into account their
source and target element. Note that, participants all showed interactions from left to
right, meaning that the trigger element was always located left of the action element
on the canvas, sometimes the actions was also shown under the trigger when other

202

7.6. Design Implications and Future Work

elements were already placed on the right. Only participant P8 changed the location
of the trigger element and placed it to the right of the actions, as we have seen in
Figure 7.8b. Future versions of the tool should still enforce the positioning of triggers
on the left and actions on the right, but it is interesting to see that even without
enforcing it, participants already applied this guideline, which is in line with the results
of our elicitation study. Grouping in the interaction view was not performed by the
participants, only grouping of actions in the rules view has been used by 3 participants.
In order to enforce grouping in the interaction view, the tool could detect when a
user selects the same trigger in the popup menu and automatically assign the same
dots for the same triggers.

203

Chapter 7. Evaluation

204

Chapter 8

Conclusions and Future Work

The best way to predict the future
is to invent it.

Alan Kay

With this dissertation we attempt to improve the end users’ control over their smart
devices and IoT appliances by empowering them with a solution allowing the man-
agement of all their smart technologies in one place, rather than having this control
fragmented over different applications. As we have seen in the introduction, cross-
device interactions are already an inherent part of our daily life, but the interaction
possibilities are still limited. Moreover, people tend to use older technologies with
which they are more familiar, such as using emails or USB sticks, as we have seen
from the results of our questionnaire. It gets even more complicated with the rise
of new IoT devices, which all come with their dedicated applications. Solutions have
been introduced in the domain of cross-device and IoT research, for improving such
XDI and IoT interactions. However they mostly represent closed solutions with limited
capabilities to adapt to evolving user needs. Therefore, we turned towards end-user
development solutions in these two domains, which provide end users with means to
develop their own XD or IoT applications that can then be adapted to their changing
needs and are thereby more futureproof. While some XDI and many IoT EUD tools
exist, they still presented some limitations as illustrated in Chapter 2. Further, they all
support different devices and functionality that is expressed using different metaphors
that are sometimes difficult to understand for end users. This is also a reason why
we wanted to get a better understanding of the end users’ mental models when
confronted with cross-device and IoT interactions. We achieved this understanding
through an elicitation study where we derived a set of design guidelines mapping the

205

Chapter 8. Conclusions and Future Work

users’ mental models, which served as a base to construct our end-user authoring so-
lution. The road that led us towards this first end-user authoring solution prototype
is summarised in this chapter by going through the research questions presented in
Chapter 1 and providing concrete answers to them. This will give us the opportunity
to summarise our achievements presented throughout this dissertation as well. Next,
we continue with a critical discussion reflecting upon these achievements and some
limitations. After that, we provide conclusions and directions for future work.

8.1 Summary

In order to tackle the problems introduced in Chapter 1, including the fragmented
control, lack of uniformity and limited functionality as well as the lack of consensus on
guidelines for a XD and IoT end-user authoring tool, we presented our main research
question with its subquestions. We now provide a summary of our work that has been
described in this dissertation, by answering the original research questions. For each
question we discuss our findings and the corresponding contributions.

Research Question 1 What are the main requirements for the end-user authoring of
unified cross-device and IoT user interfaces?

In order to answer this question, we analysed related work in the domain of end-user
development in cross-device research and the Internet of Things, which led to a set
of initial requirements. Next, we came up with a use case scenario involving XDI and
IoT interactions in order to find out whether additional requirements were necessary
to support all the interactions described in the scenario. As a part of the next research
question we investigated model-based solutions, which allowed us to further finetune
our requirements. After this broad analysis of the functionality and requirements
described in related work, we unified those requirements to come up with our list of
final requirements shown in Table 8.1.

These requirements reflect all important concepts retrieved from related work and
from the presented use case scenario. For example, the first requirement R1, reflects
the importance to provide an overview of all smart technologies available in the smart
environment to end users. As we have seen, this is currently not the case for existing
IoT applications, given that they are often limited to the integration of devices of the
same brands. Consequently, the users end up with multiple applications to control
all their devices and therefore lack an overview of their smart environment, as also
stated by some of our study participants.

Next to an overview of the availability of smart technologies, users should also be
able to easily interact with all their devices and perform cross-device interactions. In

206

8.1. Summary

Requirement 1 (R1) Provide an overview of the smart technologies,
environments and applications

Requirement 2 (R2) Interaction support
Requirement 2.1 (R2.1) Support for interaction across multiple smart technologies

Requirement 2.2 (R2.2) Support for creation, customisation and distribution of
cross-device and IoT user interfaces

Requirement 2.3 (R2.3) Offer fine granularity UI distribution
Requirement 3 (R3) Shareability

Requirement 3.1 (R3.1) Support for sharing and integration of apps in a central
smart apps repository

Requirement 3.2 (R3.2) Enable sharing of applications, user interfaces or
parts of a user interface with specific users

Requirement 4 (R4) Extensibility

Requirement 4.1 (R4.1) Offer extensibility at the level of communication protocols,
devices and user interfaces

Requirement 4.2 (R4.2) Enable the integration of third-party applications

Requirement 4.3 (R4.3) Offer extensibility of adaptive behaviour and
distribution configurations

Requirement 5 (R5) Reuseability

Requirement 5.1 (R5.1) Support for reuse and combination of existing
user interfaces

Requirement 5.2 (R5.2) Support for reuse and combination of existing
functionality

Requirement 6 (R6) Portability
Requirement 6.1 (R6.1) Offer platform independence
Requirement 6.2 (R6.2) Support for context awareness
Requirement 7 (R7) Support for end-user development

Table 8.1: Requirements for XDI and IoT end-user authoring tools

the introduction of this dissertation we presented the results of Google and Microsoft
studies showing that many people switch from one device to another to perform cer-
tain daily tasks. Sometimes, this is done to continue the same activity on another
device, requiring them to refind the same information on the other device. This activ-
ity could be made less complicated by using some cross-device interaction technique
that would allow users to easily transfer data from one device to another. When ask-
ing how people usually perform a picture transfer between two devices, they still often
use a USB stick, as shown in the results of the questionnaire described in Chapter 5.
Therefore, we refer to interaction support as a second important requirement (R2),
for improving a user’s control over their smart technologies.

In addition, the concept of reusability is relevant as well, since it prevents people
from having to start from scratch by reusing the same components in similar or
different ways. The reusability of rules has been on the requirements list of recent
systems presented in related work, such as TARE [93] and CMT [212] and is used
as an evaluation criteria by Akiki et.al. [6] for adaptive model-driven UI development

207

Chapter 8. Conclusions and Future Work

systems. The need for reusability is not only reflected through R5, since sharing (R3)
can also be seen as a form of reusability of components created by other users.

As the number of devices and IoT appliances grow over time, it is also important to
make a solution futureproof by supporting extensibility on multiple levels. One can,
for example, increase the extensibility by making it easy to add new communication
protocols, devices or user interface elements. Further, extensibility can also be shown
through easy integration of third-party applications and services. It is essential to
provide a system that is open for future changes, allowing the system to evolve not
only together with technology, but also with user needs, as reflected through R4 and
its subrequirements.

Naturally, a crucial element for a solution supporting the creation of cross-device and
IoT application is portability, meaning that the tool as well as the applications should
be accessible on many platforms and devices. Additionally, applications should be able
to adapt to the device on which they are used and ideally adapt to the context of use
as well, demanded by requirement R6.

Finally, the most important criteria for such an end-user authoring solution is mak-
ing all these highlighted concepts available to end users, which is reflected by re-
quirement R7, where we stress the importance of appropriate metaphors to present
technical details to end users.

Research Question 2 What are the necessary concepts and methods to address the
requirements resulting from answering RQ1?

We answer this question in Chapter 4, where we decided to follow a model-based
approach to facilitate the development process of user-defined XD and IoT appli-
cations [110]. It further also helps structuring our approach, promotes reusability,
flexibility as well as extensibility and can give us an idea on how to integrate the iden-
tified requirements of RQ1 at an early stage of the development cycle. By analysing
existing model-based and model-driven solutions, we decided to integrate the adaptive
aspect of a user interface as well. Since many current systems often try to adapt to
the users’ characteristics and needs, we deemed it necessary to also add this adap-
tivity option to the user-defined applications. Note that, in addition, the need for
adaptation was already present in R6.2.

After the analysis of related work, we presented the design of the eSPACE reference
framework and conceptual model for the creation of XD and IoT applications, that
supports all requirements resulting from RQ1. The reference framework has been
inspired by the CAMELEON reference framework (CRF) [40] and structures the
UI development process into multiple levels of abstractions. In contrast to the CRF,
we do not introduce different models for each abstraction layer, but rather provide a

208

8.1. Summary

single model combining the elements of each layer by using structural links. Thereby,
we avoid the need for complex model transformations along the different steps of the
process. Only one transformation is needed to transform the model into executable
code for the user-defined applications.

Building upon the components introduced in the reference framework, we presented
the eSPACE conceptual model that includes all components of cross-device and
IoT solutions. The model is based on the RSL hypermedia metamodel [203] and
allows the modelling of XD and IoT applications using the domain-specific extensions
of the resource, selector and link concepts provided by the metamodel. In Chapter 4
we gave some examples of how such applications can be modelled using these differ-
ent concepts. Lastly, the model is designed such that it fully supports all requirements
depicted in Table 8.1, as described at the end of the model chapter.

Research Question 3 Which metaphors or abstractions should be used on top of
our conceptual foundation to allow end users to visualise and create their unified
cross-device and IoT interactions?

While for the previous research question we mainly focussed on the data level, for
this question we focus on the visualisation level. Many end-user authoring tools have
been proposed for IoT systems, some for cross-device interaction and DUI solutions.
However, the proposed solutions support different functionality using different meth-
ods and metaphors which is often confusing for users. Further, some solutions are
limited in terms of supported devices or present closed systems which cannot be ex-
tended. The different metaphors used by related authoring solutions are used to hide
the complexity behind the creation of XD or IoT applications to the end users, but
are generally based on the developers’ choices. Afterwards, the authoring tool is of-
ten evaluated by end users through a usability study. To the best of our knowledge,
only two of the presented authoring tools in Chapter 2 were based on a preliminary
investigation of the end users’ mental models regarding XDI or IoT interactions. The
design of these tools is mainly based on related work and individual design choices.
One of the two exceptions was found in Dey et al.’s work [74], who did perform
interviews to gain an understanding about the conceptual models of users regarding
context awareness in a smart home environment. While participants of this study
described application scenarios in terms of if-then rules, it is still hard to find the best
way to show these rules in a graphical user interface. Therefore, we performed an
elicitation study in order to find how people would visualise XDI and IoT interactions
so that we could base our authoring solution on what people already have in mind
when thinking about such interactions. From this elicitation study we inferred design
guidelines for the development of an end-user authoring tool allowing the design of
XD and IoT applications.

209

Chapter 8. Conclusions and Future Work

Research Question 4 How can we design a unified cross-device and IoT EUD au-
thoring tool given the requirements from RQ1, the conceptual foundations from RQ2
and the guidelines including the appropriate metaphors found in RQ3?

For the last objective of this dissertation we designed and developed the eSPACE
end-user authoring tool, which allows end users to create XD and IoT applications.
Therefore, we based ourselves on the artefacts that resulted from the previous re-
search questions. In a first step we took into account our conceptual model that
resulted from RQ2. As we chose the RSL-based link Server—a model-driven infor-
mation system—as backend for the authoring tool, we loaded the model into the
server to be able to store all concepts introduced by our model. Then, by following
the UI development process described by our reference framework, we structured and
linked the concepts of our model so that it would form final user interfaces, which
could be converted into executable code for an application supporting cross-device
and IoT interactions. Note that, by using the conceptual model and reference frame-
work in our authoring tool, we also validate both of these artefacts. Next, we designed
the frontend of the authoring tool according to the design guidelines originating from
RQ3. As explained in Chapter 6, we chose web technologies, such as JavaScript and
HTML5, to implement this tool so that it would be compatible with a large number
of devices. The resulting user-defined applications created with the authoring tool are
web applications as well. Along the development cycle of the eSPACE authoring tool,
we incorporated a significant amount of requirements which were presented in RQ1.
Finally, as a first form of validation of our design guidelines and tool, we performed
an initial study with 8 participants having a non-computer science background. The
study revealed that end users could use our tool to create IoT and XD applications
after reading a small tutorial document and watching a short demonstration video.
Most participants described the eSPACE authoring tool as organised, useful, effec-
tive and easy to use. Overall our tool scored well on user satisfaction. While these
first results are highly encouraging we do take them lightly given that our study was
done with a low number of participants and that participants were taken from our
entourage. Our observations during this study were very instructive, as we have seen
which parts of the authoring tool should be improved, being mainly some better word
choices in certain dropdowns. Further, participants’ feedback also pointed out that
more explanation of all functionality provided by our tool is required as well as some
help menus. In Chapter 7 we described in more details how this initial user study
helps us to line out future directions for our authoring tool.

210

8.2. Discussion and Limitations

8.2 Discussion and Limitations

In the previous section we summarised how our research trajectory led to our proof-of-
concept prototype of the eSPACE end-user authoring tool for the design of XD and
IoT applications. In this section we discuss the limitations of the research artefacts
presented in the previous section.

While we designed the eSPACE tool based on our design guidelines and used the
concepts defined by our reference framework and conceptual model, eSPACE did
not yet reach its full potential, since not all requirements presented in Table 8.1 are
met. eSPACE therefore does not use all concepts defined in our model, such as the
user management. As explained in Chapter 6, we did take into account the fact
that a user is logged in and assigned all created applications and their components
to the logged in user, but we do neither provide a complete login nor advanced
sharing mechanism. Consequently, we did not yet validate this specific part of our
conceptual model. However, in contrast, our reference framework has been fully
validated by structuring the user-defined UIs as described by this framework and
generating working applications from it using the eSPACE authoring tool. Note that
our model and framework are meant to be applicable for any type of cross-device and
IoT application. While we validated the model and framework with our authoring
tool by populating it with elements for smart home applications, in theory it could
be populated with any kind of devices and things. Given that we are not familiar
with other domains such as eHealth or smart cities, it could still be that some minor
changes are required to best fulfil the requirements of these other domains.

The design guidelines resulting from our elicitation study, have been tested in a first
evaluation of our eSPACE authoring prototype. A more thorough assessment is still
required in order to possibly adapt and improve these design guidelines. Note that,
some of these design guidelines might seem trivial, yet to the best of our knowledge
no design guidelines for these specific kinds of authoring tools have been presented
in existing literature. Some requirements were presented by Ghiani et al. [93], which
we took into account for the requirements defined in RQ1 and the design of our rules
view. Dey et al. [74] mentioned the need for a graphical as well as textual interface,
which we took into account in the design guidelines. Nonetheless, these authors did
not provide a set of guidelines to be followed by developers of XD and IoT EUD
authoring tools. A set of guidelines has been provided by Russis and Corno [190],
but it has been defined from related work focussing only on IoT in a specific smart
home context and the authors did not investigate related work in XDI authoring tools.
Further, do note that our guidelines can still evolve based on the outcome of potential
future user studies and the impact of cultural characteristics that could be integrated
over time, as discussed in Chapter 5.

211

Chapter 8. Conclusions and Future Work

The eSPACE authoring tool is a first prototype and can definitely be improved by
supporting the remaining requirements, taking into account the results of our initial
user study and by performing extra user evaluations. Adding new ACs and UIes would
also add more functionality to the tool, as for now it only includes basic UI elements
and functionality. The adaptability of UI elements to the context of use is, for exam-
ple, very limited and could be significantly improved. In order to conclude this section
we compare our eSPACE prototype with the ISO product quality model shown in Fig-
ure 8.1. The components surrounded by an orange outline are the ones we focussed
on for our initial eSPACE prototype.

