A Unifying Reference Framework and Model for
Adaptive Distributed Hybrid User Interfaces

Audrey Sanctorum and Beat Signer
Web & Information Systems Engineering Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium
{asanctor,bsigner} @vub.be

Abstract—Over the last decade, research on adaptive and
distributed user interfaces (DUIs) has increased. We also witness
a growing number of Internet of Things (IoT) devices, allow-
ing digital user interfaces (Uls) to communicate with physical
objects and vice versa through so-called hybrid user interfaces.
There exist various solutions to manage adaptive, distributed or
hybrid Uls. However, none of them covers all three aspects and
users have to deal with multiple applications and configurations
when developing adaptive distributed hybrid user interfaces.
We introduce the eSPACE reference framework and conceptual
model unifying the domains of adaptive, distributed and hybrid
interfaces. While our reference framework has been inspired by
the CAMELEON reference framework, the conceptual model is
based on the Resource-Selector-Link (RSL) hypermedia meta-
model. We propose an approach for adaptive distributed hybrid
user interfaces where users can author their user interfaces
based on the different levels of abstraction introduced by our
reference framework. We further present a use case illustrating
the extensibility, flexibility and reusability offered by our unified
approach and discuss potential future work.

Index Terms—Adaptive user interfaces, distributed user in-
terfaces, hybrid user interfaces, internet of things, end-user
development, model-based approach

I. INTRODUCTION

User interface design and development is a difficult and
time-consuming task [1]. With the rise of new kinds of devices,
input and output capabilities as well as user needs, the task
has become even more complex. While the Design for All
approach [2] might fit a majority of users in a traditional
context, it does not adapt to recent use cases and often leads
to a bad user experience [3].

Further, with the rise of smart objects or things, the
scope of user interfaces (Uls) has grown from digital Uls
to physical Uls. We refer to the combination of digital and
physical Uls as hybrid Uls. Given that we are living in an era
where Uls for smart environments (including IoT and tangible
systems) are gaining in popularity, physical Uls should be
integrated into our UI models. For this reason, we promote the
unification, creation and customisation of adaptive, distributed
and hybrid Uls via a model-based approach and aim to reduce
the effort required to develop such interfaces by following an
authoring rather than programming approach.

The research of Audrey Sanctorum is funded by a PhD grant of the Research
Foundation Flanders (FWO).

II. BACKGROUND

In the late 1980s an emerging number of modelling lan-
guages to create rich and accurate interface models led to
model-based user interface development (MBUID) [4], re-
ducing UI development and maintenance costs based on a
layered architecture [S5]. Szekely [6] introduced a generic
MBUID architecture with the typical components of model-
based interface development environments (MB-IDE), includ-
ing modelling tools, the model, automated design tools and im-
plementation tools. The model organises information on three
levels, including the task and domain model, the abstract user
interface specification and the concrete user interface (CUI)
level. A CUI can further be translated into an executable
representation (linked to some application logic) on the final
user interface (FUI) [7] abstraction level.

Even though modelling languages became more expressive,
due to the continuous evolution of Uls, model-based user
interface development remains a challenge [4]. Two decades
ago, Szekely [6] stated a number of challenges, including
task-centred interfaces, multi-platform support and interface
tailoring, which are still valid today. Another challenge is the
support for multimodal interfaces to develop richer Uls.

By taking Szekely’s challenges into account, we focus
on MBUID in the domain of adaptive and adaptable Uls,
distributed Uls (DUIs) as well as hybrid Uls. Adaptive and
adaptable Uls address the first and third challenge, while DUIs
tackle the second challenge. The third domain has been chosen
since we think that an additional important challenge for
MBUID are hybrid Uls in order to deal with IoT solutions that
were not yet present when Szekely introduced his challenges.

Model-based adaptive and adaptable user interfaces aim to
improve the user experience by adapting to a user’s context
of use at runtime [3]. Hereby, the context of use is defined
by a triple consisting of the user, platform and environment
entities [8]. While adaptive Uls automatically react to changes
in context, adaptable Uls are tailored according to predefined
options but usually require explicit human intervention. A key
goal of adaptive Uls is plasticity, meaning that a Ul preserves
its usability across multiple contexts of use [7].

