A Graphical UIDL Editor for Multimodal Interaction Design
Based on SMUIML

Bruno Dumas
WISE Lab
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels, Belgium
bdumas @vub.ac.be

ABSTRACT

We present the results of an investigation on software sup-
port for the SMUIML multimodal user interaction descrip-
tion language. In particular, we introduce a graphical UIDL
editor for the creation of SMUIML scripts. The presented
graphical editor is fully based on SMUIML for the represen-
tation of the underlying data as well as for the dialogue mod-
elling. Due to the event-centered nature of SMUIML, the
representation of the multimodal dialogue modelling in the
graphical SMUIML dialogue editor has been realised via a
state machine. The editor further offers a real-time graphical
debugging tool. Compared to existing multimodal dialogue
editors, the SMUIML graphical editor offers a dual graphi-
cal and textual editing as well as a number of operators for
the temporal combination of modalities.

Author Keywords
Multimodal Interaction, UIDL, Graphical Editor, SMUIML,
HephaisTK

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: Graphical
User Interfaces (GUI), Prototyping, Theory and Methods

INTRODUCTION

Multimodal interfaces aim to improve the communication
between humans and machines by making use of concur-
rent communication channels or modalities. They have been
shown to increase comfort and offer better expressivity to
users. Nevertheless, multimodal interfaces are difficult to
realise due to a number of reasons. First, multimodal in-
terfaces are typically composed of a number of state of the
art recognition technologies, such as speech recognition or
pattern matching-based gesture recognition. Typically, de-
velopers have to master a number of these state of the art
recognisers for different modalities in order to create ad-
vanced multimodal interfaces. Second, a combination of

Beat Signer
WISE Lab
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels, Belgium
bsigner@vub.ac.be

Denis Lalanne
DIVA Group
Université de Fribourg
Boulevard de Pérolles 90
1700 Fribourg, Switzerland
denis.lalanne @unifr.ch

input for the same modality can lead to ambiguous inter-
pretations based on factors such as the ordering of input
events, the delay between events, the context of use or spe-
cific user profiles. Fusion algorithms that take adaptation
into account are therefore required. Last but not least, mul-
timodal human-machine dialogue modelling is desirable in
order to facilitate the development of complex multimodal
interfaces.

The challenges introduced by multimodal interaction design
can potentially be addressed by using a modelling language
in combination with a multimodal framework and develop-
ment environment. A multimodal user interface descrip-
tion language (UIDL) forms the key element of such an ap-
proach. The UIDL is used to define the behaviour of the mul-
timodal framework, to perform the dialogue modelling and
as the underlying format for the GUI development environ-
ment. A multimodal user interface description language is
typically situated at the Abstract User Interface (AUI) layer.
Furthermore, software support for the UIDL is provided for
the definition, modelling or interpretation of user interface
descriptions.

We present our explorations of such a language-based ap-
proach in the context of the Synchronized Multimodal User
Interfaces Modelling Language (SMUIML) and the corre-
sponding software support. In particular, we present a graph-
ical UIDL editor for SMUIML and discuss its support for
designing multimodal interactions. The graphical editor of-
fers an alternative to the purely text-based editing of scripts
in our XML-based language, which is often tedious and can
easily lead to errors. This graphical editor furthermore fo-
cuses on how to express complex temporal relations between
input modalities. We start by discussing related work in the
context of modelling languages as well as graphical editors
for multimodal interaction design. We then introduce the
SMUIML language and some results from our research on
the language design for modelling multimodal interaction.
This is followed by a description of the different support-
ive software components for the SMUIML language with
a particular focus on the graphical UIDL editor. After an
overview of the planned future work, we provide some con-
clusions.