Functional
Suitability

Performance
efficiency

Compatibility Usability Reliability Security
Maintain-

ability
Portability

Functional
completeness

Functional
correctness

Functional
appropriateness

Time behaviour

Resource
utilization

Capacity

Co-existance

Interoperability

Appropriateness
recognizability

Learnability

Operability

User error
protection

User interface
aesthetics

Accessibility

Maturity

Availability

Fault tolerance

Recoverability

Confidentiality

 Integrity

 Non-
repudiation

Accountability

Authenticity

Modularity

Reusability

 Analysability

Modifiability

Testability

Adaptability

Installability

Replaceability

System/Software
Product Quality

Figure 8.1: ISO/IEC 25010:2011 product quality model

We focussed on providing end users with the functionality of creating XD and IoT ap-
plications, which is accomplished in our tool by using the different views introduced
in Chapter 6. However, as explained above not all our requirements were satisfied.
While implementing our different components we also paid attention to performance.
By using Roels’ implementation of the RSL link Server [184]—which has improved
performance compared to previous implementations—as well as limiting the number
of API calls in the front-end authoring tool, we guarantee a good resource utilisation.
By integrating different devices and smart objects into our authoring tool, we demon-
strated high compatibility. We included smart plugs, smart light bulbs of different
brands and a smart TV, as described in our use cases at the end of Chapter 6. In-
teroperability has been shown by making these smart technologies interact with each
other using the pipeline or rules metaphor in our multiple authoring environments.
We did not focus on the usability yet, although we performed an initial study to
get a general idea of the desirability, usefulness and interface quality of our initial
eSPACE prototype. We still plan to conduct usability studies in the future in order
to improve the tool’s usability. The eSPACE authoring tool is a first prototype and
therefore still contains some bugs and is not fault tolerant. The reliability is thus
something to improve by making eSPACE more robust. Security in the cross-device

212

8.3. Conclusion

and IoT research could be a topic for an entire PhD dissertation. In our research and
during the development of our tool we did not take security into account very much
as it was beyond the scope of our research topic. We simply make use of the user
accessibility properties of RSL, so that a user can only get access to their own devices
and applications. By using a model-based approach, we provide a highly modular and
reusable backend, as components can be reused and linked together using different
structures. The frontend could easily be replaced or adapted without requiring to
change anything to the model on the server side. Finally, as required by R6, we
implemented the authoring tool using web technologies for a better portability.

8.3 Conclusion

This dissertation aims at empowering the end users to better manage their smart
technologies and make these technologies communicate with each other through the
use of an end-user authoring solution for the creation of XD and IoT applications.
Therefore, we first investigated existing related work in order to find the requirements
for building such a solution. Next, we came up with a use case scenario, that resulted
in additional requirements. As we chose a model-based approach for facilitating the
development process of user-defined applications, we introduced the eSPACE refer-
ence framework and conceptual model based on the established requirements. On
the one side, the reference framework provided a way to structure this UI develop-
ment process, while on the other side, the conceptual model further elaborate on the
concepts presented in the framework and allows a way to store all this information
using the RSL library. Through the use of the RSL link Server API all information
stored in this library can be accessed and modified. The reusability, flexibility, exten-
sibility, sharing and adaptiveness to the context of use of the model and framework
has been demonstrated in Chapter 4 by some use cases. In addition, effectiveness of
both the model and framework has been demonstrated by integrating them into our
eSPACE authoring tool. In contrast to existing EUD authoring tools in the domain of
XDI and IoT, we first deepened our analysis of the users’ mental models concerning
XDI and IoT interaction, in order to better integrate their needs into our authoring
tool’s user interface. Based on the design guidelines that resulted from an elicita-
tion study aiming at finding these mental models, we designed our authoring tool.
The eSPACE authoring tool supports most of the presented requirements as well,
allowing end users to create their own XD and IoT applications by using different ab-
stractions or metaphors. An initial study aiming at assessing the desirability and user
satisfaction of our tool revealed that end users can use eSPACE to create IoT and
XD applications. The positive results showed that the eSPACE authoring tool is on
the right track, but of course still requires further improvements and additional user
studies. We discuss these future improvements in the next section. Finally, we hope

213

Chapter 8. Conclusions and Future Work

that our research artefacts can still grow over time and that they will inspire existing
research in the domain of EUD of cross-device interaction and IoT applications, and
consequently help end users to have more control over their smart environments.

8.4 Future Work

Although this dissertation presents in-depth work on informing the design of an end-
user authoring tool that enables end users gaining a better control over their smart
environments through the design of their own XD and IoT applications, given the
limited time frame for this research, we prioritised certain research artefacts and see
a window of opportunities for future work.

As mentioned in Section 8.2, our eSPACE authoring tool does not yet support all
the requirements defined in Table 8.1. Given the results of our initial study, we can
consider that the tool is a decent first prototype in terms of overall design, but still
needs some improvements for the formulation of certain functionality described in the
dropdowns of the popup windows in the interaction and rules view. While in the first
place, the next step would be to improve the tool based on the participants feedback
and results of the study as well as integrating the remaining requirements, another
important next phase is evaluating the tool with end users that already own a number
of smart devices and letting them use the tool for a certain period of time in their
homes. Such an in-situ evaluation would give us more valuable feedback and insights
on how to further improve the tool in the future. Depending on the results of such
studies, our defined requirements and design guidelines might be refined and evolve
over time. Note that, the current version of eSPACE works with one instance of the
RSL link Server, in order to develop such high scale studies we will probably require
to have multiple instances of the server running at peoples’ home and be able to
communicate with each other.

Since we want our authoring tool to evolve over time, we need to guide developers on
how to extend the set of existing functionality (ACs), user interface elements, devices
and things. Therefore we plan to provide a manual explaining the tools required for
the integration of new entities into the RSL information storage and authoring tool.
It could be interesting to let these developers populate our tool with smart technology
for other domains, such as retail or eHealth. By doing so, one might still find some
missing functionality or concepts we did not think about.

A next step could also be the integration of different modalities either to control
the authoring process itself or as extra functionality in the resulting user-defined
applications. Modalities such as speech [136] and gestures [22, 207] have already
been integrated in some of the model-based solutions presented in this dissertation

214

8.4. Future Work

from which we can draw inspiration from. As explained in Chapter 4, one could use
ACs to implement gesture interaction as shown with the touch-and-throw gesture.
Adding new modalities can be very challenging, particularly in terms of recognition.
Research has to be done in order to identify the best tools that can be used that are
reliable and have decent recognition rates. Further, our design guidelines will need to
be extended for supporting these new modalities.

When mentioning the recognition of patterns of voice and gestures, one might think
of artificial intelligence (AI) and machine learning algorithms and techniques. Going
beyond the use of AI for improving pattern recognition of different modalities, we
foresee the integration of artificial intelligence into our authoring tool in order to help
end users create better UIs and applications. Since end users do normally not have
the same skills as professional designers, we should support them during the UI design
process. Therefore, in future work, we could investigate how to recommend alterna-
tive and potentially better designs to end users, by extending the eSPACE end-user
authoring tool. These alternative design recommendations could be optimised by
applying some AI techniques and algorithms based on existing well-established user
interface and interaction design guidelines. The resulting human-AI interaction [10]
during the UI design process might lead to better user-defined user interfaces. How-
ever, the main challenge is to find a way to provide end users with necessary feedback
in order that they are able to develop usable and aesthetically pleasing user inter-
faces. There is also an opportunity to not only support end users in the graphical
design of their UIs but to provide them suggestions on the interaction level. The use
of human-AI interaction in end-user UI development tools definitely introduces some
challenges, but also offers new opportunities for enhanced designs by end users. Thor-
ough investigations are necessary in order to fully capture the potential of human-AI
interaction in end-user UI development by performing extensive usability and user ex-
perience studies. Additionally such AI assistance could be helpful if we would like to
add new types of interfaces that users may not be familiar with. Given that foldable
displays start to emerge on recent smartphones, our authoring tool could foresee the
creation of interfaces for foldable screens. One could even integrate shape chang-
ing interfaces [153], introducing quite some challenges as new kinds of UI properties
would have to be integrated.

Finally, as we mentioned earlier in this section, user testing and evaluation will be
required for each of these future extensions for our end-user authoring tool in order
to guarantee a good user experience. We would like to end this dissertation with a
final quote by Douglas Adams:

“A common mistake that people make when trying to design something completely
foolproof is to underestimate the ingenuity of complete fools.” — Douglas Adams

215

Chapter 8. Conclusions and Future Work

216

Appendix A

Elicitation Study

A.1 Scenario

The scenario involving cross-device and IoT interactions has been presented to the
study participants in the form of PowerPoint slides and are presented in this section.

Name : Alex
Occupation : Student

217

Appendix A. Elicitation Study

Alex is a fitness enthusiast

Alex has a smartwatch and a smart scale to keep track of her
physical activities and weight

218

A.1. Scenario

During classes at the university, Alex takes notes on her tablet

Back home, Alex transfers her notes from her tablet to her laptop and
continues working on her laptop for a while…

219

Appendix A. Elicitation Study

A few hours later, Alex’ boyfriend comes home and the couple decides
to watch a movie together in the living room

Therefore, Alex takes her phone, browses
for a movie on her phone and displays the
movie on the TV.

When doing this, the following actions take
place:

• The movie shows on the TV

• The smartphone becomes a remote
control for the TV

• The light in the living room turns off

• The ambient lights at the back of the TV
turn on

After a while, Alex wants to prepare some popcorn and
get some drinks in the kitchen

Instead of pausing the movie, she copies the movie to her smartphone to
continue watching while making the popcorn (while her boyfriend
continues watching the movie on the TV)

The following actions take place:

• The movie is shown on the TV but is now also shown on Alex’ smartphone

220

A.1. Scenario

While preparing the popcorn and drinks, Alex adds the calories of
the popcorn and her drink to her calorie tracker application on her phone

The following actions take place:

• The calories are updated on the calorie tracker application

• The data from the calorie tracker application synchronises with her
fitness application on her smartwatch

• Since she exceeded the 2 200kcal today, Alex receives a notification on
her smartwatch warning her about this excess

When Alex comes back from the kitchen, she stops the movie
on her phone and continues watching it on the TV

The following actions take place:

• The movie is no longer shown on Alex’ smartphone

• Alex’ smartphone becomes a remote control for the TV again

221

Appendix A. Elicitation Study

After the movie finished, they turn off the TV and go to bed

When turning off the TV, the following actions take place:

• The TV turns off

• The ambient lights at the back of the TV turn off

• The light in the living room turns on

The next morning, Alex goes running in a park nearby

While running, her heartrate and pace is monitored by her smartwatch.
Her smartwatch defined a running track depending on the calories she
needs to burn.

The following actions take place:

• Since Alex went over her daily calorie intake yesterday evening, the
running track defined by the smartwatch is longer than usual

• When Alex has 50 meters left to run, the smartwatch sends a vibration
to motivate her to sprint the last few meters

• If she broke her speed record, she receives a notification at the end of
the running session

222

A.1. Scenario

Alex designed these applications to help her facilitate her daily life routine.

• How would you graphically represent the functionality and interactions between

the different components in this scenario?

For example, how would you draw that the interaction with Alex’ phone triggers the

TV to turn on?

• How would you show that one output of a device is used as input for another

device. For instance, on page 5 the amount of calories kept by the calorie tracker

application on Alex’ smartphone (output) is used as input by the smartwatch to

notify Alex about an excess.

• Go through the slides one by one and try to describe the interactions present on

each slide in a single graphical drawing.

• Try to be precise and add as many details as possible.

223

Appendix A. Elicitation Study

A.2 Post-Survey Questionnaire
The following custom questionnaire was used to gain insight into the knowledge of
people concerning the terms cross-device interaction and Internet of Things. It further
gave us an idea of the number of smart devices and things people own, as discussed
in Chapter 5.

Post survey Questionnaire

Age: O Under 18 years Gender: ________________ Education: _______________________
 O 19-25 years
 O 26-40 years
 O 41-55 years
 O Over 55 years

Highest educational degree obtained or pursuing: __

Position: ___

Did you ever hear about the term “Internet of Things” (IoT)? ___________________________________

If yes, are you familiar with IoT technology? __

If yes, do you have any IoT devices at home (if so, which ones)?___________________________

How good are you in using technology?

Very bad (1) (2) Neutral (3) (4) Very good (5)

Did you ever hear about the term “cross-device interaction”? ___________________________________

If yes, how often do you perform cross-device interaction? ______________________________

If yes, how are you performing cross-device interaction? ________________________________

How do you usually transfer a picture from your phone to your computer or other devices? (e.g. email,

USB stick, specific application, etc.)

Do you own some smart devices (e.g. smartphone, tablet, smartwatch, etc.)? If yes, which one(s):

How comfortable or easy was this survey for you?

Very difficult (1) Quite difficult (2) Neutral (3) Easy (4) Very easy (5)

THANKS FOR YOUR PARTICIPATION!

224

Appendix B

Evalutation of eSPACE
B.1 Tutorial Document

During this user study you will be playing the role of Alex a young student that wants
to create some interaction across her smart technologies comprising some smart
devices as well as Internet of Things devices. Below you can see a picture of her
smart home:

Cat room/ Desk room

WC Bathroom
Kitchen

BedroomDining roomLiving room

.

The smart home comprises the following Internet of Things devices:

− 4 smart light bulbs for the Living Room Light, Bed Room Light, Desk Light
and Cat Room Light

225

Appendix B. Evalutation of eSPACE

− 2 smart power plugs to control the Water Boiler and the Decorative Light Tree
(situated next to your TV)

Further you also have the following screen devices for which graphical user interfaces
can be created:

− Alex Smartphone, Living Room Tablet, Mason Smartphone, Alex Laptop, Smart
TV and Smart Fridge

In order to interact with some of these devices, you want to make three different
applications. Your task is to create each application by using the eSPACE authoring
tool. This tool allows to define interaction across your devices and contains 4 different
views: The Home View provides an overview of all your created applications and rules
as well as your devices, as shown in the screenshot below:

226

B.1. Tutorial Document

The Interaction View shows you a graphical representation of your interaction rules.
An interaction rule defines how devices are supposed to interact with each other. The
left sidebar contains elements that can be dragged and dropped to the canvas. The
interaction shown on the screenshot below indicates that when a button is pressed
on Alex’ smartphone the cat light will turn on.

Magnifying glass icon

The interaction rules can either be defined using the Interaction View or by using the
Rules View shown in the next screenshot:

227

Appendix B. Evalutation of eSPACE

On this screenshot the same interaction rule is created but using an IF-THEN state-
ment. In order to create a graphical user interface for a specific device, the UI Design
View can be used, which can be accessed by pressing the magnifying glass icon in
the Interaction View. This is needed to create a button on Alex’ smartphone before
defining the above interaction rules. A screenshot of the UI Design View is shown on
the next page.

In order to know more about how to use this tool you can now watch the demo
video of the tool. The demo video will show you how to create an application called

228

B.1. Tutorial Document

“Evening Routine” app which contains a user interface for Alex’ smartphone with a
button to turn on the TV and the light tree. After watching the video you can start
by creating the first application which description is given below:

1. The Simple Controller Application

This application is meant to be used on the Living Room Tablet and should
be able to control the smart TV, the ceiling light of the living room and the
decorative light tree next to the TV. In order to control these three devices,
you want to create a user interface (UI) made of three buttons, one to control
each of these smart technologies.