The first multi-context reference framework applying a
model-based approach was introduced by Calvary et al. [7].

An extended version later gave rise to the CAMELEON
reference framework (CRF) [8]. CRF structures the develop-
ment life cycle into four levels of abstraction and supports
UI plasticity. Following these abstraction levels, approaches
to develop adaptive Uls such as Akiki et al’s IDE [9],
Paterno et al.’s tools [10] and research based on UsiXML [11]
emerged. Inspired by CRF and multiple research domains, the
Multi-Access Service Platform (MASP) [12] addresses the
deployment and runtime issues when developing adaptable,
distributed and multimodal Uls for smart environments. While
adaptive and adaptable Uls may adapt to a platform, they do
not support the creation of Uls over a set of heterogeneous
cooperating devices. Further, the majority of existing solutions
is less flexible in terms of the UI granularity since it is
impossible to show only parts of a UI on a device.

With the growing amount of devices, research on model-
based distributed Uls (DUIs) tries to take advantage of these
cross-device ecosystems. Elmqvist [13] defined a DUI as “a
user interface whose components are distributed across one
or more of the dimensions input, output, platform, space,
and time”. Balme et al. [14] presented CAMELEON-RT, an
architecture reference model for DUIs which can be used
to compare and reason about existing as well as to create
new runtime infrastructures for distributed, migratable and
plastic Uls. Some adaptive UI approaches evolved towards
systems that include DUI support, such as the distributed
MARIA language [15]. Melchior et al. [16] proposed DUI sup-
port at different levels of granularity, including action/service,
widget, windows and application level. In contrast to Manca
and Paterno [15], Melchior et al. focus on GUIs and do not
provide support for other modalities such as voice. MASP
provides support for Ul distribution with limited multi-user
interaction and no control of the distribution granularity [17].

The rise of smart devices such as smart power plugs,
light bulbs or thermostats led to dedicated applications to
control these devices. Further, the idea of adding physical
objects to interactive environments shows many benefits, such
as intuitiveness, ease of learning and naturalness. Therefore,
smart things should be considered in the UI development
process via model-based hybrid user interfaces. Reference
architectures defining a set of building blocks and addressing
requirements for IoT environments have been proposed. Es-
sential requirements are interoperability, device management,
dynamic discovery, context-awareness, scalability, large vol-
ume data management, data security, integrity and privacy as
well as dynamic adaptation [18].

While most existing approaches omitted support for runtime
IoT adaptation, it is addressed by Hussein et al.’s [19] work on
adaptive IoT systems and by the MDE4IoT framework [20].
The integration of physical objects is supported in a develop-
ment framework for physical Uls by Varela et al. [21]. Further,
Coyette and Vanderdonckt [22] focussed on the prototyping of
Uls combining the digital and physical worlds.

Various systems have been developed to support model-
based user interface development. Some approaches cover
parts of the Ul development process by providing tools to

support specific abstraction levels of the CRF, while others,
such as Cedar Studio IDE [9], CAMELEON-RT or MASP
focus on the whole development cycle. Most of the presented
solutions focus either on adaptive, distributed or physical Uls,
with some exceptions such as MASP, distributed MARIA
and Dandelion [21] spanning over multiple domains; namely
adaptive and DUIs for the first two and DUIs and physical
Uls for the latter. Nevertheless, none of the existing systems
covers all three closely-related domains and provides support
for adaptive, distributed and hybrid Uls. In addition, the
extensibility of adaptive and distributed behaviour is limited
or completely absent and most systems provide a fixed set of
distributable elements. Only Cedar Studio [9] fully supports
the extensibility of adaptive behaviour. Most approaches also
lack flexibility with respect to adaptation and distribution
rules, distribution granularity in DUI systems and dynamic
adaptation in IoT systems [18]. The reusability of model
components, rules, Ul parts and distributed settings is often
not supported. One of the few systems providing a fine
distribution granularity and high reusability has been presented
by Melchior [17] but it is limited to GUIs only. Last but
not least, existing solutions mainly address designers and
developers, with less support for end-user development.