RELATED WORK

Over the last decade, there have been a number of formal
language approaches for the creation of multimodal inter-
faces. Some of these approaches are positioned in the con-
text of a multimodal web, propagated by the World Wide
Web Consortium’s (W3C) Multimodal Interaction Activity
and its proposed multimodal architecture!. This theoretical
framework describes the major components involved in mul-
timodal interaction, as well as potential or existing markup
languages to be used to relate these components. Many ele-
ments described in this framework, such as the W3C EMMA
markup language? or modality-focused languages including
VoiceXML?, EmotionML and InkML?, are of practical in-
terest for multimodal HCI practitioners. The W3C frame-
work inspired Katsurada et al. [9] for their work on the XISL
XML language. XISL focuses on the synchronisation of
multimodal input and output, as well as dialogue flow and
transition. Araki et al. [1] propose the Multimodal Interac-
tion Markup Language (MIML) for the definition of mul-
timodal interactions. A key characteristic of MIML is its
three-layered description of interaction, focusing on interac-
tion, tasks and platform. Ladry et al. [11] use the Interactive
Cooperative Objects (ICO) notation for the description of
multimodal interaction. This approach is closely bound to a
visual tool enabling the editing and simulation of interactive
systems, while being able to monitor system operations at
a low level. Stanciulescu et al. [17] followed a transforma-
tional approach for the development of multimodal web user
interfaces based on UsiXML. Four steps are necessary to get
from a generic model to the final user interface. One of the
main features of their work is a strong independence from
the available input and output channels. A transformational
approach is also used in Teresa XML by Paterno et al. [13].
DISL [14] was created as a language for specifying a di-
alogue model which separates multimodal interaction and
presentation components from the control model. Finally, at
a higher level of modelling, NIMMIiT [2] is a graphical nota-
tion associated with a language used to express and evaluate
multimodal user interaction. An analysis of multimodal in-
teraction modelling languages can also be found in [16].

Graphical editors for the definition of multimodal dialogues
can broadly be separated into two families. These two fami-
lies differ in the way how a dialogue is represented, which is
often driven by the underlying architecture. On the one hand,
stream-based architectures favour a direct representation of
data streams, with building blocks consisting of processing
algorithms that are applied to the streams in a sequential
manner. In the past few years, there has been a trend for
graphical editors for stream-based multimodal architectures.
Petshop for ICO [11], Squidy [10] or Skemmi [12] for Open-
Interface are examples of these types of graphical editors for
stream-based architectures. On the other hand, event-driven
architectures result in a state machine-based representation
of the multimodal human-machine dialogue. In this cate-
gory, fewer examples exist for the representation of multi-

"http://www.w3.org/TR/mmi-arch/
Zhttp://www.w3.org/TR/emma/
3http://www.w3.0org/TR/voicexml20/
*http://www.w3.org/TR/InkML/

modal interaction, the most prominent one being IMBuilder
from Bourguet [4]. Note that the graphical editors intro-
duced in this section have all been built from scratch and
they are not based on a previously defined formal language,
with Petshop for ICO forming the only exception.

THE SMUIML LANGUAGE

SMUIML stands for Synchronized Multimodal User Interac-
tion Modelling Language. As the name implies, SMUIML
aims to offer developers a language to describe multimodal
interaction and define the used modalities in an easy-to-read
and expressive way. The language can further be used to
describe the recognisers associated with a given modality,
the human-machine dialogue modelling, the various events
associated with these dialogues and the way these different
events can be temporally synchronised>. SMUIML was de-
signed to be as simple as possible and is targeting usability.
In order to minimise the verbosity of SMUIML, we decided
not to rely on existing standard multimodal interaction lan-
guages.

N
Human
transition dialogue
A level
%
X
Triggers Actions
(trigger 1) (action 1) el\é\e;g
PAR_AND (action 2)
(trigger 2)
client ap-
icati input/output
level Machine
Y

Figure 1. The three levels of SMUIML

The SMUIML language is divided into the three abstrac-
tion layers shown in Figure 1. The lowest level details the
different modalities which are then used in the context of
an application, as well as the particular recognisers to be
used to access the different modalities. The middle level
addresses input and output events. Input events are called
triggers and output events actions. Triggers are defined per
modality which means that they are not directly bound to
specific recognisers and they can express different ways to
trigger a particular event. For example, a speech trigger can
be defined in such a way that the words “clear”, “erase”
and “delete” will all lead to the same event. Actions are
the messages that the framework sends to the client applica-
tion. The top level of abstraction describes the actual human-
machine dialogue by means of defining the contexts of use
and interweaving the different input events and output mes-
sages between those contexts. The resulting human-machine

>An XML Schema as well as some SMUIML examples can be
found at: http://sourceforge.net/projects/hephaistk/

Expressiveness

Usability

[Wachine | <

Configuration Modelling

> [Fuman]

Learning Communication

Figure 2. Four modelling language purposes (from machine-oriented to human-oriented) with respect to expressiveness and usability.

dialogue description is a series of “contexts of use”, with
transitions between these different contexts. Therefore, the
description of the multimodal human-machine dialogue in
SMUIML has an implicit representation as a state machine,
similar to Bourguet’s IMBuilder [4]. The combination of
modalities is defined based on the CARE properties [6] as
well as on the (non-)sequentiality of input triggers. As shown
in Listing 1, the three abstraction levels are directly reflected
in the basic structure of the language.