2. The Grocery List Application

This application contains two user interfaces, one for the smartphone and one
for the smart fridge. The smartphone UI simply contains a list of groceries,
while the fridge UI depicts a list of groceries and some family pictures. The
list of groceries of the smartphone is synchronised with the one on the smart
fridge. Which means that when something changes on the grocery list of the
smartphone, the same changes will be done in the list on the smart fridge and
vice versa.

3. The Morning Routine Application

The application consists of a smartphone UI showing the weather in Brussels
and allowing to control the bedroom light and water boiler. Further the appli-
cation also triggers the light of the bedroom and the water boiler to turn on at
8 a.m.

If there are any questions, please feel free to ask your study supervisor.

229

Appendix B. Evalutation of eSPACE

B.2 Post-Survey Questionnaires

B.2.1 Microsoft Reaction Cards

Part 1 on 3

Read over the following list of words. Considering the tool you have just used, choose
those words that best describe your experience with it. You can choose between 5 to
10 words. Classify those into two categories: Highly Revelant and Relevent. (Max.
5 words per category)

Irrelevant Stressful Inspiring Approachable
Predictable Confusing Overwhelming Simplistic
Organized Annoying Unattractive Difficult
Innovative Familiar Consistent Relevant
Effective Straight Forward Advanced Inconsistent
Trustworthy Efficient Undesirable Satisfying
Flexible Exciting Useful Dull
Complex Attractive Easy to use Desirable
Engaging Time-consuming Unpredictable Comfortable
Helpful Reliable Creative Ineffective

Highly relevant Relevant

B.2.2 Post-Study System Usability Questionnaire

Part 2 on 3

On a scale between Strongly Agree to Strongly Disagree, please rate the following
statements:

230

B.2. Post-Survey Questionnaires

St
ro

ng
ly

 A
gr

ee
St

ro
ng

ly
 D

is
ag

re
e

1
2

3
4

5
6

7
N

.A
.

1.
 O

ve
ra

ll,
 I

am
 s

at
is

fie
d

w
ith

 h
ow

 e
as

y
it

is
 to

 u
se

 th
is

 s
ys

te
m

.

2.
 It

 w
as

 s
im

pl
e

to
 u

se
 th

is
 s

ys
te

m
.

3.
 I

w
as

 a
bl

e
to

 c
om

pl
et

e
th

e
ta

sk
s

an
d

sc
en

ar
io

s
qu

ic
kl

y
us

in
g

th
is

sy

st
em

.

4.
 I

fe
lt

co
m

fo
rt

ab
le

 u
si

ng
 th

is
 s

ys
te

m
.

5.
 It

 w
as

 e
as

y
to

 le
ar

n
to

 u
se

 th
is

 s
ys

te
m

.

6.
 I

be
lie

ve
 I

co
ul

d
be

co
m

e
pr

od
uc

tiv
e

qu
ic

kl
y

us
in

g
th

is
 s

ys
te

m
.

9.
 T

he
 in

fo
rm

at
io

n
(s

uc
h

as
 o

nl
in

e
he

lp
, o

n-
sc

re
en

 m
es

sa
ge

s,
 a

nd

ot
he

r d
oc

um
en

ta
tio

n)
 p

ro
vi

de
d

w
ith

 th
is

 s
ys

te
m

 w
as

 c
le

ar
.

10
. I

t w
as

 e
as

y
to

 fi
nd

 th
e

in
fo

rm
at

io
n

I n
ee

de
d.

11
. T

he
 in

fo
rm

at
io

n
w

as
 e

ffe
ct

iv
e

in
 h

el
pi

ng
 m

e
co

m
pl

et
e

th
e

ta
sk

s
an

d
sc

en
ar

io
s.

12
. T

he
 o

rg
an

iz
at

io
n

of
 in

fo
rm

at
io

n
on

 th
e

sy
st

em
 s

cr
ee

ns
 w

as
 c

le
ar

.

13
. T

he
 in

te
rf

ac
e

of
 th

is
 s

ys
te

m
 w

as
 p

le
as

an
t.

14
. I

 li
ke

d
us

in
g

th
e

in
te

rf
ac

e
of

 th
is

 s
ys

te
m

.
15

. T
hi

s
sy

st
em

 h
as

 a
ll

th
e

fu
nc

tio
ns

 a
nd

 c
ap

ab
ili

tie
s

I e
xp

ec
t i

t t
o

ha
ve

.

16
. O

ve
ra

ll,
 I

am
 s

at
is

fie
d

w
ith

 th
is

 s
ys

te
m

.

231

Appendix B. Evalutation of eSPACE

B.2.3 Informative Questionnaire

Part 3 on 3

Please fill in the last series of questions as best as you can (select only one option):

Very Easy Easy Neutral Difficult Very Difficult
1. How easy or difficult was it to create the Simple Controller Application?
2. How easy or difficult was it to create the Grocery List Application?
3. How easy or difficult was it to create the Morning Routine Application?

4. Which view did you prefer for defining interaction rules? Rules View Interaction
View

Both Equally
Prefferred

Both Equally
Disliked

5. Any suggestions to improve the tool?

6. Comments?

232

References

[1] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E. Shuster, 1999. “UIML: An
Appliance-Independent XML User Interface Language”. Computer Networks, 31(11-16):1695–1708,
1999. https://doi.org/10.1016/S1389-1286(99)00044-4.

[2] H. Ajam and M. Mu, June 2017. “A Middleware to Enable Immersive Multi-Device Online TV
Experience”. Proceedings of TVX 2017, International Conference on Interactive Experiences for
TV and Online Video, pages 27–32, Hilversum, Netherlands. https://doi.org/10.1145/3084289.
3089919.

[3] P. A. Akiki, A. K. Bandara, and Y. Yu, June 2012. “Using Interpreted Runtime Models for Devising
Adaptive User Interfaces of Enterprise Applications”. Proceedings of ICEIS 2012, 14th International
Conference on Enterprise Information Systems, pages 72–77, Wroclaw, Poland. SciTePress. https:
//doi.org/10.5220/0003975800720077.

[4] P. A. Akiki, A. K. Bandara, and Y. Yu, June 2013. “Cedar Studio: an IDE Supporting Adaptive
Model-Driven User Interfaces for Enterprise Applications”. Proceedings of EICS 2013, Symposium
on Engineering Interactive Computing Systems, pages 139–144, London, United Kingdom. https:
//doi.org/10.1145/2494603.2480332.

[5] P. A. Akiki, A. K. Bandara, and Y. Yu, June 2013. “RBUIS: Simplifying Enterprise Application
User Interfaces Through Engineering Role-Based Adaptive Behavior ”. Proceedings of EICS 2013,
Symposium on Engineering Interactive Computing Systems, pages 3–12, London, United Kingdom.
https://doi.org/10.1145/2494603.2480297.

[6] P. A. Akiki, A. K. Bandara, and Y. Yu, 2014. “Adaptive Model-Driven User Interface Development
Systems”. ACM Computer Surveys, 47(1):9:1–9:33, 2014. https://doi.org/10.1145/2597999.

[7] P. A. Akiki, A. K. Bandara, and Y. Yu, 2017. “Visual Simple Transformations: Empowering End-
Users to Wire Internet of Things Objects”. ACM Transactions on Computer-Human Interaction,
24(2):10:1–10:43, 2017. https://doi.org/10.1145/3057857.

[8] A. I. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, 2015. “Internet of
Things: A Survey on Enabling Technologies, Protocols, and Applications”. IEEE Communications
Surveys and Tutorials, 17(4):2347–2376, 2015. https://doi.org/10.1109/COMST.2015.2444095.

[9] A. I. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, and M. Mohammadi, 2015. “Toward Better
Horizontal Integration Among IoT Services”. IEEE Communications Magazine, 53(9):72–79, 2015.
https://doi.org/10.1109/MCOM.2015.7263375.

[10] S. Amershi, D. S. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson, J. Suh, S. T. Iqbal,
P. N. Bennett, K. Inkpen, J. Teevan, R. Kikin-Gil, and E. Horvitz, May 2019. “Guidelines for Human-
AI Interaction”. Proceedings of CHI 2019, Conference on Human Factors in Computing Systems,
page 3, Glasgow, Scotland, UK. https://doi.org/10.1145/3290605.3300233.

[11] M. Ammar, G. Russello, and B. Crispo, 2018. “Internet of Things: A Survey on The Security
of IoT Frameworks”. Journal of Information Security and Applications, 38:8–27, 2018. https:
//doi.org/10.1016/j.jisa.2017.11.002.

[12] C. Anderson, January 2012. Maker: The New Industrial Revolution. Crown Business, January 2012.

233

https://doi.org/10.1016/S1389-1286(99)00044-4
https://doi.org/10.1145/3084289.3089919
https://doi.org/10.1145/3084289.3089919
https://doi.org/10.5220/0003975800720077
https://doi.org/10.5220/0003975800720077
https://doi.org/10.1145/2494603.2480332
https://doi.org/10.1145/2494603.2480332
https://doi.org/10.1145/2494603.2480297
https://doi.org/10.1145/2597999
https://doi.org/10.1145/3057857
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/MCOM.2015.7263375
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1016/j.jisa.2017.11.002
https://doi.org/10.1016/j.jisa.2017.11.002

References

[13] K. Ashton, 2009. “That ’Internet of Things’ Thing”. RFID Journal, 22(7):97–114, 2009.
[14] L. Balme, A. Demeure, N. Barralon, J. Coutaz, and G. Calvary, November 2004. “CAMELEON-RT:

A Software Architecture Reference Model for Distributed, Migratable, and Plastic User Interfaces”.
Proceedings of EUSAI 2004, Second European Symposium on Ambient Intelligence, pages 291–302,
Eindhoven, The Netherlands. https://doi.org/10.1007/978-3-540-30473-9_28.

[15] H. Balzert, F. Hofmann, V. Kruschinski, and C. Niemann, June 1996. “The JANUS Application
Development Environment - Generating More than the User Interface”. Proceedings of CADUI 1996,
International Workshop on Computer-Aided Design of User Interfaces, pages 183–208, Namur,
Belgium.

[16] J. Bardram, S. Gueddana, S. Houben, and S. Nielsen, May 2012. “ReticularSpaces: Activity-based
Computing Support for Physically Distributed and Collaborative Smart Spaces”. Proceedings of
CHI 2012, Conference on Human Factors in Computing Systems, pages 2845–2854, Austin, Texas,
USA. https://doi.org/10.1145/2207676.2208689.

[17] B. R. Barricelli and S. Valtolina, 2017. “A Visual Language and Interactive System for End-User
Development of Internet of Things Ecosystems”. Journal of Visual Languages and Computing,
40:1–19, 2017. https://doi.org/10.1016/j.jvlc.2017.01.004.

[18] A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. Van Kranenburg, S. Lange, and S. Meissner, 2013.
Enabling Things to Talk: Designing IoT Solutions with the IoT Architectural Reference Model.
Springer Berlin Heidelberg, 2013. https://doi.org/10.1007/978-3-642-40403-0.

[19] A. Bellucci, A. Vianello, Y. Florack, L. Micallef, and G. Jacucci, 2019. “Augmenting objects at home
through programmable sensor tokens: A design journey ”. International Journal of Human-Computer
Studies, 122:211–231, 2019. https://doi.org/10.1016/j.ijhcs.2018.09.002.

[20] J. Benedek and T. Miner, July 2002. “Measuring Desirability: New Methods for Evaluating Desir-
ability In a Usability Lab Setting”. Proceedings of UPA 2002, European Conference on Usability
Professionals Association, volume 2003, page 57, Orlanda, Florida, USA.

[21] Y. V. Berghe, 2004. Etude et Implémentation d’un Générateur d’Interfaces Vectorielles à Partir d’un
Langage de Description d’Interfaces Utilisateur. Master’s thesis, Université Catholique de Louvain,
Louvain-la-Neuve, Belgium.

[22] F. Beuvens and J. Vanderdonckt, May 2012. “UsiGesture: An Environment for Integrating Pen-
Based Interaction in User Interface Development”. Proceedings of RCIS 2012, 6th International
Conference on Research Challenges in Information Science, pages 1–12, Valencia, Spain. https:
//doi.org/10.1109/RCIS.2012.6240449.

[23] J. T. Biehl, W. T. Baker, B. P. Bailey, D. S. Tan, K. M. Inkpen, and M. Czerwinski, April 2008.
“IMPROMPTU: A New Interaction Framework for Supporting Collaboration in Multiple Display
Environments and Its Field Evaluation for Co-located Software Development”. Proceedings of CHI
2008, Conference on Human Factors in Computing Systems, pages 939–948, Florence, Italy. https:
//doi.org/10.1145/1357054.1357200.

[24] M. Blumendorf, 2009. Multimodal Interaction in Smart Environments: a Model-based Runtime
System for Ubiquitous User Interfaces. Ph.D. thesis, Berlin Institute of Technology. https://doi.
org/10.14279/depositonce-2229.

[25] M. Blumendorf and S. Albayrak, July 2009. “Towards a Framework for the Development of Adaptive
Multimodal User Interfaces for Ambient Assisted Living Environments”. Proceedings of UAHCI 2009,
5th International Conference on Universal Access in Human-Computer Interaction, pages 150–159,
San Diego, California, USA. https://doi.org/10.1007/978-3-642-02710-9_18.

[26] M. Blumendorf, S. Feuerstack, and S. Albayrak, October 2006. “Event-Based Synchronization of
Model-based Multimodal User Interfaces”. Proceedings of MDDAUI 2006, Workshop on Model-
Driven Development of Advanced User Interfaces, Genova, Italy.

[27] M. Blumendorf, S. Feuerstack, and S. Albayrak, November 2007. “Multimodal User Interaction in
Smart Environments: Delivering Distributed User Interfaces”. Proceedings of AmI 2007, Workshop
on Constructing Ambient Intelligence, pages 113–120, Darmstadt, Germany. https://doi.org/10.
1007/978-3-540-85379-4_14.

234

https://doi.org/10.1007/978-3-540-30473-9_28
https://doi.org/10.1145/2207676.2208689
https://doi.org/10.1016/j.jvlc.2017.01.004
https://doi.org/10.1007/978-3-642-40403-0
https://doi.org/10.1016/j.ijhcs.2018.09.002
https://doi.org/10.1109/RCIS.2012.6240449
https://doi.org/10.1109/RCIS.2012.6240449
https://doi.org/10.1145/1357054.1357200
https://doi.org/10.1145/1357054.1357200
https://doi.org/10.14279/depositonce-2229
https://doi.org/10.14279/depositonce-2229
https://doi.org/10.1007/978-3-642-02710-9_18
https://doi.org/10.1007/978-3-540-85379-4_14
https://doi.org/10.1007/978-3-540-85379-4_14

References

[28] M. Blumendorf, S. Feuerstack, and S. Albayrak, Janary 2008. “Multimodal Smart Home User
Interfaces”. Proceedings of IUI4AAL 2008, Workshop on Intelligent User Interfaces for Ambient
Assisted Living, Maspalomas, Grand Canaria, Spain.

[29] M. Blumendorf, S. Feuerstack, and S. Albayrak, May 2008. “Multimodal User Interfaces for Smart
Environments: The Multi-Access Service Platform”. Proceedings of AVI 2008, Conference on Ad-
vanced Visual Interfaces, pages 478–479, Napoli, Italy. https://doi.org/10.1145/1385569.1385665.

[30] L. Borman, 1996. “SIGCHI: The early years”. ACM SIGCHI Bulletin, 28(1):4–6, 1996. https:
//doi.org/10.1145/249170.249172.