III. USE CASE

In order to illustrate the potential of our unified approach for
adaptive distributed hybrid Uls, we present a use case which is
currently not supported by existing MBUID solutions. Lucas
wakes up around 7:30a.m. every morning. For supporting
his daily morning routine, he developed a leaving home
application running on a smartwatch as shown in the mock-ups
in Figure III.1. Once Lucas leaves and locks the front door, the
application checks whether the clothes iron, lights and TV are
turned off and—if one of them is still on—sends a message
to Lucas, who can turn the device off via the smartwatch user
interface consisting of the three parts shown in Figure IIL.1.

Lucas’ second application is the cats application. He has
two cats for whom he bought a smart feeder, a pet Wi-Fi
camera, and a customised food storage box with LEDs, a
weight sensor and a push button. The food storage box glows
green when full and red when almost empty to remind Lucas
when to buy food. When pressing the push button, cat food
is added to his grocery list. With his self-made application
shown in Figure III.1, he can control the feeding time and see
his cats when he is not at home via the video stream, which
also contains a record/snapshot button to record a video or
take a picture. He also added a button to access the image
gallery containing the captured images and videos.

Further, Lucas installed a motion sensor behind the couch to
get notified when the cats potentially scratch the couch in order
that he can activate a water spray to stop them. A temperature
GUI component can be used to set the temperature in the
apartment. Once the temperature drops to 16 degrees Celsius,
Lucas gets a notification. An administration panel is used
to edit the applications, manage their rules and distribution
properties as well as the user rights.

@@

Fig. III.1: Mock-up of Lucy’s cats application (smartphone), Lucas’ version (tablet), his leaving home application (smartwatch)

and the administration panel

Today Lucas is heading to work and normally his leaving
home application would notify him that he forgot to turn off
the lights. However, since Lucas’ girlfriend Lucy moved in,
they made some changes to Lucas’ applications so that Lucy
can use them as well. She created a profile with her preferences
and adapted some of his applications to her needs via the
administration panel. Given that Lucy leaves for work later,
Lucas’ leaving home application did not check whether the
appliances are turned off. Later Lucy leaves and gets notified
that the TV is still on. She opens the leaving home application
on her phone—which adapts to the new device as well as to
her preferences—and turns off the TV. Note that Lucy is colour
blind and therefore her application shows blue and orange
buttons instead of the green and red buttons.

During the day, Lucas receives a notification that the cats are
scratching the couch. After a quick look at the video stream of
the cats application, he realises that the cats are just playing
near the couch and presses the funny button. The funny
button has been added by the couple to notify each other
about funny content and is shown in the tablet and phone
mock-ups in Figure III.1 (smiling cat image). Whenever Lucas
presses this button, Lucy receives a notification. As illustrated
in the smartphone mock-up, Lucy’s Ul of the cats application
only contains the video stream and the funny as well as
a gallery button. Further, Lucy shared the video stream
UI element with her best friend and whenever she presses the
funny button, she notifies Lucas as well as her best friend.

Once home, Lucas fills the feeder with cat food and recog-
nises that the food box is glowing red. Therefore, he presses
the button on the box to add “cat food” to his grocery list.
Later, the couple shows each other pictures by displaying them
on the TV by using a touch-throw gesture on their phone.

IV. ESPACE REFERENCE FRAMEWORK

In the following we present our multi-layered end-user
Smart PIACE (eSPACE) reference framework shown in Fig-
ure IV.1, which unifies adaptive, distributed and hybrid user
interfaces. The different layers of the CAMELEON reference
framework have been used as inspiration to divide and struc-
ture our reference framework into similar abstraction layers.
Unlike CRF, we are not aiming for a purely MBUID process
but want to make the most of both worlds by combining
manual and model-based techniques. To promote flexibility,
extensibility and reusability of the different components of

CONTEXT A, USER B \

Final User Interface ‘ ,1

. Jﬁf

v]

Dcomp 2

DComp

Dcomp 1

AC1

AC2
AC3

User Interface Element |

f Ulel):———l
|

|

|

I

\

\

o o

Active Component ’

AC2 -

Coer o)