The spectrum of multimodal dialogue description language
users, on a scale from usability to expressiveness, was pre-
sented in [8]. Through various workshops, informal discus-
sions with colleagues and students and a study of the current
state of the art, we envisioned three types of approaches for
a description language: a highly formal language approach
that perfectly fits for configuring a tool, a less formal lan-
guage approach which is good for communicating the details
of an application and a “middle” approach focussing on the
modelling. Along these three approaches, a formal language
can also be used as a learning tool (see Figure 2) helping
teachers in communicating the features of a particular appli-
cation domain to their students.

In [8] we presented 9 guidelines for a multimodal description
language. These guidelines should be used as design tools

or as language analysis criteria:

e Abstraction levels

Modelling the human-machine dialogue

Adaptability to context and user (input and output)

Control over fusion mechanism

Control over time synchronicity

Error handling

e Event management

Input and output sources representation

Finding the right balance between usability and expres-
siveness

SOFTWARE SUPPORT FOR SMUIML

SMUIML enables the definition of a full model of multi-
modal human-machine events and dialogues by providing
modelling capabilities as well as a reflection basis. How-
ever, the language shows its true potential when linked to
a range of different supportive software solutions. In the
following, we briefly introduce the software support within
SMUIML for interpretation and then discuss the latest soft-
ware addition in the form of a graphical editor for designing
multimodal human-machine dialogues.

The HephaisTK Framework

The HephaisTK framework which supports the creation of
multimodal interfaces based on the SMUIML scripting lan-
guage has been developed in our research lab. A descrip-
tion created in SMUIML, with the structure shown in List-
ing 1, is used to configure the HephaisTK framework. The
<recognizers> part indicates which recognisers have to
be loaded by the framework. It further provides some high-
level parameters such as whether a speech recogniser is able
to recognise different languages. The <t riggers> are di-
rectly bound to the different fusion algorithms provided by
HephaisTK. The <actions> part defines the semantics to
be used when communicating fusion results to a client appli-
cation. Last but not least, the SMUIML <dialog> part is
used for a number of specific goals in HephaisTK.

Listing 1. Basic layout of a SMUIML script
<?xml version="1.0" encoding="UTF—8"7>
<smuiml>

<integration_desc client=""client_app”>
<recognizers>
e >
</recognizers>
<triggers>
<l—— ..
<[triggers>
<actions>
<l—— ..
</actions>
<dialog>
<l—— ..
</dialog>
</integration_desc>
<smuiml>

——>
——>

——>

First and foremost, by providing a description of the human-
machine dialogue flow, the HephaisTK DialogManager
agent stays in a consistent state with the client application.
The clear separation of the SMUIML <dialog> into tran-
sitions and contexts allows the different triggers to be en-
abled or disabled depending of the current context. Since
only a subset of triggers has to considered in a given context,
the load on the recognisers is reduced and the overall recog-
nition rate is improved. The <dialog> part of SMUIML
also helps with the instantiation of the different fusion al-
gorithms present in HephaisTK. In the case of the Hidden
Markov Model-based fusion algorithm that is integrated in
HephaisTK, the definition of the human-machine dialogue
in SMUIML is also used to generate a set of all expected
trigger input sequences. This set of expected sequences is
then injected into a series of Hidden Markov Models (one
per context of use) in order to have the fusion engine ready
to be used when launching the HephaisTK framework.

The SMUIML language is applied at multiple levels in the
context of the HephaisTK framework: at the multimodal

8Nno

Java HephaisTK - tutorial/musicPlayer.smuiml - Eclipse Platform

=

[t A~
s LN G %'