[31] A. Bragdon, R. DeLine, K. Hinckley, and M. R. Morris, November 2011. “Code Space: Touch
+ Air Gesture Hybrid Interactions for Supporting Developer Meetings”. Proceedings of ITS 2011,
International Conference on Interactive Tabletops and Surfaces, pages 212–221, Kobe, Japan. https:
//doi.org/10.1145/2076354.2076393.

[32] M. Brambilla and P. Fraternali, 2018. “The Interaction Flow Modeling Language (IFML), Version
1.0. Technical report”. http://www.ifml.org/. Accessed: 2018-03-13.

[33] M. Brambilla, E. Umuhoza, and R. Acerbis, 2017. “Model-Driven Development of User Interfaces
for IoT Systems via Domain-Specific Components and Patterns”. Journal of Internet Services and
Applications, 8(1):14:1–14:21, 2017. https://doi.org/10.1186/s13174-017-0064-1.

[34] P. Brizzi, D. Conzon, H. Khaleel, R. Tomasi, C. Pastrone, M. A. Spirito, M. Knechtel, F. Pramu-
dianto, and P. A. Cultrona, September 2013. “Bringing the Internet of Things Along the Manu-
facturing Line: A Case Study in Controlling Industrial Robot and Monitoring Energy Consumption
Remotely ”. Proceedings of ETFA 2013, 18th Conference on Emerging Technologies & Factory
Automation, pages 1–8, Cagliari, Italy. https://doi.org/10.1109/ETFA.2013.6647947.

[35] F. Brudy, C. Holz, R. Rädle, C. Wu, S. Houben, C. N. Klokmose, and N. Marquardt, May 2019.
“Cross-Device Taxonomy: Survey, Opportunities and Challenges of Interactions Spanning Across
Multiple Devices”. Proceedings of CHI 2019, Conference on Human Factors in Computing Systems,
page 562, Glasgow, Scotland, UK. https://doi.org/10.1145/3290605.3300792.

[36] F. Brudy, S. Houben, N. Marquardt, and Y. Rogers, November 2016. “CurationSpace: Cross-
Device Content Curation Using Instrumental Interaction”. Proceedings of ISS 2016, Conference on
Interactive Surfaces and Spaces, pages 159–168, Niagara Falls, Ontario, Canada. https://doi.org/
10.1145/2992154.2992175.

[37] M. M. Burnett and C. Scaffidi, 2014. The Encyclopedia of Human-Computer Interaction, chapter
10. End-User Development. Interaction Design Foundation.

[38] F. Cabitza, D. Fogli, R. Lanzilotti, and A. Piccinno, 2017. “Rule-Based Tools for the Configuration
of Ambient Intelligence Systems: a Comparative User Study ”. Multimedia Tools and Applications,
76(4):5221–5241, 2017. https://doi.org/10.1007/s11042-016-3511-2.

[39] A. Caione, A. Fiore, L. Mainetti, L. Manco, and R. Vergallo, 2017. “WoX: Model-Driven Develop-
ment of Web of Things Applications”. Managing the Web of Things: Linking the Real World to the
Web, pages 357–387. Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-809764-9.00017-2.

[40] G. Calvary, J. Coutaz, L. Bouillon, M. Florins, O. Limbourg, L. Marucci, F. Paternò, C. Santoro,
N. Souchon, D. Thevenin, and J. Vanderdonckt, September 2002. “The CAMELEON Reference
Framework”. CAMELEON Project Deliverable 1.1.

[41] G. Calvary, J. Coutaz, and D. Thevenin, May 2001. “A Unifying Reference Framework for the
Development of Plastic User Interfaces”. Proceedings of IFIP 2001, International Conference on
Engineering for Human-Computer Interaction, pages 173–192, Toronto, Canada. https://doi.org/
10.1007/3-540-45348-2_17.

[42] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdonckt, 2003. “A
Unifying Reference Framework for Multi-Target User Interfaces”. Interacting with Computers,
15(3):289–308, 2003. https://doi.org/10.1016/S0953-5438(03)00010-9.

235

https://doi.org/10.1145/1385569.1385665
https://doi.org/10.1145/249170.249172
https://doi.org/10.1145/249170.249172
https://doi.org/10.1145/2076354.2076393
https://doi.org/10.1145/2076354.2076393
http://www.ifml.org/
https://doi.org/10.1186/s13174-017-0064-1
https://doi.org/10.1109/ETFA.2013.6647947
https://doi.org/10.1145/3290605.3300792
https://doi.org/10.1145/2992154.2992175
https://doi.org/10.1145/2992154.2992175
https://doi.org/10.1007/s11042-016-3511-2
https://doi.org/10.1016/B978-0-12-809764-9.00017-2
https://doi.org/10.1007/3-540-45348-2_17
https://doi.org/10.1007/3-540-45348-2_17
https://doi.org/10.1016/S0953-5438(03)00010-9

References

[43] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, N. Souchon, L. Bouillon, M. Florins, and J. Van-
derdonckt, July 2002. “Plasticity of User Interfaces: A Revised Reference Framework”. Proceedings
of TAMODIA 2002, 1st International Workshop on Task Models and Diagrams for User Interface
Design, pages 127–134, Bucharest, Romania.

[44] C. Cappiello, M. Matera, and M. Picozzi, 2015. “A UI-Centric Approach for the End-User Devel-
opment of Multidevice Mashups”. The journal Transactions on the Web, 9(3):11:1–11:40, 2015.
https://doi.org/10.1145/2735632.

[45] C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo, and C. Francalanci, June 2011.
“DashMash: A Mashup Environment for End User Development”. Proceedings of ICWE 2011,
International Conference on Web Engineering, pages 152–166, Paphos, Cyprus. https://doi.org/
10.1007/978-3-642-22233-7_11.

[46] S. Carson, A. Furuskär, P. Jonsson, J. Kronander, P. Lindberg, R. Ludwig, K. Öhman, and J. S.
Sehti, 2016. “Ericsson Mobility Report: On The Pulse of the Networked Society ”. Online.

[47] E. Cavalcante, M. P. Alves, T. Batista, F. C. Delicato, and P. F. Pires, May 2015. “An Analysis of
Reference Architectures for the Internet of Things”. Proceedings of CobRA 2015, 1st International
Workshop on Exploring Component-based Techniques for Constructing Reference Architectures,
pages 13–16, Montréal, Quebec, Canada. https://doi.org/10.1145/2755567.2755569.

[48] M. E. Cecchinato, A. Sellen, M. Shokouhi, and G. Smyth, May 2016. “Finding Email in a Multi-
Account, Multi-Device World”. Proceedings of the 2016 CHI Conference on Human Factors in Com-
puting Systems, pages 1200–1210, San Jose, California, USA. https://doi.org/10.1145/2858036.
2858473.

[49] M. Chechik, S. Nejati, and M. Sabetzadeh, 2012. “A Relationship-Based Approach to Model Inte-
gration”. Innovations in Systems and Software Engineering, 8(1):3–18, 2012. https://doi.org/10.
1007/s11334-011-0155-2.

[50] X. A. Chen and Y. Li, 2017. “Improv: An Input Framework for Improvising Cross-Device Interaction
by Demonstration”. ACM Transactions on Computer-Human Interaction, 24(2):15:1–15:21, 2017.
https://doi.org/10.1145/3057862.

[51] P. R. Cohen, A. Cheyer, M. Wang, and S. C. Baeg, March 1994. “An Open Agent Architecture”.
Proceedings of AAAI 1994, Spring Symposium Series on Software Agents (AAAI Technical Report
SS94-03), pages 1–8, Palo Alto, California, USA. ISBN 978-0-929280-59-2.

[52] K. Coninx, K. Luyten, C. Vandervelpen, J. V. den Bergh, and B. Creemers, September 2003.
“Dygimes: Dynamically Generating Interfaces for Mobile Computing Devices and Embedded Sys-
tems”. Proceedings of Mobile HCI 2003, 5th International Symposium on Human-Computer Interac-
tion with Mobile Devices and Services, pages 256–270, Udine, Italy. https://doi.org/10.1007/978-
3-540-45233-1_19.

[53] D. Conzon, P. Brizzi, P. Kasinathan, C. Pastrone, F. Pramudianto, and P. A. Cultrona, February
2015. “Industrial Application Development Exploiting IoT Vision and Model Driven Programming”.
Proceedings of ICIN 2015, 18th International Conference on Intelligence in Next Generation Net-
works, pages 168–175, Paris, France. https://doi.org/10.1109/ICIN.2015.7073828.

[54] J. M. Corbin and A. Strauss, 1990. “Grounded Theory Research: Procedures, Canons, and Evaluative
Criteria”. Qualitative Sociology, 13(1):3–21, 1990. https://doi.org/10.1007/BF00988593.

[55] F. Corno, L. D. Russis, and A. M. Roffarello, May 2019. “Empowering End Users in Debugging
Trigger-Action Rules”. Proceedings of CHI 2019, Conference on Human Factors in Computing
Systems, page 388, Glasgow, Scotland, UK. https://doi.org/10.1145/3290605.3300618.

[56] B. Costa, P. F. Pires, F. C. Delicato, W. Li, and A. Y. Zomaya, August 2016. “Design and
Analysis of IoT Applications: A Model-Driven Approach”. Proceedings of DASC/PiCom/Data-
Com/CyberSciTech 2016, 14th International Conference on Dependable, Autonomic and Secure
Computing, 14th International Conference on Pervasive Intelligence and Computing, 2nd Inter-
national Conference on Big Data Intelligence and Computing and Cyber Science and Technol-
ogy Congress, pages 392–399, Auckland, New Zealand. https://doi.org/10.1109/DASC-PICom-
DataCom-CyberSciTec.2016.81.

236

https://doi.org/10.1145/2735632
https://doi.org/10.1007/978-3-642-22233-7_11
https://doi.org/10.1007/978-3-642-22233-7_11
https://doi.org/10.1145/2755567.2755569
https://doi.org/10.1145/2858036.2858473
https://doi.org/10.1145/2858036.2858473
https://doi.org/10.1007/s11334-011-0155-2
https://doi.org/10.1007/s11334-011-0155-2
https://doi.org/10.1145/3057862
https://doi.org/10.1007/978-3-540-45233-1_19
https://doi.org/10.1007/978-3-540-45233-1_19
https://doi.org/10.1109/ICIN.2015.7073828
https://doi.org/10.1007/BF00988593
https://doi.org/10.1145/3290605.3300618
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.81
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.81

References

[57] M. F. Costabile, D. Fogli, P. Mussio, and A. Piccinno, 2007. “Visual Interactive Systems for End-
User Development: A Model-Based Design Methodology ”. IEEE Transactions on Systems Man and
Cybernetics - Part A, 37(6):1029–1046, 2007. https://doi.org/10.1109/TSMCA.2007.904776.

[58] M. F. Costabile, P. Mussio, L. Parasiliti Provenza, and A. Piccinno, May 2008. “End Users as
Unwitting Software Developers”. Proceedings of WEUSE 2008, International Workshop on End-User
Software Engineering, pages 6–10, Leipzig, Germany. https://doi.org/10.1145/1370847.1370849.

[59] J. Coutaz, June 2010. “User Interface Plasticity: Model Driven Engineering to the Limit!” Proceed-
ings of EICS 2010, Symposium on Engineering Interactive Computing System, pages 1–8, Berlin,
Germany. https://doi.org/10.1145/1822018.1822019.

[60] J. Coutaz and J. L. Crowley, 2016. “A First-Person Experience with End-User Development for Smart
Homes”. IEEE Pervasive Computing, 15(2):26–39, 2016. https://doi.org/10.1109/MPRV.2016.24.

[61] J. Coutaz and J. L. Crowley, 2018. “AppsGate, un Écosystème Domestique Programmable: ”Vivre
avec” Comme Retour d’xpérience”. Journal d’Interaction Personne-Système, Association Franco-
phone d’Interaction Homme-Machine (AFIHM), 7(1 (1)):1–35, 2018.

[62] A. Coyette, S. Faulkner, M. Kolp, Q. Limbourg, and J. Vanderdonckt, November 2004.
“SketchiXML: Towards a Multi-Agent Design Tool for Sketching User Interfaces Based on USIXML”.
Proceedings of TAMODIA 2004, 3rth International Conference on Task Models and Diagrams for
User Interface Design, pages 75–82, Prague, Czech Republic. https://doi.org/10.1145/1045446.
1045461.

[63] A. Coyette and J. Vanderdonckt, September 2005. “A Sketching Tool for Designing Anyuser, Any-
platform, Anywhere User Interfaces”. Proceedings of INTERACT 2005, International Conference on
Human-Computer Interaction, pages 550–564, Rome, Italy. https://doi.org/10.1007/11555261_
45.

[64] P. P. da Silva, June 2000. “User Interface Declarative Models and Development Environments: A
Survey ”. Proceedings of DSV-IS 2000, 7th International Workshop on Interactive Systems: Design,
Specification, and Verification, pages 207–226, Limerick, Ireland. https://doi.org/10.1007/3-540-
44675-3_13.

[65] Y. Dahl and R. M. Svendsen, July 2011. “End-User Composition Interfaces for Smart Environments:
A Preliminary Study of Usability Factors”. Proceedings of DUXU 2011, Conference on Design, User
Experience, and Usability, pages 118–127, Orlando, Florida, USA. https://doi.org/10.1007/978-3-
642-21708-1_14.

[66] J. Danado and F. Paternò, 2014. “Puzzle: A Mobile Application Development Environment Using
a Jigsaw Metaphor ”. Journal of Visual Languages and Computing, 25(4):297–315, 2014. https:
//doi.org/10.1016/j.jvlc.2014.03.005.

[67] O. Davidyuk, I. S. Milara, E. Gilman, and J. Riekki, 2015. “An Overview of Interactive Application
Composition Approaches”. Open Computer Science, 5(1), 2015. https://doi.org/10.1515/comp-
2015-0007.

[68] R. de A. Maues and S. D. J. Barbosa, August 2013. “Keep Doing What I Just Did: Automating
Smartphones by Demonstration”. Proceedings of MobileHCI 2013, 15th International Conference on
Human-Computer Interaction with Mobile Devices and Services, pages 295–303, Munich, Germany.
https://doi.org/10.1145/2493190.2493216.

[69] D. Dearman and J. S. Pierce, April 2008. “It’s On My Other Computer!: Computing with Multiple
Devices”. Proceedings of CHI 2008, Conference on Human Factors in Computing Systems, pages
767–776, Florence, Italy. https://doi.org/10.1145/1357054.1357177.

[70] A. Demeure, J. Sottet, G. Calvary, J. Coutaz, V. Ganneau, and J. Vanderdonckt, March 2008. “The
4C Reference Model for Distributed User Interfaces”. Proceedings of ICAS 2008, 4th International
Conference on Autonomic and Autonomous Systems, pages 61–69, Gosier, Guadeloupe. https:
//doi.org/10.1109/ICAS.2008.34.

237

https://doi.org/10.1109/TSMCA.2007.904776
https://doi.org/10.1145/1370847.1370849
https://doi.org/10.1145/1822018.1822019
https://doi.org/10.1109/MPRV.2016.24
https://doi.org/10.1145/1045446.1045461
https://doi.org/10.1145/1045446.1045461
https://doi.org/10.1007/11555261_45
https://doi.org/10.1007/11555261_45
https://doi.org/10.1007/3-540-44675-3_13
https://doi.org/10.1007/3-540-44675-3_13
https://doi.org/10.1007/978-3-642-21708-1_14
https://doi.org/10.1007/978-3-642-21708-1_14
https://doi.org/10.1016/j.jvlc.2014.03.005
https://doi.org/10.1016/j.jvlc.2014.03.005
https://doi.org/10.1515/comp-2015-0007
https://doi.org/10.1515/comp-2015-0007
https://doi.org/10.1145/2493190.2493216
https://doi.org/10.1145/1357054.1357177
https://doi.org/10.1109/ICAS.2008.34
https://doi.org/10.1109/ICAS.2008.34

References

[71] G. Desolda, C. Ardito, and M. Matera, June 2015. “EFESTO: A Platform for the End-User Devel-
opment of Interactive Workspaces for Data Exploration”. Proceedings of RMC 2015, International
Rapid Mashup Challenge, pages 63–81, Rotterdam, The Netherlands. https://doi.org/10.1007/
978-3-319-28727-0_5.