Fig. IV.1: eSPACE reference framework

a UI, we provide a loose coupling between UI elements and
their tasks by placing them in separate layers. The layer
containing the “tasks” is called the active component layer.
Tasks are represented as active components (ACs), a concept
introduced by Signer and Norrie [23]. Each AC represents
a piece of program code that executes an action, such as
turning on the light. ACs can be linked to each other to
execute more complex interactions, as shown by the blue
dashed arrow in Figure IV.1. AC1 could, for example, be a
scratching detector AC linked to an AC that sends notifications
so that Lucas is notified when a cat might be scratching his
couch. To reuse this functionality, a new AC can be created
composed out of these two ACs, as shown with AC 2 that
is composed of AC 1 and AC 3. If Lucas wants to reuse this
scratching notifier in other applications, he can just refer to
it as AC2. The notifier AC is a generic notifier that is
reusable in other applications with different configurations.
The next layer containing Ul elements (Ules) such as text
fields, buttons, video frames or a combination of different ele-

of / h

as access to / accessiblets

[] { Property
as / of
"Sourcelink”
] [T 1
"TargetLink" h £
fhas source as / o

source of /|
I

{11

Entity

d,
. (-id) has no access to / inaccessible to N
hmember of / t:t _
as members Individual (T D
J— — created / created by pfle—| @-_—::::_
I Type | T~ /7 N | /S T~
______ of / has Link l [1 1]
Name Parameter l has / of
I of / has jp Resource --()-\crild of | has child ~\\G= g
""" % = red by / refers to @ [T 1 Position |
| Value Layout 4 N - has) of \====mm=m=
------ of / has) Navigational Link Structural Link
e e .:‘ —
[Active Component][uI Element] [DComp] [Final User Interface] [Application] Physical Object Device Property Set]
includes / is in

Fig. V.1: Conceptual model based on RSL

ments is called the user interface element layer. A Ule can also
be a physical UI, such as a light switch, a physical button or a
slider. Similar to the previous layer, different UI elements can
be linked together to form more complex Ules. One can use
links to navigate between different UI views, such as in Lucas’
cats application where when he presses the gallery button,
a link is followed to the photo gallery view. Links can
also be used to arrange UI elements in one view. For example,
a video player can be created by linking a video frame
Ul element with a but ton Ul element. This composition can
be saved as a video player Ule, which can be reused in
different applications. Compositions are represented by green
solid arrows. Figure IV.1 illustrates UIe 1 as a composition
of UIe2 and UIe 3. Last but not least, links can be used
to bind some functionality to UI elements by linking them to
ACs. For example, linking a button Ule to an AC that turns
on the light, will enable the button to act as a light switch.

The third layer is the DComp layer consisting of distributed
components (DComps). These DComps consist of the “mod-
els” created by linking ACs and Ul elements, together with
the configuration (metadata) for the corresponding ACs and
Ul elements. Each DComp holds at least one AC or Ul element
and is distributable in real time. Lucas’ cat application consists
of multiple DComps, one of them for the live stream com-
ponent used to watch his cats. This DComp holds a video
player Ule that is linked to a show stream AC. Note that
the DComp can be distributed to any another device, such as
a smartphone, in order to see the video stream. Distribution
can happen at different levels of granularity. For instance,
Lucas could distribute the capture/record button to his
smartwatch for recording the cats by using his watch. Since
DComps are device independent, this layer can be compared
to the CUI layer of the CRF, with the difference that DComps
do not have to include any layout information.

The last layer represents the final user interface which,
similarly to the CRF, contains the final user interfaces. Once
a DComp is attached to a device, it will get its look and feel

depending on this device and become part of the final user
interface (FUI). Multiple DComps can be placed on a device
with a certain layout and be saved in one FUI. For example, the
leaving home application FUI contains three simple DComps
to control the lights, the TV and the clothes iron. A FUI can
still be adapted depending on the context of use. If Lucy uses
Lucas’ smartwatch (she has to be logged in), the buttons of
the leaving home application adapt to her colour preferences.

Our framework supports the reusability of its components
over multiple applications and endorses flexibility and ex-
tendibility by allowing these components to be linked together
for navigation and to create new compositions. We further
promote end-user development by allowing Ules to be created
and customised by simply linking different components.