& putThatThere.smuiml

=g & ‘_ v - ow

L+ musicPlayer.smuiml 52

Y |

B - _
k play_trigger k pause_trigger
rfid_play rfid_pause

W play_action [¥—___ | "%y pause_action

[3 1000

k previous_trigger

"y previous_action

[A 1000

k next_trigger

"y next_action

[A 10000

ﬂ trigger_album

"Wy select_alburmn

[A 000

Y} [Java Hephais... >

= F

. Palette >

h Select

| Transition

‘ State

= Operators 40

[Jseqand

Dialeg | Smuiml

Lk

[Fron0 L\ L~

_.-" D Seq or
(|:| Par and
| C) Par or

ﬂ stop_trigger
k stop_rfid
"Wy stop_action

[{ 1500

= Triggers 40
New Trigger
play_trigger

pause_trigger
previous_trigger

. next_trigger
rfid_play
rfid_pause
rfid_next

PS5 rfid psevious
= Actions 40

iy New Action

iy play_action

iy pause_action
iy previous_action
iy next_action

iy select_album

iy stop_action

Figure 3. The SMUIML graphical editor with an example dialogue defining the behaviour of a music player application.

dialogue description level, at the recogniser launch and pa-
rameterisation level as well as at the fusion engine instantia-
tion level. SMUIML is typically used during the later stages
of multimodal interface development, including the system
design and runtime stages. Note that it is out of the scope
of this paper to provide a full description of HephaisTK but
further details can be found in [7].

The SMUIML Graphical Editor

The SMUIML language is derived from the XML metalan-
guage and a standard text editor is sufficient for creating
SMUIML documents. Even if the language has been proven
to be expressive in a qualitative study [8], the editing of
“raw” XML documents can easily lead to errors that are only
identified when interpreting a SMUIML script at runtime.
Other issues with the text-based editing of SMUIML scripts
include the lack of an explicit representation of the relation-
ships between different elements as well as the difficulty to
produce and maintain an accurate mental model of complex
dialogue scenarios. Furthermore, the necessity of having to
learn a new language may represent a major challenge for
some users. In order to overcome these shortcomings, we

have developed a graphical editor for the definition of new
SMUIML scripts.

The goal of our SMUIML graphical editor was to provide
developers, who are not fully proficient with multimodal in-
terfaces, a usable and expressive tool for creating SMUIML
scripts. The dialogue editor offers a graphical representa-
tion of SMUIML-encoded multimodal human-machine dia-
logues. Furthermore, it supports the creation of sets of ac-
tions and triggers and can be used to generate a Java con-
figuration with all the calls related to the SMUIML script.
The graphical representation of a multimodal dialogue fol-
lows the SMUIML logic presented in the previous section.
The SMUIML graphical editor has been created based on the
Eclipse® open development platform. Eclipse is widely used
among development teams and provides a set of well-known
interface elements. The SMUIML graphical tool itself was
developed using the Graphical Editing Framework (GEF)’
and the Eclipse Modeling Framework (EMF)3.

®http://www.eclipse.org
"http://www.eclipse.org/gef/
8http://www.eclipse.org/modeling/emf/

The main window of the graphical editor is shown in Fig-
ure 3. The central part of the tool is dedicated to the ac-
tual dialogue representation. As stated earlier, the multi-
modal human-machine dialogue in SMUIML is represented
via a state machine. A graphical representation of this state
machine is used to depict the multimodal dialogue in the
graphical editor. Note that the editor also provides access
to a textual version of the SMUIML script that is currently
edited. Any changes that are done either in the graphical
or the textual representation are immediately reflected in the
other representation. For both, the graphical and textual rep-
resentation, there exists real-time error checking.

On the right-hand side of the window are a set of toolboxes
and most of them are related to the different parts of a typ-
ical SMUIML file. The Palette toolbox presents the ba-
sic building blocks for creating the dialogue state machine,
in particular states and transitions. The selection tool also
forms part of the Palette toolbox. The Operators tool-
box offers some operators to combine different modalities as
defined in the SMUIML specification. These operators are
tightly linked to the CARE properties [6]. Seq and corre-
sponds to sequential-constrained complementarity, Par and
to sequential-unconstrained complementarity, the Seq or
operator to equivalence and Par or to redundancy. The
next toolbox is devoted to input triggers and contains a list of
all triggers defined for a given application, as well as a New
trigger button to create new triggers. Last but not least,
the Act ions toolbox lists all actions that have been defined
for a given application and also provides a New action
button. Triggers and actions are added to these toolboxes
when they are defined as part of a multimodal dialogue.