[72] G. Desolda, C. Ardito, and M. Matera, 2017. “Empowering End Users to Customize their Smart
Environments: Model, Composition Paradigms, and Domain-Specific Tools”. ACM Transactions on
Computer-Human Interaction, 24(2):12:1–12:52, 2017. https://doi.org/10.1145/3057859.

[73] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu, April 2004. “a CAPpella: Programming by
Demonstration of Context-Aware Applications”. Proceedings of CHI 2004, Conference on Human
Factors in Computing Systems, pages 33–40, Vienna, Austria. https://doi.org/10.1145/985692.
985697.

[74] A. K. Dey, T. Sohn, S. Streng, and J. Kodama, May 2006. “iCAP: Interactive Prototyping of
Context-Aware Applications”. Proceedings of PERVASIVE 2006, 4th International Conference on
Pervasive Computing, pages 254–271, Dublin, Ireland. https://doi.org/10.1007/11748625_16.

[75] K. R. Dittrich, S. Gatziu, and A. Geppert, September 1995. “The Active Database Manage-
ment System Manifesto: A Rulebase of ADBMS Features”. Proceedings of RIDS 1995, Sec-
ond International Workshop on Rules in Database Systems, pages 3–20, Glyfada, Athens, Greece.
https://doi.org/10.1007/3-540-60365-4_116.

[76] N. Elmqvist, 2011. “Distributed User Interfaces: State of the Art”. Distributed User Interfaces:
Designing Interfaces for the Distributed Ecosystem, pages 1–12. https://doi.org/10.1007/978-1-
4471-2271-5_1.

[77] Engelbart, Douglas C, December 1968. “The Mother Of All Demos”. Fall Joint Computer Confer-
ence, volume 9, San Francisco, California, USA.

[78] K. Everitt, C. Shen, K. Ryall, and C. Forlines, January 2006. “MultiSpace: Enabling Electronic
Document Micro-Mobility in Table-centric, Multi-Device Environments”. Proceedings of Table-
Top 2006, 1st International Workshop on Horizontal Interactive Human-Computer Systems, pages
27–34, Adelaide, Australia. https://doi.org/10.1109/TABLETOP.2006.23.

[79] Federico Ciccozzi and Romina Spalazzese, October 2016. “MDE4IoT: Supporting the Internet of
Things with Model-Driven Engineering”. Proceedings of IDC 2016, 10th International Symposium on
Intelligent and Distributed Computing, pages 67–76, Paris, France. https://doi.org/10.1007/978-
3-319-48829-5_7.

[80] S. Feuerstack, M. Blumendorf, V. Schwartze, and S. Albayrak, May 2008. “Model-based Layout
Generation”. Proceedings of AVI 2008, Conference on Advanced Visual Interfaces, pages 217–224,
Napoli, Italy. https://doi.org/10.1145/1385569.1385605.

[81] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev, 2004. “Meta-Design: a Manifesto
For End-User Development”. Communications of the ACM, 47(9):33–37, 2004. https://doi.org/
10.1145/1015864.1015884.

[82] F. Fleurey, B. Morin, A. Solberg, and O. Barais, October 2011. “MDE to Manage Communi-
cations with and between Resource-Constrained Systems”. Proceedings of MODELS 2011, 14th
International Conference on Model Driven Engineering Languages and Systems, pages 349–363,
Wellington, New Zealand. https://doi.org/10.1007/978-3-642-24485-8_25.

[83] D. Fogli, M. Peroni, and C. Stefini, 2017. “ImAtHome: Making Trigger-Action Programming Easy
and Fun”. Journal of Visual Languages and Computing, 42:60–75, 2017. https://doi.org/10.1016/
j.jvlc.2017.08.003.

[84] J. M. C. Fonseca, 2010. “Model-based UI XG Final Report”. https://www.w3.org/2005/Incubator/
model-based-ui/XGR-mbui-20100504/. Accessed: 2018-02-10.

[85] D. S. Fors, B. Magnusson, S. G. Robertz, G. Hedin, and E. Nilsson-Nyman, July 2009. “Ad-
hoc Composition of Pervasive Services in the PalCom Architecture”. Proceedings of ICPS 2009,
International Conference on Pervasive Services, pages 83–92, London, United Kingdom. https:
//doi.org/10.1145/1568199.1568213.

238

https://doi.org/10.1007/978-3-319-28727-0_5
https://doi.org/10.1007/978-3-319-28727-0_5
https://doi.org/10.1145/3057859
https://doi.org/10.1145/985692.985697
https://doi.org/10.1145/985692.985697
https://doi.org/10.1007/11748625_16
https://doi.org/10.1007/3-540-60365-4_116
https://doi.org/10.1007/978-1-4471-2271-5_1
https://doi.org/10.1007/978-1-4471-2271-5_1
https://doi.org/10.1109/TABLETOP.2006.23
https://doi.org/10.1007/978-3-319-48829-5_7
https://doi.org/10.1007/978-3-319-48829-5_7
https://doi.org/10.1145/1385569.1385605
https://doi.org/10.1145/1015864.1015884
https://doi.org/10.1145/1015864.1015884
https://doi.org/10.1007/978-3-642-24485-8_25
https://doi.org/10.1016/j.jvlc.2017.08.003
https://doi.org/10.1016/j.jvlc.2017.08.003
https://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
https://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
https://doi.org/10.1145/1568199.1568213
https://doi.org/10.1145/1568199.1568213

References

[86] P. Fremantle, 2015. “A Reference Architecture for the Internet of Things”. WSO2 White paper,
2015.

[87] L. Frosini and F. Paternò, June 2014. “User Interface Distribution in Multi-Device and Multi-User
Environments with Dynamically Migrating Engines”. Proceedings of EICS 2014, Symposium on
Engineering Interactive Computing Systems, pages 55–64, Rome, Italy. https://doi.org/10.1145/
2607023.2607032.

[88] J. G. Garcia, J. Vanderdonckt, and J. M. G. Calleros, May 2008. “FlowiXML: a Step Towards De-
signing Workflow Management Systems”. International Journal of Web Engineering and Technology,
4(2):163–182, May 2008. https://doi.org/10.1504/IJWET.2008.018096.

[89] A. García Frey, E. Céret, S. Dupuy-Chessa, G. Calvary, and Y. Gabillon, June 2012. “UsiComp:
an Extensible Model-Driven Composer ”. Proceedings of EICS 2012, Symposium on Engineering
Interactive Computing Systems, pages 263–268, Copenhagen, Denmark. https://doi.org/10.1145/
2305484.2305528.

[90] J.-L. Gassée, 2014. “Internet of Things: The ”Basket of Remotes” Problem”. https://mondaynote.
com/internet-of-things-the-basket-of-remotes-problem-f80922a91a0f. Accessed: 2020-02-26.

[91] L. D. Geronimo, M. Husmann, A. Patel, C. Tuerk, and M. C. Norrie, June 2016. “CTAT: Tilt-
and-Tap Across Devices”. Proceedings of ICWE 2016, 16th International Conference on Web
Engineering, pages 96–113, Lugano, Switzerland. https://doi.org/10.1007/978-3-319-38791-8_6.

[92] G. Ghiani, M. Manca, and F. Paternò, November - December 2015. “Authoring Context-dependent
Cross-device User Interfaces based on Trigger/Action Rules”. Proceedings of MUM 2015, 14th
International Conference on Mobile and Ubiquitous Multimedia, pages 313–322, Linz, Austria. https:
//doi.org/10.1145/2836041.2836073.

[93] G. Ghiani, M. Manca, F. Paternò, and C. Santoro, 2017. “Personalization of Context-Dependent
Applications Through Trigger-Action Rules”. ACM Transactions on Computer-Human Interaction,
24(2):14:1–14:33, 2017. https://doi.org/10.1145/3057861.

[94] G. Ghiani, F. Paternò, and C. Santoro, May 2012. “Push and Pull of Web User Interfaces in Multi-
Device Environments”. Proceedings of AVI 2012, International Working Conference on Advanced
Visual Interfaces, pages 10–17, Capri Island, Naples, Italy. https://doi.org/10.1145/2254556.
2254563.

[95] G. Ghiani, F. Paternò, L. D. Spano, and G. Pintori, 2016. “An Environment for End-User Devel-
opment of Web Mashups”. International Journal of Human-Computer Studies, 87:38–64, 2016.
https://doi.org/10.1016/j.ijhcs.2015.10.008.

[96] A. Giri, S. Dutta, S. Neogy, K. P. Dahal, and Z. Pervez, October 2017. “Internet of Things (IoT): a
Survey on Architecture, Enabling Technologies, Applications and Challenges”. Proceedings of IML
2017, 1st International Conference on Internet of Things and Machine Learning, pages 7:1–7:12,
Liverpool, United Kingdom. https://doi.org/10.1145/3109761.3109768.

[97] T. Griffiths, P. J. Barclay, N. W. Paton, J. McKirdy, J. B. Kennedy, P. D. Gray, R. Cooper, C. A.
Goble, and P. P. da Silva, 2001. “Teallach: a Model-Based User Interface Development Environment
for Object Databases”. Interacting with Computers, 14(1):31–68, 2001. https://doi.org/10.1016/
S0953-5438(01)00042-X.

[98] J. Grudin, April 1990. “The Computer Reaches Out: The Historical Continuity of Interface Design”.
Proceedings of CHI 1990, Conference on Human Factors in Computing Systems, pages 261–268,
Seattle, Washington, USA. https://doi.org/10.1145/97243.97284.

[99] D. Guinard and V. Trifa, April 2009. “Towards the Web of Things: Web Mashups for Embedded
Devices”. Proceedings of MEM 2009, Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web (International World Wide Web Conferences), Madrid, Spain.

[100] D. Guinard and V. Trifa, 2016. Building the Web of Things: With Examples in Node.Js and
Raspberry Pi. USA. Manning Publications Co., 1st Edition, 2016. ISBN 1617292680.

[101] T. Halpin and T. Morgan, 2010. Information Modeling and Relational Databases. Morgan Kauf-
mann, 2010. https://doi.org/10.1016/B978-0-12-373568-3.X5001-2.

239

https://doi.org/10.1145/2607023.2607032
https://doi.org/10.1145/2607023.2607032
https://doi.org/10.1504/IJWET.2008.018096
https://doi.org/10.1145/2305484.2305528
https://doi.org/10.1145/2305484.2305528
https://mondaynote.com/internet-of-things-the-basket-of-remotes-problem-f80922a91a0f
https://mondaynote.com/internet-of-things-the-basket-of-remotes-problem-f80922a91a0f
https://doi.org/10.1007/978-3-319-38791-8_6
https://doi.org/10.1145/2836041.2836073
https://doi.org/10.1145/2836041.2836073
https://doi.org/10.1145/3057861
https://doi.org/10.1145/2254556.2254563
https://doi.org/10.1145/2254556.2254563
https://doi.org/10.1016/j.ijhcs.2015.10.008
https://doi.org/10.1145/3109761.3109768
https://doi.org/10.1016/S0953-5438(01)00042-X
https://doi.org/10.1016/S0953-5438(01)00042-X
https://doi.org/10.1145/97243.97284
https://doi.org/10.1016/B978-0-12-373568-3.X5001-2

References

[102] R. Han, V. Perret, and M. Naghshineh, December 2000. “WebSplitter: A Unified XML Frame-
work for Multi-Device Collaborative Web Browsing”. Proceedings of CSCW 2000, Conference
on Computer Supported Cooperative Work, pages 221–230, Philadelphia, Pennsylvania, USA.
https://doi.org/10.1145/358916.358993.

[103] S. Heo, S. Woo, J. Im, and D. Kim, October 2015. “IoT-MAP: IoT Mashup Application Platform for
the Flexible IoT Ecosystem”. Proceedings on IOT 2015, 5th International Conference on the Internet
of Things, pages 163–170, Seoul, South Korea. https://doi.org/10.1109/IOT.2015.7356561.

[104] A. R. Hevner, S. T. March, J. Park, and S. Ram, 2004. “Design Science in Information Systems
Research”. Management Information Systems Quarterly, 28(1):75–105, 2004.

[105] T. T. Hewett, R. Baecker, S. Card, T. Carey, J. Gasen, M. Mantei, G. Perlman, G. Strong, and
W. Verplank, 1992. ACM SIGCHI Curricula for Human-Computer Interaction. ACM, 1992.

[106] J. Humble, A. Crabtree, T. Hemmings, K. Åkesson, B. Koleva, T. Rodden, and P. Hansson, October
2003. “”Playing with the Bits” User-Configuration of Ubiquitous Domestic Environments”. Proceed-
ings of UbiComp 2003, 5th International Conference on Ubiquitous Computing, pages 256–263,
Seattle, Washington, USA. https://doi.org/10.1007/978-3-540-39653-6_20.

[107] M. Husmann, M. Nebeling, S. Pongelli, and M. C. Norrie, oct 2014. “MultiMasher: Providing
Architectural Support and Visual Tools for Multi-device Mashups”. Proceedings of WISE 2014, 15th
International Conference on Web Information Systems Engineering, pages 199–214, Thessaloniki,
Greece. https://doi.org/10.1007/978-3-319-11746-1_15.

[108] M. Hussein, S. Li, and A. Radermacher, September 2017. “Model-Driven Development of Adaptive
IoT Systems”. Proceedings of MODELS 2017, 20th International Conference on Model Driven
Engineering Languages and Systems, pages 17–23, Austin, Texas, USA.

[109] M. Hussein, R. Nouacer, and A. Radermacher, August - September 2016. “AModel-Driven Approach
for Validating Safe Adaptive Behaviors”. Proceedings of DSD 2016, Euromicro Conference on Digital
System Design, pages 75–81, Limassol, Cyprus. https://doi.org/10.1109/DSD.2016.21.

[110] J. E. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, May 2011. “Empirical Assess-
ment of MDE in Industry ”. Proceedings of ICSE 2011, 33rd International Conference on Software
Engineering, pages 471–480, Waikiki, Honolulu , Hawaii, USA. https://doi.org/10.1145/1985793.
1985858.

[111] G. Inc., August 2012. “The New Multi-screen World: Understanding Cross-platform Consumer
Behavior ”. http://services.google.com/fh/files/misc/multiscreenworld_final.pdf. Accessed: 2019-
03-13.

[112] G. Inc., September 2016. “How People Use Their Devices - What Marketers Need to Know ”. https://
www.thinkwithgoogle.com/_qs/documents/276/twg-how-people-use-their-devices-2016.pdf. Ac-
cessed: 2019-03-13.

[113] G. Inc., 2017. “The Connected Consumer Survey 2017 ”. https://www.consumerbarometer.com/
en/graph-builder/?question=M3. Accessed: 2019-03-13.

[114] M. M. Jensen, R. Rädle, C. N. Klokmose, and S. Bødker, April 2018. “Remediating a Design Tool:
Implications of Digitizing Sticky Notes”. Proceedings of CHI 2018, Conference on Human Factors
in Computing Systems, page 224, Montreal, Quebec, Canada. https://doi.org/10.1145/3173574.
3173798.