V. CONCEPTUAL MODEL

Our conceptual model for adaptive distributed hybrid user
interfaces is based on the Resource-Selector-Link (RSL) hy-
permedia metamodel [24] and its concept of active com-
ponents [23]. RSL was chosen due to its support for the
loose coupling of resources via different types of links and
offers features for user and context management. The main
components of the RSL metamodel are the Resource,
Selector and Link entities which are subtypes of the
Entity type as shown in Figure V.1 (original RSL com-
ponents are coloured in blue). Note that while we use the
ORM modelling language [25] for our conceptual model, the
original RSL metamodel is based on the OM data model [24].

In the previous section we expressed the need to com-
pose ACs and UI elements as well as to navigate between
them. This is achieved by using Structural Links and
Navigational Links (solid green and dashed blue ar-
rows in Figure IV.1). For example, we can link ACs via
navigational links to execute multiple actions after each other
or Uls can be linked to navigate between views, as shown
for the gallery button and gallery view in Figure V.2a.
Further, navigational links can be used to link UI elements

Video Player Ule

@

Gallery Button Ule

Property:
pos; center)

v
==
4 Spray Button Ule

)

A
Food Observer
AC
Add to Grocery .
List AC .

Property:
Context size; 4pY
Resolver

Acceleromter Video
GOUCh AD C AC) CSeIecth

(a) AC Composition and Image Selector

<!

(b) Lucy’s FUI composition

Layout

(from Lucy)

Property Set

Input Parameter:
Contact list

(from Lucas) | 1 (from Lucy)

Fun Button Ule

Property:
Button Style of Luc;

(c) Notifier AC

Fig. V.2: Examples of conceptual model instantiations

to ACs. By using structural links, one can create structures
as illustrated in Figure V.2a. They can be used to compose
Uls containing multiple Ul elements, such as the video
player Ule that is composed of a button Ule and a
video frame Ule. New ACs with combined functionality
can be created as well (e.g. linking a touch AC with a
accelerometer AC to create a touch-throw AC used
to move pictures to the smart TV). RSL Selectors can be
used to refer to a piece of a resource. A video selector can,
for example, be used to transfer parts of a video rather than the
entire video from the gallery view and thus enables video
excerpts to be distributed to the TV, as shown in Figure V.2a.
Note that, instead of using multiple links to structure ACs
and Uls, we use RSL’s multi-targeted links. The children
of a structural link are ordered via a position attribute and
the child of relationship is a subset of the target of
relationship (via a pair-subset constraint in the ORM scheme).

Structural links are further used to structure DComps and
FUIs as illustrated in Figure V.2b. Depending on the context
of use, the composition of the DComps and FUIs might be
different. Context can be modelled by using the Context
Resolvers provided by RSL, which act as gateways. The
water spray button has a context resolver which verifies
at run-time who is using the application. If Lucy is using
the application, her FUI will not contain this button. Context
resolvers can also be used on links, to set conditions on when
a link needs to be followed.

Entities in RSL can have multiple Properties, which
are key-value pairs. They might, for example, be attached to
a Ul element to define its size. In addition, RSL offers user
management, where users have preferences and can be part
of a group. Each group or individual user can be granted or
denied access to specific entities.

In order to define properties over the individual sources or
targets of a link, we objectified these relationships and added
a has relationship. This is useful to have distinct properties
on the link to every source or target of many-to-many links,
as shown on the structural link with as targets the video
player Ule and spray button. There the property is used
to set the position of the Ul elements for this specific compo-
sition. In addition, we added a sharing relationship between

User and Ent ity to enable users to share their entities with
each other. This enables extensibility via a growing shared
entity set as users add their self-created ACs, UT Elements
and DComps.

Based on our reference framework, we differentiate between
different types of resources in our model. As shown in
Figure V.1, we have the Application, DComp, Active
Component, Final User Interface, UI Element,
Parameter, Property Set, Layout, Device and
Physical Object resources. An Application consists
of one or more FUIs, which in turn are composed of at least
one DComp that contains at least one AC or Ul Element.
ACs can be used to verify information, such as “is the door
locked?” or to perform an action on a Device or Physical
Object, such as “turn the light off”.