_k put_trigger _

?\ that_trigger
object_pointed_event

k there_trigger
cbject_pointed_event

% put_that_there_action

[{ 1500

Figure 4. Graphical description of “put that there”

Figure 4 shows the graphical representation of Bolt’s “put
that there” example [3] in the graphical editor with states
(contexts) visualised as blue ellipses. The corresponding
textual SMUIML specification is shown in Listing 2. Based
on the actions taken by users, HephaisTK might stay in the
same context or switch to another context of use. In the “put
that there” example, there is only as single start context
with a transition starting and pointing to it. This transition
contains the overall description of the “put that there” action.
It asks for five different input triggers in order that the action
will be fired. Namely, three speech triggers (“put”, “that”
and “there”) as well as two pointing event triggers. Further-
more, three temporal combination operators are used in this

example. The main transition uses a Seq and operator ask-
ing for a “put” speech trigger to be followed by a “that” and
“there” sub-event. The two sub-events use a Par and com-
bination operator, meaning that there should be speech and
pointing triggers but without any sequential constraint. This
implies that a user can perform the commands in different
orders, such as “put that” [pointl] [point2] “there”
or “put” [pointl1] “that there” [point2] and both se-
quences will be correctly recognised. Finally, the transition
specifies a time window of 1500 milliseconds for the whole
command as well as an action (message to be sent the client
application) to be performed if the command has been suc-
cessfully recognised. In our example, the transition then pro-
ceeds to the same start context it originated from.

Listing 2. SMUIML description of the “put that there” example
<context name="start” >
<transition leadtime="1500"">
<seq-and>
<trigger name="put_trigger”/>
<transition>
<par_and>
<trigger name="that_trigger”’/>
<trigger name="object_pointed_event”/>
</par_and>
</transition>
<transition>
<par_and>
<trigger name="there_trigger”’/>
<trigger name=""object_pointed_event”/>
</par_and>
</transition>
</seq-and>
<result action="put_that_there_action”/>
<result context=""start” >
</transition>
</context>

The SMUIML graphical editor has been presented to two
expert users in order to achieve a small expert review. This
review by experts lead to a number of changes to improve
the editor’s usability. The modality of each trigger is now
indicated by means of an icon. The start context which
is the only mandatory context in a given SMUIML script is
visualised in a slightly different colour to denote its special
status compared to other contexts. Finally, users have the
possibility to change the colour of connections, contexts or
transitions in order to best suit their preferences.

The graphical editor also contains an integrated debugging
tool. This debugging tool is launched with the client appli-
cation and provides a real-time visualisation of the context
the HephaisTK framework is currently in. It also highlights
the transition leading from the previous context to the cur-
rent one. In the example illustrated in Figure 5, the applica-
tion starts in the start context. A Radio Frequency Iden-
tification (RFID) reader that is connected to the framework
detects a tagged music album and transmits the information.
Based on the t rigger_album trigger, a transition is fired
and the application moves to the registeredcd state and
starts playing the music album. The user then executes a
stop command and, at the same time, holds a “stop” la-
belled RFID tag close to the RFID reader. This simultaneous
action fires the transition going from the registeredcd

‘N previous_trigger K next_trigger [trigger_album

"% play_trigger) "W pause_trigger)
[& rfid_play 8 rfid_pause
"y previous_action ¥ next_action

sy acton | Wpmsescion | | 1900 | @oooo oo

@ 1000 [F1e00

Wy select_album

) - ")

p_trigger
 stop_rfid
'y stop_action

[J 1500

‘K previous_trigger R next_trigger [rrigger_album

"W play_trigger) "W pause_trigger)
rfid_play rfid_pause
‘W previous_action ' next_action

Wiolracion [+~ Wpausescvon | |E1000 B ooe0

@ 1000 [Fr000

"Wy select_album

A 1000

" p_trigger
\ stop_rfid
'Yy stop_action

1500

‘W previous_trigger R next_trigger trigger_album

N play_trigger) N pause_trigger
B rfid_play B rfid_pause
‘W previous_action ‘¥ next_action Wy select_album

oyl sction [=__| Wy pauseaton | | 1000 | E1000 oft
X 1000 [F 1000

4 - - 7

"y stop_action

Figure 5. The graphical debugging tool with three different steps going
from the start context to registeredcd and back again.

context back to the start context. As illustrated in this
example, the graphical debugging tool allows developers to
visually analyse the application behaviour in real-time.