[115] J. Johnson, 2010. Designing with the Mind in Mind: Simple Guide to Understanding User Interface
Design Rules. San Francisco, CA, USA. Morgan Kaufmann Publishers Inc., 2010. ISBN 978-0-12-
375030-3.

[116] B. Johnsson and B. Magnusson, 10 2017. “Towards End-User Development of Graphical User
Interfaces for Internet of Things”. Future Generation Computer Systems, 10 2017. https://doi.
org/10.1016/j.future.2017.09.068.

[117] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez, October 2006. “ATL: A QVT-like
Transformation Language”. Proceedings of OOPSLA 2006, Companion to the 21th Annual Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications, pages 719–720,
Portland, Oregon, USA. https://doi.org/10.1145/1176617.1176691.

240

https://doi.org/10.1145/358916.358993
https://doi.org/10.1109/IOT.2015.7356561
https://doi.org/10.1007/978-3-540-39653-6_20
https://doi.org/10.1007/978-3-319-11746-1_15
https://doi.org/10.1109/DSD.2016.21
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1985793.1985858
http://services.google.com/fh/files/misc/multiscreenworld_final.pdf
https://www.thinkwithgoogle.com/_qs/documents/276/twg-how-people-use-their-devices-2016.pdf
https://www.thinkwithgoogle.com/_qs/documents/276/twg-how-people-use-their-devices-2016.pdf
https://www.consumerbarometer.com/en/graph-builder/?question=M3
https://www.consumerbarometer.com/en/graph-builder/?question=M3
https://doi.org/10.1145/3173574.3173798
https://doi.org/10.1145/3173574.3173798
https://doi.org/10.1016/j.future.2017.09.068
https://doi.org/10.1016/j.future.2017.09.068
https://doi.org/10.1145/1176617.1176691

References

[118] W. Kang, K. Kapitanova, and S. H. Son, 2012. “RDDS: A Real-Time Data Distribution Service
for Cyber-Physical Systems”. IEEE Transactions on Industrial Informatics, 8(2):393–405, 2012.
https://doi.org/10.1109/TII.2012.2183878.

[119] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M. H. Butler, and L. Tran, January 2004.
“W3C Recommendation: Composite Capability/Preference Profiles (CC/PP): Structure and Vo-
cabularies 1.0”. https://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/. Accessed:
2018-02-14.

[120] I. Koren and R. Klamma, June 2016. “The Direwolf Inside You: End User Development for Het-
erogeneous Web of Things Appliances”. Proceedings of ICWE 2016, 16th International Conference
on Web Engineering, pages 484–491, Lugano, Switzerland. https://doi.org/10.1007/978-3-319-
38791-8_35.

[121] D. Kovachev, D. Renzel, P. Nicolaescu, and R. Klamma, July 2013. “DireWolf - Distributing and
Migrating User Interfaces for Widget-Based Web Applications”. Proceedings of ICWE 2013, 13th
International Conference on Web Engineering, pages 99–113, Aalborg, Denmark. https://doi.org/
10.1007/978-3-642-39200-9_10.

[122] D. Kovachev, D. Renzel, P. Nicolaescu, I. Koren, and R. Klamma, 2014. “DireWolf Framework for
Widget-based Distributed User Interfaces”. Journal of Web Engineering, 13(3&4):203–222, 2014.

[123] M. Krug, F. Wiedemann, and M. Gaedke, July 2014. “SmartComposition: A Component-Based
Approach for Creating Multi-screen Mashups”. Proceedings of ICWE 2014, 14th International
Conference on Web Engineering, pages 236–253, Toulouse, France. https://doi.org/10.1007/978-
3-319-08245-5_14.

[124] T. Kubitza and A. Schmidt, 2017. “meSchup: A Platform for Programming Interconnected Smart
Things”. IEEE Computer, 50(11):38–49, 2017. https://doi.org/10.1109/MC.2017.4041350.

[125] T. J. Li, Y. Li, F. Chen, and B. A. Myers, June 2017. “Programming IoT Devices by Demonstration
Using Mobile Apps”. Proceedings of IS-EUD, 6th International Symposium on End-User Develop-
ment, pages 3–17, Eindhoven, The Netherlands. https://doi.org/10.1007/978-3-319-58735-6_1.

[126] H. Lieberman, F. Paternò, and V. Wulf, editors, 2006. End User Development: An Emerging
Paradigm. Human-Computer Interaction Series. Springer, 2006. ISBN 978-1-4020-4220-1. https:
//doi.org/10.1007/1-4020-5386-X.

[127] Q. Limbourg and J. Vanderdonckt, July 2004. “USIXML: A User Interface Description Language
Supporting Multiple Levels of Independence”. Proceedings of ICWE 2004, 4th International Con-
ference on Web Engineering, pages 325–338, Munich, Germany.

[128] J. Lin and J. A. Landay, April 2008. “Employing Patterns and Layers for Early-stage Design and
Prototyping of Cross-device User Interfaces”. Proceedings of CHI 2008, Conference on Human
Factors in Computing Systems, pages 1313–1322, Florence, Italy. ISBN 978-1-60558-011-1. https:
//doi.org/10.1145/1357054.1357260.

[129] D. Locke. “MQ Telemetry Transport (MQTT) V3.1 Protocol Specification”. https://www.ibm.
com/developerworks/library/ws-mqtt/. Accessed: 2018-03-13.

[130] F. Lonczewski and S. Schreiber, June 1996. “The FUSE-System: an Integrated User Interface Design
Environment”. Proceedings of CADUI 1996, 2nd International Workshop on Computer-Aided Design
of User Interfaces, pages 37–56, Namur, Belgium.

[131] G. Lucci and F. Paternò, September 2014. “Understanding End-User Development of Context-
Dependent Applications in Smartphones”. Proceedings of HCSE 2014, 5th International Conference
on Human-Centered Software Engineering, pages 182–198, Paderborn, Germany. https://doi.org/
10.1007/978-3-662-44811-3_11.

[132] G. Lucci and F. Paternò, May 2015. “Analysing How Users Prefer to Model Contextual Event-Action
Behaviours in Their Smartphones”. Proceedings of IS-EUD 2015, 5th International Symposium
on End-User Development, pages 186–191, Madrid, Spain. https://doi.org/10.1007/978-3-319-
18425-8_14.

241

https://doi.org/10.1109/TII.2012.2183878
https://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
https://doi.org/10.1007/978-3-319-38791-8_35
https://doi.org/10.1007/978-3-319-38791-8_35
https://doi.org/10.1007/978-3-642-39200-9_10
https://doi.org/10.1007/978-3-642-39200-9_10
https://doi.org/10.1007/978-3-319-08245-5_14
https://doi.org/10.1007/978-3-319-08245-5_14
https://doi.org/10.1109/MC.2017.4041350
https://doi.org/10.1007/978-3-319-58735-6_1
https://doi.org/10.1007/1-4020-5386-X
https://doi.org/10.1007/1-4020-5386-X
https://doi.org/10.1145/1357054.1357260
https://doi.org/10.1145/1357054.1357260
https://www.ibm.com/developerworks/library/ws-mqtt/
https://www.ibm.com/developerworks/library/ws-mqtt/
https://doi.org/10.1007/978-3-662-44811-3_11
https://doi.org/10.1007/978-3-662-44811-3_11
https://doi.org/10.1007/978-3-319-18425-8_14
https://doi.org/10.1007/978-3-319-18425-8_14

References

[133] K. Luyten and K. Coninx, December 2005. “Distributed User Interface Elements to Support Smart
Interaction Spaces”. Proceedings of ISM 2005, 7th International Symposium on Multimedia, pages
277–286, Irvine, California, USA. https://doi.org/10.1109/ISM.2005.52.

[134] K. Luyten, J. V. den Bergh, C. Vandervelpen, and K. Coninx, 2006. “Designing Distributed User
Interfaces for Ambient Intelligent Environments using Models and Simulations”. Computers & Graph-
ics, 30(5):702–713, 2006. https://doi.org/10.1016/j.cag.2006.07.004.

[135] L. Mainetti, L. Manco, L. Patrono, I. Sergi, and R. Vergallo, December 2015. “Web of Topics: An
IoT-Aware Model-Driven Designing Approach”. Proceedings of WF-IoT 2015, 2nd World Forum on
Internet of Things, pages 46–51, Milan, Italy. https://doi.org/10.1109/WF-IoT.2015.7389025.

[136] M. Manca and F. Paternò, 2011. “Extending MARIA to Support Distributed User Interfaces”.
Distributed User Interfaces: Designing Interfaces for the Distributed Ecosystem, pages 33–40. https:
//doi.org/10.1007/978-1-4471-2271-5_4.

[137] M. Manca and F. Paternò, June 2016. “Customizable Dynamic User Interface Distribution”. Pro-
ceedings of EICS 2016, 8th Symposium on Engineering Interactive Computing Systems, pages
27–37, Brussels, Belgium. https://doi.org/10.1145/2933242.2933259.

[138] N. Marquardt, K. Hinckley, and S. Greenberg, October 2012. “Cross-Device Interaction via Micro-
mobility and F-formations”. Proceedings of UIST 2012, 25th Annual Symposium on User Interface
Software and Technology, pages 13–22, Cambridge, Massachusetts, USA. https://doi.org/10.
1145/2380116.2380121.

[139] G. Marvin, March 2013. “Microsoft Study: Multi-Screen Behavior And What It Means For Mar-
keters”. http://marketingland.com/microsoft-study-multi-screen-behavior-and-what-it-means-for-
marketer-36456. Accessed: 2019-03-13.

[140] E. McAweeney, H. Zhang, and M. Nebeling, April 2018. “User-Driven Design Principles for Gesture
Representations”. Proceedings of CHI 2018, Conference on Human Factors in Computing Systems,
page 547, Montreal, Quebec, Canada. https://doi.org/10.1145/3173574.3174121.

[141] D. D. McCracken, J. M. Spool, and R. J. Wolfe, 2003. User-Centered Web Site Development: A
Human-Computer Interaction Approach. Pearson Education, 2003.

[142] G. Meixner, G. Calvary, and J. Coutaz, December 2013. “Introduction to Model-based User Inter-
faces”. https://www.w3.org/2011/mbui/drafts/mbui-intro/. Accessed: 2018-03-8.

[143] G. Meixner, F. Paternò, and J. Vanderdonckt, 2011. “Past, Present, and Future of Model-based
User Interface Development”. Journal of Interactive Media, 10(3):2–11, 2011. https://doi.org/10.
1524/icom.2011.0026.

[144] B. C. Mejias Candia, 2010. Beernet: A Relaxed Approach to the Design of Scalable Systems with
Self-Managing Behaviour and Transactional Robust Storage. Ph.D. thesis, Catholic University of
Louvain, Louvain-la-Neuve, Belgium.

[145] J. Melchior, 2016. A Model-based Approach for Dynamically Distributing Graphical User Interfaces
Based on their Properties, Graphs, and Scenarios. Ph.D. thesis, Catholic University of Louvain,
Louvain-la-Neuve, Belgium.

[146] J. Melchior, J. Vanderdonckt, and P. V. Roy, June 2011. “A Model-based Approach for Distributed
User Interfaces”. Proceedings of EICS 2011, 3rd Symposium on Engineering Interactive Computing
System, pages 11–20, Pisa, Italy. https://doi.org/10.1145/1996461.1996488.

[147] J. Meskens, K. Luyten, and K. Coninx, May 2010. “Jelly: a Multi-Device Design Environment
for Managing Consistency Across Devices”. Proceedings of AVI 2010, International Conference
on Advanced Visual Interfaces, pages 289–296, Roma, Italy. https://doi.org/10.1145/1842993.
1843044.

[148] J. Meskens, J. Vermeulen, K. Luyten, and K. Coninx, May 2008. “Gummy for Multi-Platform User
Interface Designs: Shape Me, Multiply Me, Fix Me, Use Me”. Proceedings of AVI 2008, Working
Conference on Advanced Visual Interfaces, pages 233–240, Napoli, Italy. https://doi.org/10.1145/
1385569.1385607.

242

https://doi.org/10.1109/ISM.2005.52
https://doi.org/10.1016/j.cag.2006.07.004
https://doi.org/10.1109/WF-IoT.2015.7389025
https://doi.org/10.1007/978-1-4471-2271-5_4
https://doi.org/10.1007/978-1-4471-2271-5_4
https://doi.org/10.1145/2933242.2933259
https://doi.org/10.1145/2380116.2380121
https://doi.org/10.1145/2380116.2380121
http://marketingland.com/microsoft-study-multi-screen-behavior-and-what-it-means-for-marketer-36456
http://marketingland.com/microsoft-study-multi-screen-behavior-and-what-it-means-for-marketer-36456
https://doi.org/10.1145/3173574.3174121
https://www.w3.org/2011/mbui/drafts/mbui-intro/
https://doi.org/10.1524/icom.2011.0026
https://doi.org/10.1524/icom.2011.0026
https://doi.org/10.1145/1996461.1996488
https://doi.org/10.1145/1842993.1843044
https://doi.org/10.1145/1842993.1843044
https://doi.org/10.1145/1385569.1385607
https://doi.org/10.1145/1385569.1385607

References

[149] A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song, P. Kumar, P. Nguyen, and K. H. Yi,
March 2006. “InterPlay: A Middleware for Seamless Device Integration and Task Orchestration
in a Networked Home”. Proceedings of PerCom 2006, 4th International Conference on Pervasive
Computing and Communications, pages 296–307, Pisa, Italy. https://doi.org/10.1109/PERCOM.
2006.30.

[150] B. Michotte and J. Vanderdonckt, March 2008. “GrafiXML, a Multi-target User Interface Builder
Based on UsiXML”. Proceedings of ICAS, 4th International Conference on Autonomic and Au-
tonomous Systems, pages 15–22, Gosier, Guadeloupe. https://doi.org/10.1109/ICAS.2008.29.

[151] G. Mori, F. Paternò, and C. Santoro, 2002. “CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design”. IEEE Transactions on Software Engineering, 28(8), 2002.
https://doi.org/10.1109/TSE.2002.1027801.

[152] K. Naito, 2017. “A Survey on the Internet-of-Things: Standards, Challenges and Future Prospects”.
Journal of Information Processing, 25:23–31, 2017. https://doi.org/10.2197/ipsjjip.25.23.

[153] K. Nakagaki, L. Vink, J. Counts, D. Windham, D. Leithinger, S. Follmer, and H. Ishii, May 2016.
“Materiable: Rendering Dynamic Material Properties in Response to Direct Physical Touch with
Shape Changing Interfaces”. Proceedings of CHI 2016, Conference on Human Factors in Com-
puting Systems, pages 2764–2772, San Jose, California, USA. https://doi.org/10.1145/2858036.
2858104.

[154] M. Nebeling, May 2017. “XDBrowser 2.0: Semi-Automatic Generation of Cross-Device Interfaces”.
Proceedings of CHI 2017, Conference on Human Factors in Computing Systems, pages 4574–4584,
Denver, Colorado, USA. https://doi.org/10.1145/3025453.3025547.

[155] M. Nebeling and A. K. Dey, May 2016. “XDBrowser: User-Defined Cross-Device Web Page Designs”.
Proceedings of CHI 2016, Conference on Human Factors in Computing Systems, pages 5494–5505,
San Jose, California, USA. https://doi.org/10.1145/2858036.2858048.

[156] M. Nebeling, T. Mintsi, M. Husmann, and M. C. Norrie, April 2014. “Interactive Development of
Cross-Device User Interfaces”. Proceedings of CHI 2014, Conference on Human Factors in Com-
puting Systems, pages 2793–2802, Toronto, Ontario, Canada. https://doi.org/10.1145/2556288.
2556980.