"OutputParameterOfAC"

..............

input pf / has input
pmm————————— ~
! parameterOrder |
/

has/of ~ ~TTTTSSmmmsmss

output

Parameter

Fig. V.3: AC parameters model

The Parameter resource is used to represent the in-
put and output parameters of ACs and UI Elements as
illustrated in Figure V.3 for the model ofs AC parameters.
Each Parameter contains a name, type and value. The
notifier AC has a contact list as input parameter
as shown in Figure V.2c. When Lucy logs in, the navigational
link is triggered, instantiating the AC with her contacts as input
parameter. Further, the Layout resource is used to set the
layout style, such as grid or column layout and the Property
Set is used to group properties. These are mainly used to
hold styling properties as shown in Figure V.2b, where the
FUI is composed of DComps with a certain Layout and
user-specific Property Set.

With our conceptual model we show how reusability, flex-
ibility and extensibility can be provided using the RSL link
service, the introduced resources and concepts. In contrast to

existing systems, we do not distinguish between physical and
digital Uls in our core model. Finally, we want to promote end-
user development by allowing users to create Uls by simply
linking components.

VI. DISCUSSION AND FUTURE WORK

We have proposed a new unifying approach for the devel-
opment of user-defined adaptive distributed hybrid Uls where
users can create smart Uls based on the strengths of both
model-based and manual techniques. A major issue of MBUID
is the complexity of the models and notations which makes
the tools hard to learn and use [5]. Therefore, we reduced the
modelling to a single expressive model where users can link
ACs and Ules to form a user interface. However, this is still
complex for end users and more work is needed to investigate
the appropriate metaphors for hiding the complexity of the
underlying model. Our goal is to include end users in the
UI development process. For this reason we plan to create an
end user authoring tool based on the concepts introduced in
this paper.

From related work we have seen many existing systems for
adaptive, distributed or hybrid Uls. However, none of them
supports the creation of Uls that are adaptive, distributed as
well as hybrid and we would have to use a combination of
the existing systems with different models, setups and config-
urations for each of them. In order to simplify this process,
we introduced a unified approach supporting all three aspects.
Therefore, as a first contribution, we proposed the eSPACE
reference framework, which helps structuring the development
process of smart Uls and supports runtime adaptation and
distribution as well as physical Uls. Further, we have seen
that most of the existing systems are limited in terms of flexi-
bility, customisation, extensibility, distribution granularity and
reusability. We tackle all these limitations with our conceptual
model that is based on the RSL hypermedia metamodel. The
potential of our model has been illustrated with some exam-
ples. Our model can adapt to evolving user needs, technolo-
gies and environments by introducing new Preferences,
ACs, Devices and Physical Objects, which shows
the flexibility and extensibility of our approach. Based on
our conceptual model, adaptive distributed hybrid Uls which
support distribution at a fine level of granularity can be
created by using DComps and Selectors. In addition,
our model supports runtime adaptation based on Context
Resolvers and a user’s Preferences. By using an RSL-
based link service, our components can easily be reused by
simply linking to them. This allows for new compositions
and hereby promotes extendibility and reuse of adaptation
and distribution rules which is not offered by most existing
work. While we have a functional implementation based on
the presented model, in future work we plan to provide a
development framework and end-user authoring tool as well
as a proof-of-concept application. Finally, with our reference
framework and conceptual model, we want to support the
community in providing a new way of thinking about user
interface development for adaptive distributed hybrid Uls.

[1]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

B. A. Myers and M. B. Rosson, “Survey on User Interface Program-
ming,” in Proc. of CHI 1992, June 1992.

C. Stephanidis, “Towards the Next Generation of UIST: Developing for
All Users,” in Proc. of HCI 1997, Aug. 1997.

P. A. Akiki, A. K. Bandara, and Y. Yu, “Adaptive Model-Driven User
Interface Development Systems,” ACM Computing Surveys, vol. 47,
no. 1, May 2014.

G. Meixner, F. Paterno, and J. Vanderdonckt, “Past, Present, and Future
of Model-based User Interface Development,” Journal of Interactive
Media, vol. 10, no. 3, 2011.

P. P. Da Silva, “User Interface Declarative Models and Development
Environments: A Survey,” in Proc. of DSV-IS 2000, June 2000.