FUTURE WORK

While the presented SMUIML graphical editor looks quite
promising and offers some features not available in other
graphical editors for multimodal interfaces, we plan to per-
form a detailed evaluation of the presented solution in the
near future. First, we are going to evaluate the usability
of the presented graphical editor by asking developers to
express a number of multimodal interaction use cases via
the tool. In addition, we plan to evaluate the expressive-
ness of the presented approach. It is not enough to guaran-
tee an effective and simple definition of multimodal inter-
actions based on the graphical editor. We also have to en-
sure that the editor and the underlying SMUIML language
are expressive enough to describe multimodal interactions
of arbitrary complexity. This study could be a starting point
for tackling a more general question: fo what extent do fi-

nite state machine-based approaches or event stream-based
approaches best represent multimodal human-machine dia-
logues?

Another important future direction is to support the flexi-
ble adaptation of multimodal interfaces [18]. The idea is to
no longer have a fixed combination of modalities, but rather
provide a context-dependent adaptation of multimodal user
interfaces. This can either be achieved by extending the
SMUIML language with the necessary concepts or by in-
troducing another language for the adaptation of the mul-
timodal interaction. In this view, the abstract user inter-
face definition would rely on SMUIML while the concrete,
context-dependant user interface specification would require
the definition of a new language. The final user interface
could be realised by HephaisTK [5].

This new language for flexible multimodal interface adapta-
tion could then be used to provide innovative document in-
terfaces. Today’s document formats often provide no access
to specific semantic subparts or embedded media types [15].
However, if we would be able to get access to these doc-
ument subparts, specific embedded media types could be
associated with different modalities of interaction. Within
the MobiCraNT® project we are currently investigating in-
novative mobile cross-media applications. As part of this
research effort, we are developing a new fluid cross-media
document model and investigate how SMUIML, in combi-
nation with a context-dependant user interface specification
language, could be used to provide multimodal access to
such a fluid document model.

CONCLUSION

We have presented our exploration on software support for
multimodal UIDL based on the SMUIML multimodal di-
alogue modelling language. Thereby, we focussed on two
particular software components: the HephaisTK framework
which is used to interpret the SMUIML language (at the fi-
nal, runtime stage) and the SMUIML graphical editor for the
graphical design of multimodal interaction dialogues (at the
system design stage). The SMUIML graphical editor aims
to provide a user-friendly way to create multimodal appli-
cations based on HephaisTK and SMUIML. Compared to
other graphical dialogue editors, our solution supports tem-
poral constraints and a number of operators for the com-
bination of multiple modalities. While these concepts al-
ready form part of the underlying SMUIML language, the
graphical editor makes these concepts accessible via a user-
friendly interface. Users further have the possibility to freely
switch between the graphical and textual dialogue represen-
tation. The presented SMUIML graphical editor further ad-
dresses a number of usability-oriented issues such as auto-
matic layouting, the clear identification of input modalities
via specific icons as well as the possibility to customise var-
ious features of the graphical editor. Last but not least, the
SMUIML graphical editor offers an integrated debugging
tool supporting developers in analysing the real-time appli-
cation behaviour.

*http://soft.vub.ac.be/mobicrant/

ACKNOWLEDGMENTS

The authors wish to thank Said Mechkour for his work on
the SMUIML graphical editor. The work on HephaisTK
and SMUIML has been funded by the Hasler Foundation
in the context of the MeModules project and by the Swiss
National Center of Competence in Research on Interactive
Multimodal Information Management via the NCCR IM2
project. Bruno Dumas is supported by MobiCraNT, a project
forming part of the Strategic Platforms programme by the
Brussels Institute for Research and Innovation (Innoviris).

REFERENCES
1. M. Araki and K. Tachibana. Multimodal Dialog
Description Language for Rapid System Development.
In Proc. of the 7th SIGdial Workshop on Discourse and
Dialogue, pages 109-116, Sydney, Australia, July
2006.

2. J. D. Boeck, D. Vanacken, C. Raymaekers, and
K. Coninx. High-Level Modeling of Multimodal
Interaction Techniques Using NiMMiT. Journal of
Virtual Reality and Broadcasting, 4(2), September
2007.

3. R. A. Bolt. “Put-that-there”: Voice and Gesture at the
Graphics Interface. In Proc. of the 7th Annual
Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’80), pages 262-270, Seattle,
USA, July 1980.

4. M.-L. Bourguet. A Toolkit for Creating and Testing
Multimodal Interface Designs. In Adjunct Proc. of the
15th Annual Symposium on User Interface Software
and Technology (UIST 2002), Paris, France, October
2002.

5. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,
L. Bouillon, and J. Vanderdonckt. A Unifying
Reference Framework for Multi-Target User Interfaces.
Interacting with Computers, 15(3):289-308, 2003.
Computer-Aided Design of User Interface.

6. J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May,
and R. M. Young. Four Easy Pieces for Assessing the
Usability of Multimodal Interaction: The CARE
Properties. In Proc. of the 5th International Conference
on Human-Computer Interaction (Interact 1995),
Lillehammer, Norway, June 1995.

7. B. Dumas, D. Lalanne, and R. Ingold. HephaisTK: A
Toolkit for Rapid Prototyping of Multimodal
Interfaces. In Proc. of 11th International Conference on
Multimodal Interfaces (ICMI 2009), pages 231-232,
Cambridge, USA, November 2009.

8. B. Dumas, D. Lalanne, and R. Ingold. Description
Languages for Multimodal Interaction: A Set of
Guidelines and its Illustration with SMUIML. Journal
on Multimodal User Interfaces: “Special Issue on The
Challenges of Engineering Multimodal Interaction”,
3(3):237-247, February 2010.

10.

12.

13.

14.

15.

16.

17.

18.

. K. Katsurada, Y. Nakamura, H. Yamada, and T. Nitta.

XISL: A Language for Describing Multimodal
Interaction Scenarios. In Proc. of the 5th International
Conference on Multimodal Interfaces (ICMI 2003),
pages 281-284, Vancouver, Canada, November 2003.

W. A. Konig, R. Rédle, and H. Reiterer. Squidy: A
Zoomable Design Environment for Natural User
Interfaces. In Proc. of the 27th International

Conference on Human Factors in Computing Systems
(CHI 2009), Boston, USA, April 2009.

. J.-F. Ladry, P. Palanque, S. Basnyat, E. Barboni, and

D. Navarre. Dealing with Reliability and Evolvability
in Description Techniques for Next Generation User
Interfaces. In Proc. of the 26th ACM International
Conference on Human Factors in Computer Systems
(CHI 2008), Florence, Italy, April 2008.

J.-Y. L. Lawson, A.-A. Al-Akkad, J. Vanderdonckt, and
B. Macq. An Open Source Workbench for Prototyping
Multimodal Interactions Based on Off-the-Shelf
Heterogeneous Components. In Proc. of the 1st ACM
SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS 2009), pages 245-254,
Pittsburgh, USA, July 2009.

F. Paterno, C. Santoro, J. Mintyjdrvi, G. Mori, and
S. Sansone. Authoring Pervasive Multimodal User
Interfaces. International Journal of Web Engineering
and Technology, 4(2):235-261, 2008.

R. Schaefer, S. Bleul, and W. Mueller. Dialog Modeling
for Multiple Devices and Multiple Interaction
Modalities. In Proc. of the 5th International Workshop
on Task Models and Diagrams for User Interface
Design (TAMODIA 2006), pages 3953, Hasselt,
Belgium, October 2006.

B. Signer. What Is Wrong with Digital Documents? A
Conceptual Model for Structural Cross-Media Content
Composition and Reuse. In Proc. of the 29th
International Conference on Conceptual Modeling (ER
2010), pages 391-404, Vancouver, Canada, November
2010.

J.-S. Sottet, G. Calvary, J. Coutaz, J.-M. Favre,

J. Vanderdonckt, A. Stanciulescu, and S. Lepreux. A
Language Perspective on the Development of Plastic
Multimodal User Interfaces. Journal on Multimodal
User Interfaces, 1:1-12, 2007.

A. Stanciulescu, Q. Limbourg, J. Vanderdonckt,

B. Michotte, and F. Montero. A Transformational
Approach for Multimodal Web User Interfaces Based
on UsiXML. In Proc. of the 7th International
Conference on Multimodal Interfaces (ICMI 2005),
pages 259-266, Torento, Italy, October 2005.

J. Vanderdonckt, G. Calvary, J. Coutaz, and

A. Stanciulescu. Multimodality for Plastic User
Interfaces: Models, Methods, and Principles. In
Multimodal User Interfaces, Signals and
Communication Technology, pages 61-84. Springer
Berlin Heidelberg, 2008.

	Introduction
	Related Work
	THE SMUIML LANGUAGE
	SOFTWARE SUPPORT FOR SMUIML
	The HephaisTK Framework
	The SMUIML Graphical Editor

	Future Work
	Conclusion
	Acknowledgments
	REFERENCES