[157] M. Nebeling, E. Teunissen, M. Husmann, and M. C. Norrie, June 2014. “Michael Nebeling and Elena
Teunissen and Maria Husmann and Moira C. Norrie”. Proceedings of EICS 2014, Symposium on
Engineering Interactive Computing Systems, pages 65–74, Rome, Italy. https://doi.org/10.1145/
2607023.2607024.

[158] T. H. Nelson, 1995. “The Heart of Connection: Hypermedia Unified by Transclusion”. Communi-
cations of the ACM, 38(8):31–33, 1995. https://doi.org/10.1145/208344.208353.

[159] X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs, December 2015. “FRASAD: A Framework for
Model-Driven IoT Application Development”. Proceedings of WF-IoT 2015, 2nd World Forum on
Internet of Things, pages 387–392, Milan, Italy. https://doi.org/10.1109/WF-IoT.2015.7389085.

[160] X. T. Nguyen, M. Zapf, and K. Geihs, December 2011. “Model Driven Development for Data-
Centric Sensor Network Applications”. Proceedings of MoMM 2011, 9th International Conference
on Advances in Mobile Computing and Multimedia, pages 194–197, Ho Chi Minh City, Vietnam.
https://doi.org/10.1145/2095697.2095733.

[161] R. Oppermann, 2017. Adaptive User Support: Ergonomic Design of Manually and Automatically
Adaptable Software. Routledge, 2017. ISBN 9780805816556.

[162] P. Patel and D. Cassou, 2015. “Enabling High-Level Application Development for the Internet of
Things”. Journal of Systems and Software, 103:62–84, 2015. https://doi.org/10.1016/j.jss.2015.
01.027.

[163] F. Paternò, 2013. “End User Development: Survey of an Emerging Field for Empowering People”.
ISRN Software Engineering, 2013, 2013. https://doi.org/10.1155/2013/532659.

243

https://doi.org/10.1109/PERCOM.2006.30
https://doi.org/10.1109/PERCOM.2006.30
https://doi.org/10.1109/ICAS.2008.29
https://doi.org/10.1109/TSE.2002.1027801
https://doi.org/10.2197/ipsjjip.25.23
https://doi.org/10.1145/2858036.2858104
https://doi.org/10.1145/2858036.2858104
https://doi.org/10.1145/3025453.3025547
https://doi.org/10.1145/2858036.2858048
https://doi.org/10.1145/2556288.2556980
https://doi.org/10.1145/2556288.2556980
https://doi.org/10.1145/2607023.2607024
https://doi.org/10.1145/2607023.2607024
https://doi.org/10.1145/208344.208353
https://doi.org/10.1109/WF-IoT.2015.7389085
https://doi.org/10.1145/2095697.2095733
https://doi.org/10.1016/j.jss.2015.01.027
https://doi.org/10.1016/j.jss.2015.01.027
https://doi.org/10.1155/2013/532659

References

[164] F. Paternò, C. Mancini, and S. Meniconi, July 1997. “ConcurTaskTrees: A Diagrammatic Nota-
tion for Specifying Task Models”. Proceedings of INTERACT 1997, Interantional Conference on
Human-Computer Interaction, pages 362–369, Sydney, Australia. https://doi.org/10.1007/978-0-
387-35175-9_58.

[165] F. Paternò and C. Santoro, 2017. “A Design Space for End User Development in the Time of the
Internet of Things”. New Perspectives in End-User Development, pages 43–59. https://doi.org/
10.1007/978-3-319-60291-2_3.

[166] F. Paternò and C. Santoro, 2019. “End-User Development for Personalizing Applications, Things,
and Robots”. International Journal of Human-Computer Studies, 131:120–130, 2019. https://doi.
org/10.1016/j.ijhcs.2019.06.002.

[167] F. Paternò, C. Santoro, and L. D. Spano, 2009. “MARIA: A Universal, Declarative, Multiple
Abstraction-Level Language for Service-Oriented Applications in Ubiquitous Environments”. ACM
Transactions on Computer-Human Interaction, 16(4), 2009. https://doi.org/10.1145/1614390.
1614394.

[168] F. Paternò and G. Zichittella, October 2010. “Desktop-to-Mobile Web Adaptation through
Customizable Two-Dimensional Semantic Redesign”. Proceedings of HCSE 2010, 3rd Interna-
tional Conference on Human-Centred Software Engineering, pages 79–94, Reykjavik, Iceland.
https://doi.org/10.1007/978-3-642-16488-0_7.

[169] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, 2007. “A Design Science Research
Methodology for Information Systems Research”. Journal of Management Information Systems,
24(3):45–77, 2007. https://doi.org/10.2753/MIS0742-1222240302.

[170] J. L. Pérez-Medina, S. Dupuy-Chessa, and A. Front, November 2007. “A Survey of Model Driven
Engineering Tools for User Interface Design”. Proceedings of TAMODIA 2007, 6th International
Workshop on Task Models and Diagrams for User Interface Design, pages 84–97, Toulouse, France.
https://doi.org/10.1007/978-3-540-77222-4_8.

[171] T. Pering, K. Lyons, R. Want, M. Murphy-Hoye, M. Baloga, P. Noll, J. Branc, and N. D. Benoist,
September 2010. “What Do You Bring To the Table?: Investigations of a Collaborative Workspace”.
Proceedings of UbiComp 2010, 12th International Conference on Ubiquitous Computing, pages
183–192, Copenhagen, Denmark. https://doi.org/10.1145/1864349.1864389.

[172] T. Pering, R. Want, B. Rosario, S. Sud, and K. Lyons, May 2009. “Enabling Pervasive Collaboration
with Platform Composition”. Proceedings of PerCom 2009, 7th International Conference on Perva-
sive Computing, pages 184–201, Nara, Japan. https://doi.org/10.1007/978-3-642-01516-8_14.

[173] S. L. Peyton Jones, A. F. Blackwell, and M. M. Burnett, August 2003. “A User-Centred Approach
to Functions in Excel”. Proceedings of ICFP 2003, 8th International International Conference
on Functional Programming, pages 165–176, Uppsala, Sweden. https://doi.org/10.1145/944705.
944721.

[174] T. Plank, H. Jetter, R. Rädle, C. N. Klokmose, T. Luger, and H. Reiterer, May 2017. “Is Two
Enough?! Studying Benefits, Barriers, and Biases of Multi-Tablet Use for Collaborative Visual-
ization”. Proceedings of CHI 2017, Conference on Human Factors in Computing Systems, pages
4548–4560, Denver, Colorado, USA. https://doi.org/10.1145/3025453.3025537.

[175] F. Pramudianto, I. R. Indra, and M. Jarke, June 2013. “Model Driven Development for Internet
of Things Application Prototyping”. Proceedings of SEKE 2013, 25th International Conference on
Software Engineering and Knowledge Engineering, pages 703–708, Boston, Massachusetts, USA.

[176] A. R. Puerta and P. Szkeley, April 1994. “Model-based Interface Development”. Proceedings of
CHI 1994, Conference on Human Factors in Computing Systems, pages 389–390, Boston, Mas-
sachusetts, USA. ISBN 0-89791-651-4. https://doi.org/10.1145/259963.260519.

[177] W. D. Ra, 2011. “Brave NUI World: Designing Natural User Interfaces for Touch and Gesture
by Daniel Wigdor and Dennis Wixon”. ACM SIGSOFT Software Engineering Notes, 36(6):29–30,
2011. https://doi.org/10.1145/2047414.2047439.

244

https://doi.org/10.1007/978-0-387-35175-9_58
https://doi.org/10.1007/978-0-387-35175-9_58
https://doi.org/10.1007/978-3-319-60291-2_3
https://doi.org/10.1007/978-3-319-60291-2_3
https://doi.org/10.1016/j.ijhcs.2019.06.002
https://doi.org/10.1016/j.ijhcs.2019.06.002
https://doi.org/10.1145/1614390.1614394
https://doi.org/10.1145/1614390.1614394
https://doi.org/10.1007/978-3-642-16488-0_7
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1007/978-3-540-77222-4_8
https://doi.org/10.1145/1864349.1864389
https://doi.org/10.1007/978-3-642-01516-8_14
https://doi.org/10.1145/944705.944721
https://doi.org/10.1145/944705.944721
https://doi.org/10.1145/3025453.3025537
https://doi.org/10.1145/259963.260519
https://doi.org/10.1145/2047414.2047439

References

[178] R. Rädle, H. Jetter, N. Marquardt, H. Reiterer, and Y. Rogers, November 2014. “HuddleLamp:
Spatially-Aware Mobile Displays for Ad-hoc Around-the-Table Collaboration”. Proceedings of ITS
2014, 9th International Conference on Interactive Tabletops and Surfaces, pages 45–54, Dresden,
Germany. https://doi.org/10.1145/2669485.2669500.

[179] P. P. Ray, 2018. “A Survey on Internet of Things Architectures”. Journal of King Saud University-
Computer and Information Sciences, 30(3):291–319, 2018. https://doi.org/10.1016/j.jksuci.2016.
10.003.

[180] E. S. Raymond, 2004. “The art of unix usability ”. Online: http://www.catb.org/~esr/writings/
taouu/html/. Accessed on Januari 2020.

[181] A. Rieger, R. Cissée, S. Feuerstack, J. Wohltorf, and S. Albayrak, May 2005. “An Agent-
Based Architecture for Ubiquitous Multimodal User Interfaces”. Proceedings of AMT 2005, 3rd
International Conference on Active Media Technology, pages 119–124, Kagawa, Japan. IEEE.
https://doi.org/10.1109/AMT.2005.1505284.

[182] A. K. Rithu Thomas, Preetha Devan, 2018. “The Internet of Things: A Technical Primer ”. Online.
[183] T. Rodden, A. Crabtree, T. Hemmings, B. Koleva, J. Humble, K. Åkesson, and P. Hansson, May

2004. “Configuring the Ubiquitous Home”. Proceedings of COOP 2004, 6th International Conference
on the Design of Cooperative Systems, pages 227–242, Hyères Les Palmiers, France. ISBN 1-58603-
422-7.

[184] R. Roels, 2019. MindXpres: Conceptual and Technical Foundations for Next Generation Presenta-
tion Solutions. Ph.D. thesis, Vrije Universiteit Brussel.

[185] R. Roels and B. Signer, 2019. “A Conceptual Framework and Content Model for Next Gen-
eration Presentation Solutions”. Proceedings of the ACM on Human-Computer Interaction,
3(EICS):7:1–7:22, 2019. https://doi.org/10.1145/3331149.

[186] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt, 2002.
“Gaia: A Middleware Platform for Active Spaces”. Mobile Computing and Communications Review,
6(4):65–67, 2002. https://doi.org/10.1145/643550.643558.

[187] D. Roscher, M. Blumendorf, and S. Albayrak, February 2009. “A Meta User Interface to Con-
trol Multimodal Interaction in Smart Environments”. Proceedings of IUI 2009, 14th Interna-
tional Conference on Intelligent User Interfaces, pages 481–482, Sanibel Island, Florida, USA.
https://doi.org/10.1145/1502650.1502725.

[188] D. Roscher, G. Lehmann, V. Schwartze, M. Blumendorf, and S. Albayrak, 2011. “Dynamic Distri-
bution and Layouting of Model-based User Interfaces in Smart Environments”. Model-Driven De-
velopment of Advanced User Interfaces, pages 171–197. Springer. https://doi.org/10.1007/978-3-
642-14562-9_9.

[189] M. B. Rosson and J. M. Carroll, 2003. “The Human-Computer Interaction Handbook”. chapter
Scenario-based Design, pages 1032–1050. Hillsdale, New Jersey, USA. Lawrence Erlbaum Associates
Inc. ISBN 0-8058-3838-4.

[190] L. D. Russis and F. Corno, April 2015. “HomeRules: A Tangible End-User Programming Interface for
Smart Homes”. Proceedings of CHI 2015, 33rd Annual Conference Extended Abstracts on Human
Factors in Computing Systems, pages 2109–2114, Seoul, Republic of Korea. https://doi.org/10.
1145/2702613.2732795.

[191] M. Salehie and L. Tahvildari, 2009. “Self-Adaptive Software: Landscape and Research Challenges”.
Transactions on Autonomous and Adaptive Systems, 4(2):14:1–14:42, 2009. https://doi.org/10.
1145/1516533.1516538.

[192] A. Sanctorum and B. Signer, May 2019. “A Unifying Reference Framework and Model for
Adaptive Distributed Hybrid User Interfaces”. Proceedings of RCIS 2019, International Con-
ference on Research Challenges in Information Science, pages 1–6, Brussels, Belgium. https:
//doi.org/10.1109/RCIS.2019.8877048.

[193] A. Sanctorum and B. Signer, 2019. “Towards End-User Development of Distributed User Inter-
faces”. Universal Access in the Information Society, 18(4):785–799, 2019. https://doi.org/10.
1007/s10209-017-0601-5.

245

https://doi.org/10.1145/2669485.2669500
https://doi.org/10.1016/j.jksuci.2016.10.003
https://doi.org/10.1016/j.jksuci.2016.10.003
http://www.catb.org/~esr/writings/taouu/html/
http://www.catb.org/~esr/writings/taouu/html/
https://doi.org/10.1109/AMT.2005.1505284
https://doi.org/10.1145/3331149
https://doi.org/10.1145/643550.643558
https://doi.org/10.1145/1502650.1502725
https://doi.org/10.1007/978-3-642-14562-9_9
https://doi.org/10.1007/978-3-642-14562-9_9
https://doi.org/10.1145/2702613.2732795
https://doi.org/10.1145/2702613.2732795
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1109/RCIS.2019.8877048
https://doi.org/10.1109/RCIS.2019.8877048
https://doi.org/10.1007/s10209-017-0601-5
https://doi.org/10.1007/s10209-017-0601-5

References

[194] S. Santosa and D. Wigdor, September 2013. “A Field Study of Multi-device Workflows in Distributed
Workspaces”. Proceedings of UbiComp 2013, International Joint Conference on Pervasive and Ubiq-
uitous Computing, pages 63–72, Zurich, Switzerland. https://doi.org/10.1145/2493432.2493476.

[195] J. Sauro and J. R. Lewis, 2016. Quantifying the User Experience: Practical Statistics for User
Research. Morgan Kaufmann, 2016. ISBN 978-0-12-802308-2.

[196] J. Schell, 2008. The Art of Game Design: A Book of Lenses. San Francisco, California, USA.
Morgan Kaufmann Publishers Inc., 2008. ISBN 978-0-12-369496-6.

[197] V. Schwartze, S. Feuerstack, and S. Albayrak, July 2009. “Behavior-Sensitive User Interfaces for
Smart Environments”. Proceedings of ICDHM, Second International Conference on Digital Human
Modeling, pages 305–314, San Diego, California, USA. https://doi.org/10.1007/978-3-642-02809-
0_33.

[198] C. Shen, K. Everitt, and K. Ryall, October 2003. “UbiTable: Impromptu Face-to-Face Collaboration
on Horizontal Interactive Surfaces”. Proceedings of UbiComp 2003, 5th International Conference on
Ubiquitous Computing, pages 281–288, Seattle, Washington, USA. https://doi.org/10.1007/978-
3-540-39653-6_22.

[199] B. Shneiderman, September 1996. “The Eyes Have It: A Task by Data Type Taxonomy for Infor-
mation Visualizations”. Proceedings of VL 1996, Symposium on Visual Languages, pages 336–343,
Boulder, Colorado, USA. https://doi.org/10.1109/VL.1996.545307.