P. Szekely, “Retrospective and Challenges for Model-based Interface
Development,” in Proc. of DSV-IS 1996, June 1996.

G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and
J. Vanderdonckt, “A Unifying Reference Framework for Multi-Target
User Interfaces,” Interacting with Computers, vol. 15, no. 3, 2003.

G. Calvary, J. Coutaz, L. Bouillon, M. Florins, O. Limbourg, L. Marucci,
F. Paterno, C. Santoro, N. Souchon, D. Thevenin, and J. Vanderdonckt,
“The CAMELEON Reference Framework,” CAMELEON Project De-
liverable 1.1, September 2002.

P. A. Akiki, A. K. Bandara, and Y. Yu, “Cedar Studio: an IDE Supporting
Adaptive Model-Driven User Interfaces for Enterprise Applications,” in
Proc. of EICS 2013, June 2013.

F. Paterno, C. Santoro, and L. D. Spano, “MARIA: A Universal, Declar-
ative, Multiple Abstraction-Level Language for Service-Oriented Appli-
cations in Ubiquitous Environments,” ACM Transactions on Computer-
Human Interaction, vol. 16, no. 4, 2009.

J. Vanderdonckt, “A MDA-compliant Environment for Developing User
Interfaces of Information Systems,” in Proc. of CAISE 2005, June 2005.
M. Blumendorf, “Multimodal Interaction in Smart Environments: A
Model-based Runtime System for Ubiquitous User Interfaces,” Ph.D.
dissertation, Berlin Institute of Technology, 2009.

N. Elmgqvist, “Distributed User Interfaces: State of the Art,” in Dis-
tributed User Interfaces: Designing Interfaces for the Distributed
Ecosystem, ser. Human-Computer Interaction Series, 2011.

L. Balme, A. Demeure, N. Barralon, J. Coutaz, and G. Calvary,
“CAMELEON-RT: A Software Architecture Reference Model for Dis-
tributed, Migratable, and Plastic User Interfaces,” in Proc. of EUSAI
2004, Nov. 2004.

M. Manca and F. Paterno, “Extending MARIA to Support Distributed
User Interfaces,” in Distributed User Interfaces: Designing Interfaces
for the Distributed Ecosystem, 2011.

J. Melchior, J. Vanderdonckt, and P. V. Roy, “A Model-based Approach
for Distributed User Interfaces,” in Proc. of EICS 2011, June 2011.

J. Melchior, “A Model-based Approach for Dynamically Distributing
Graphical User Interfaces Based on their Properties, Graphs, and Sce-
narios.” Ph.D. dissertation, Catholic University of Louvain, Louvain-la-
Neuve, Belgium, 2016.

E. Cavalcante, M. P. Alves, T. Batista, F. C. Delicato, and P. F. Pires,
“An Analysis of Reference Architectures for the Internet of Things,” in
Proc. of CobRA 2015, May 2015.

M. Hussein, S. Li, and A. Radermacher, “Model-Driven Development
of Adaptive IoT Systems,” in Proc. of MODELS 2017, Sep. 2017.
Federico Ciccozzi and Romina Spalazzese, “MDE4IoT: Supporting the
Internet of Things with Model-Driven Engineering,” in Proc. of IDC
2016, Oct. 2016.

G. Varela, A. Paz-Lopez, J. A. Becerra, and R. J. Duro, “The Generic
Interaction Protocol: Increasing Portability of Distributed Physical User
Interfaces,” Romanian Journal of Human-Computer Interaction, vol. 6,
no. 3, 2013.

A. Coyette and J. Vanderdonckt, “Prototyping Digital, Physical, and
Mixed User Interfaces by Sketching,” in Workshop on User Interface
eXtensible Markup Language UsiXML, France, Paris, June 2010.

B. Signer and M. C. Norrie, “Active Components as a Method for Cou-
pling Data and Services: A Database-Driven Application Development
Process,” in Proc. of ICOODB 2009, July 2009.

B. Signer and M. C. Norrie, “As We May Link: A General Metamodel
for Hypermedia Systems,” in Proc. of ER 2007, Nov. 2007.

T. Halpin and T. Morgan, Information Modeling and Relational
Databases. Morgan Kaufmann, 2010.