[200] N. C. Shu, 1989. “Visual Programming: Perspectives and Approaches”. IBM Systems Journal,
28(4):525–547, 1989.

[201] B. Signer, 2006. Fundamental Concepts for Interactive Paper and Cross-Media Information Spaces.
Ph.D. thesis, ETH Zurich.

[202] B. Signer, 2017. Fundamental Concepts for Interactive Paper and Cross-Media Information Spaces.
Books on Demand, 2017. ISBN 978-3837027136.

[203] B. Signer and M. C. Norrie, November 2007. “As We May Link: A General Metamodel for Hyper-
media Systems”. Proceedings of ER 2007, 26th International Conference on Conceptual Modeling,
pages 359–374, Auckland, New Zealand. https://doi.org/10.1007/978-3-540-75563-0_25.

[204] B. Signer and M. C. Norrie, October 2008. “A Framework for Developing Pervasive Cross-Media
Applications based on Physical Hypermedia and Active Components”. Proceedings of ICPCA 2008,
3rd International Conference on Pervasive Computing and Applications, pages 564–569, Alexandria,
Egypt. https://doi.org/10.1109/ICPCA.2008.4783676.

[205] B. Signer and M. C. Norrie, July 2009. “Active Components as a Method for Coupling Data
and Services: A Database-driven Application Development Process”. Proceedings of ICOODB
2009, Second International Conference on Object Databases, pages 59–76, Zurich, Switzerland.
https://doi.org/10.1007/978-3-642-14681-7_4.

[206] F. M. Simarro and V. López-Jaquero, June 2006. “IdealXml: An Interaction Design Tool”. Proceed-
ings of CADUI 2006, Conference on Computer-Aided Design Of User Interfaces, pages 245–252,
Bucharest, Romania.

[207] L. D. Spano, F. Paternò, and G. Fenu, June 2014. “A Gestural Concrete User Interface in MARIA”.
Proceedings of EICS 2014, Symposium on Engineering Interactive Computing Systems, pages
179–184, Rome, Italy. https://doi.org/10.1145/2607023.2610282.

[208] P. Szekely, June 1996. “Retrospective and Challenges for Model-based Interface Development”.
Proc. of DSV-IS 1996.

[209] P. A. Szekely, P. Luo, and R. Neches, April 1993. “Beyond Interface Builders: Model-based Interface
Tools”. Proceedings of INTERCHI 1993, Conference on Human-Factors in Computing Systems,
pages 383–390, Amsterdam, The Netherlands.

[210] P. A. Szekely, P. N. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher, August 1995.
“Declarative Interface Models for User Interface Construction Tools: The MASTERMIND Ap-
proach”. Proceedings of the EHCI 1995, Conference on Engineering for Human-Computer Interac-
tion, pages 120–150, Yellowstone Park, USA.

246

https://doi.org/10.1145/2493432.2493476
https://doi.org/10.1007/978-3-642-02809-0_33
https://doi.org/10.1007/978-3-642-02809-0_33
https://doi.org/10.1007/978-3-540-39653-6_22
https://doi.org/10.1007/978-3-540-39653-6_22
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1007/978-3-540-75563-0_25
https://doi.org/10.1109/ICPCA.2008.4783676
https://doi.org/10.1007/978-3-642-14681-7_4
https://doi.org/10.1145/2607023.2610282

References

[211] R. Tesoriero and A. H. Altalhi, 2019. “Model-based Development of Distributable User Inter-
faces”. Universal Access in the Information Society, 18(4):719–746, 2019. https://doi.org/10.
1007/s10209-017-0600-6.

[212] S. Trullemans, L. V. Holsbeeke, and B. Signer, 2017. “The Context Modelling Toolkit: A Uni-
fied Multi-layered Context Modelling Approach”. Proceedings of the ACM on Human-Computer
Interaction, 1(EICS):8:1–8:16, 2017. https://doi.org/10.1145/3095810.

[213] B. Ur, E. McManus, M. P. Y. Ho, and M. L. Littman, April - May 2014. “Practical Trigger-
Action Programming in the Smart Home”. Proceedings of CHI 2014, Conference on Human Fac-
tors in Computing Systems, pages 803–812, Toronto, Ontario, Canada. https://doi.org/10.1145/
2556288.2557420.

[214] J. Vanderdonckt, June 2005. “A MDA-Compliant Environment for Developing User Interfaces of
Information Systems”. Proccedings of CAiSE 2005, Conference on Advanced Information Systems
Engineering, pages 16–31, Porto, Portugal. https://doi.org/10.1007/11431855_2.

[215] J. Vanderdonckt, September 2008. “Model-Driven Engineering of User Interfaces: Promises, Suc-
cesses, Failures, and Challenges”. Proceedings of ROCHI 2008, 5th Romanian Conference on
Human-Computer Interaction, Iasi, Romania.

[216] J. Vanderdonckt and A. Coyette, October 2006. “Vers un Prototypage Des Interfaces Graphiques
Incluant Vraiment l’Utilisateur Final”. Proceedings of ERGO-IA 2006, 10ième Colloque Int. sur
l’Ergonomie et l’Informatique Avancée, Biarritz, France.

[217] C. Vandervelpen and K. Coninx, October 2004. “Towards Model-based Design Support for
Distributed User Interfaces”. Proceedings of NordiCHI 2004, Third Nordic Conference on
Human-Computer Interaction, pages 61–70, Tampere, Finland. https://doi.org/10.1145/1028014.
1028023.

[218] C. Vandervelpen, G. Vanderhulst, K. Luyten, and K. Coninx, July 2005. “Light-Weight Distributed
Web Interfaces: Preparing the Web for Heterogeneous Environments”. Proceedings of ICWE 2005,
5th International Conference on Web Engineering, pages 197–202, Sydney, Australia. https://doi.
org/10.1007/11531371_28.

[219] A. Vogelsang and B. Signer, December 2005. “The Lost Cosmonaut: An Interactive Narrative
Environment on Basis of Digitally Enhanced Paper ”. Proceedings of VS 2005, 3rd International
Conference on Virtual Storytelling, pages 270–279, Strasbourg, France. https://doi.org/10.1007/
11590361_31.

[220] F. Weingarten, M. Blumendorf, and S. Albayrak, August 2010. “Towards Multimodal Interaction
in Smart Home Environments: The Home Operating System”. Proceedings of DIS 2010, 8th
Conference on Designing Interactive Systems, pages 430–433, Aarhus, Denmark. https://doi.org/
10.1145/1858171.1858255.

[221] C. Wiecha, W. Bennett, S. Boies, J. Gould, and S. Greene, July 1990. “ITS: A Tool for Rapidly
Developing Interactive Applications”. ACM Transactions on Information Systems, 8(3):204–236,
July 1990. ISSN 1046-8188. https://doi.org/10.1145/98188.98194.

[222] P. Wisner and D. N. Kalofonos, January 2007. “A Framework for End-User Programming of
Smart Homes Using Mobile Devices”. Proceedings of CCNC 2007, 4th Conference on Con-
sumer Communications and Networking, pages 716–721, Las Vegas, Nevada, USA. IEEE. https:
//doi.org/10.1109/CCNC.2007.146.

[223] E. Yigitbas, S. Sauer, and G. Engels, June 2017. “Adapt-UI: An IDE Supporting Model-Driven De-
velopment of Self-Adaptive UIs”. Proceedings of EICS 2017, Symposium on Engineering Interactive
Computing Systems, pages 99–104, Lisbon, Portugal. https://doi.org/10.1145/3102113.3102144.

[224] E. Yigitbas, H. Stahl, S. Sauer, and G. Engels, July 2017. “Self-adaptive UIs: Integrated Model-
Driven Development of UIs and Their Adaptations”. Proceedings of ECMFA 2017, 13th European
Conference on Modelling Foundations and Applications, pages 126–141, Marburg, Germany. https:
//doi.org/10.1007/978-3-319-61482-3_8.

247

https://doi.org/10.1007/s10209-017-0600-6
https://doi.org/10.1007/s10209-017-0600-6
https://doi.org/10.1145/3095810
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1007/11431855_2
https://doi.org/10.1145/1028014.1028023
https://doi.org/10.1145/1028014.1028023
https://doi.org/10.1007/11531371_28
https://doi.org/10.1007/11531371_28
https://doi.org/10.1007/11590361_31
https://doi.org/10.1007/11590361_31
https://doi.org/10.1145/1858171.1858255
https://doi.org/10.1145/1858171.1858255
https://doi.org/10.1145/98188.98194
https://doi.org/10.1109/CCNC.2007.146
https://doi.org/10.1109/CCNC.2007.146
https://doi.org/10.1145/3102113.3102144
https://doi.org/10.1007/978-3-319-61482-3_8
https://doi.org/10.1007/978-3-319-61482-3_8

References

248

Index

ACCORD, 38
Adapt-UI, 72
AppsGate, 49
Atooma, 41
a CAPpella, 44

batch interface, 26
Beernet, 75

CAMELEON reference framework, 68
abstract user interface, 66
concrete user interface, 66
final user interface, 66
task and domain model, 66

CAMELEON-RT, 73
cats application, 58
Cedar Studio, 69
CMT, 48
command-line user interface, 26
concurrent usage, 9
ConcurTaskTree, 69
context awareness, 84
context-aware, 42
cross-device computing, 31
cross-device interaction, 11, 31
CTTE, 69

DashMash, 35
Design Science Research

Methodology, 16

desktop metaphor, 28
DireWolf, 36
DireWolf 3.0.0, 49
distributable user interface, 76
distributed MARIA language, 74
distributed user interfaces, 11
Dygimes, 73

ebbits platform, 79
EFESTO design prototypes, 45

E-Free, 46
E-Wired, 46
E-Wizard, 46

Emergent Configuration, 81
end-user development, 13
EPIDOSITE, 44
eSPACE applications

grocery list application, 182
morning routine application, 183
simple controller application, 179

eSPACE authoring tool, 148
app view, 156, 163
architecture, 156
home view, 148
interaction view, 151, 160
rules view, 154, 162
UI design view, 150, 159

eSPACE conceptual model, 90
Application, 97

249

Index

Context, 97
DComp, 97
Device, 97
Final User Interface, 97
Layout, 97
Owner Link, 98
Parameter, 97
Parameter Link, 98
Physical Object, 97
Property Set, 97
Service, 97
Signal Link, 98
UI Element, 97

eSPACE reference framework, 85
distributed components layer, 88
final user interfaces layer, 89
tasks layer, 86
user interface elements layer, 87

extensibility, 54

FlashiXML, 71
FlowiXML, 74
FRASAD, 80
FUSE, 67

GrafiXML, 71
granularity UI distribution, 84
graphical user interface, 27
grocery list application, 59
GUMMY, 71

HomeRules, 47
human-computer interaction, 27
HUMANOID, 66

iCAP, 42
IdealXML, 71
IFML, 72
IFTTT, 41
ImAtHome, 41
Improv, 37
interface tailoring, 67

Internet of Things, 11, 39
InterPlay, 37
IoT ARM, 76
IoT-MAP, 44
ISO product quality model, 212
ITS, 66

JANUS, 66
JayTk, 75
Jelly, 36
jigsaw puzzle metaphor, 38
join-the-dots metaphor, 39

Keep Doing It, 44

leaving home application, 58
legacy bias, 33

MARIA language, 35, 70
MashupEditor, 34
MASP, 71, 75
MASTERMIND, 66
MDE4IoT, 81
meSchup, 43
Microsoft Reaction Cards, 188
model-based research

adaptable user interface, 68
adaptive user interface, 68
cross-device user interfaces, 73
Internet of Things, 76

model-based user interface
development, 66

MoDIE, 74
morning routine application, 58
multi-platform support, 67
multimodal interfaces, 67
mxGraph JavaScript library, 159

natural user interface, 30
Node-Red, 44

PalCom middleware framework, 82

250

Index

physical user interface, 29
pipeline metaphor, 45
plasticity, 68
Platform Composition, 39
platform independence, 63
portability, 63
post-study system usability

questionnaire, 190
Puzzle, 49

RelaxNG, 73
reusability, 63
RSL hypermedia metamodel, 90

active component, 86
Context Resolvers, 92
Link, 91
Navigational Link, 92
Resource, 91
Selector, 91
Structural Link, 91
User, 92

RSL link Server, 163
RSL link server, 106
rules metaphor, 37

self-* properties, 72
sequential usage, 9
shareability, 62
signal and slot architecture, 167
simultaneous usage, 10
SketchiXML, 71

SmartComposition, 36
SmartFit Rule Editor, 42
Software Shaping Workshop, 42
Special Interest Group on

Computer-Human
Interaction, 27

SysML2NuSMV, 77
SysML4IoT, 77

T4Tags 2.0, 47
TARE, 42
task-centred interfaces, 67
ThingML, 78
timeline metaphor, 44
TouchCompozr, 44

user interface, 26
UsiComp, 70
Usidistrib, 75
UsiXML, 70

Versatile, 45
VisiXML, 71

Web of Things, 40
Web of Topics, 79
WebSplitter, 34
WSO2, 79

XDBrowser 2.0, 36

Zipato Rule Creator, 49

251

Index

252

	Introduction
	Research Questions
	Research Approach and Methodology
	Contributions
	Publications
	Thesis Outline

	Background
	History of User Interfaces and Their Users
	End-User Development
	Cross-Device Interaction
	Authoring of Cross-Device Applications
	Internet of Things
	Authoring of Internet of Things Applications
	Discussion and Limitations
	Resulting Requirements

	Use Case
	Scenario
	Derived Requirements

	Reference Framework and Conceptual Model
	Related Work
	The eSPACE Reference Framework
	The eSPACE Conceptual Model
	The RSL Metamodel
	RSL Extensions
	Domain-specific Conceptual Model

	Model Functionality and Discussion
	Implementation

	User Study
	Research Questions
	Setup
	Methodology
	Results
	Data Transfer and Synchronisation
	Expressing State Changes
	Time-based Actions
	Multiple Instances of the Same Data
	Conditional Statements
	Location
	Presence of Actors
	Actor's Interactions
	Representation of Devices
	Use of Symbols and Keywords
	Informative Interview
	Concluding Remarks

	Design Guidelines
	G1: Use Pipeline Metaphor to Represent Interactions
	G2: Use Different Arrow Types for Different Interaction Types
	G3: Provide a Realistic Graphical Device Representation
	G4: Provide a Graphical Representation of Users
	G5: Represent Sequential Interactions from Left to Right and Group Concurrent Interactions
	G6: Provide Textual as well as Graphical Representations for Conditional Statements
	G7: Support UI Design
	G8: Use of Symbols and Annotations

	Checking Related Work Against Guidelines
	Authoring of Cross-Device Applications
	Authoring of Internet of Things Applications
	Concluding Analysis

	Cross-device and IoT Knowledge Analysis

	End-User Authoring Tool
	eSPACE Authoring Tool
	Home View
	UI Design View
	Interaction View
	Rules View
	App View

	Architecture
	Implementation
	eSPACE Authoring Views
	RSL Link Server
	eSPACE User-defined Application

	Design Discussion
	Discussion of the Functionality
	Limitations

	Use Case Demonstration

	Evaluation
	Setup
	Participants
	Protocol
	Results
	Microsoft Reaction Cards
	Questionnaire
	Observations and Discussion

	Summary
	Design Implications and Future Work

	Conclusions and Future Work
	Summary
	Discussion and Limitations
	Conclusion
	Future Work

	Appendix Elicitation Study
	Scenario
	Post-Survey Questionnaire

	Appendix Evalutation of eSPACE
	Tutorial Document
	Post-Survey Questionnaires
	Microsoft Reaction Cards
	Post-Study System Usability Questionnaire
	Informative Questionnaire

