Mudra: A Unified Multimodal Interaction Framework

Lode Hoste, Bruno Dumas and Beat Signer
Web & Information Systems Engineering Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

{lhoste,bdumas,bsigner}@vub.ac.be

ABSTRACT

In recent years, multimodal interfaces have gained momentum as
an alternative to traditional WIMP interaction styles. Existing mul-
timodal fusion engines and frameworks range from low-level data
stream-oriented approaches to high-level semantic inference-based
solutions. However, there is a lack of multimodal interaction en-
gines offering native fusion support across different levels of ab-
stractions to fully exploit the power of multimodal interactions. We
present Mudra, a unified multimodal interaction framework sup-
porting the integrated processing of low-level data streams as well
as high-level semantic inferences. Our solution is based on a cen-
tral fact base in combination with a declarative rule-based language
to derive new facts at different abstraction levels. Our innovative
architecture for multimodal interaction encourages the use of soft-
ware engineering principles such as modularisation and composi-
tion to support a growing set of input modalities as well as to enable
the integration of existing or novel multimodal fusion engines.

Keywords

multimodal interaction, multimodal fusion, rule language, declara-
tive programming

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures; H.5.2
[Information Interfaces and Presentation]: User Interfaces

General Terms
Algorithms, Languages

1. INTRODUCTION

Multimodal interaction and interfaces have become a major re-
search topic over the last two decades, representing a new class of
user-machine interfaces that are different from standard WIMP in-
terfaces. As stated by Oviatt [13], multimodal interfaces have the
added capability to process multiple user input modes not only in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICMI’11, November 14-18, 2011, Alicante, Spain.

Copyright 2011 ACM 978-1-4503-0641-6/11/11 ...$10.00.

a parallel manner, but also by taking temporal and semantic com-
binations between different input modes into account. These inter-
faces tend to emphasise the use of richer and more natural ways
of communication, including speech or gesture, and more gener-
ally address all five senses. Hence, the objective of multimodal
interfaces is twofold: first, to support and accommodate a user’s
perceptual and communicative capabilities; and second, to embed
computational power in the real world, by offering more natural
ways of human-computer interaction [5].

However, the process of recovering the user intent through mul-
tiple different input sources and their potential combination, known
as “multimodal input fusion”, presents a number of challenges to be
overcome before multimodal interfaces can be experienced to their
fullest. First, the processing has to happen in real time, demand-
ing for architectures to efficiently manage parallel input streams
as well as to perform the recognition and fusion in the presence
of temporal constraints. Second, the type of data to be managed
by a multimodal system may originate from a variety of different
sources. For example, a multi-touch surface might deliver multi-
ple streams of pointer positions along with identifiers for different
fingers, hands or even different users. On the other hand, a speech
recogniser may deliver a list of potential text results in combina-
tion with the corresponding recognition probabilities. Being able to
fuse user input from such different channels is one of the strengths
of multimodal interfaces, but in practice only a few tools have been
able to fully support data-agnostic input. In effect, most multi-
modal interaction tools either focus on extracting semantic inter-
pretations out of the input data or offer low-level management of
input data streams. Semantic-level tools are typically high-level
frameworks that consume semantic events from multiple modali-
ties to achieve a more intuitive and improved human-computer in-
teraction. In these approaches, fusion is done on sets of individual
high-level interpretations mostly coming from different recognis-
ers. The second family of tools and frameworks focus strongly on
dataflow paradigms to process raw data at the data level. These ap-
proaches typically declare the flow of primitive events by chaining
multiple boxes serving as a filter or via event-specific fusion of mul-
tiple sources. The consequence is that we have, on the one hand,
semantic tools which struggle with low-level and high frequency
data and, on the other hand, frameworks to manage low-level in-
put data streams which have to resort to ad hoc and case by case
implementations for higher-level information fusion.

Sharma et al. [17] identified three different levels of fusion of in-
put data: data-level fusion, feature-level fusion and decision-level
fusion. These fusion levels are seen as distinct entities, working at
completely different stages. On the other hand, fusion as a whole is
supposed to be able to take into account data from any of these three
levels, be it x/y coordinates from a pointer or semantic information

coming from speech. In this paper, we address this conflict between
seemingly irreconcilable fusion levels and data-agnostic input. A
first open issue is the correlation between the events processed by
dataflow approaches with a high throughput and low-throughput
high-level events produced by semantic inference-based fusion. A
second issue is how to retain access to low-level information when
dealing with interpreted high-level information. For example, a
gesture can be described by a set of x/y coordinates, by a sequence
of atomic time-stamped vectors or by a semantic interpretation de-
noting that the user has drawn an upward-pointing arrow. Only a
few tools keep track of the three different information levels and
consider that users might express either deictic pointing informa-
tion, manipulative movements or iconic gestures. Finally, in order
to achieve multimodal fusion, some specific metadata has to be ex-
tracted regardless of the level of fusion. For instance, for raw-level
data provided by a simple deictic pointing gesture that is freely per-
formed and captured by a 3D camera, the start and end time of the
gesture is required in order to resolve temporal relationships with
other modalities.

To accommodate this missing link between low-level and high-
level events, we developed a unified multimodal fusion engine ca-
pable of reasoning over both primitive and high-level information
based on time window constructs. We encourage the use of modu-
larisation and composition to build reusable and easily understand-
able building blocks for multimodal fusion. These software prin-
ciples are emphasised by Lalanne et al. [11] stating that the “engi-
neering aspects of fusion engines must be further studied, including
the genericity (i.e., engine independent of the combined modali-
ties), software tools for the fine-tuning of fusion by the designer or
by the end-users as well as tools for rapidly simulating and config-
uring fusion engines to a particular application by the designer or
by the end-users.”

We start by discussing related work in Section 2 and investigate
how existing approaches address the correlation between low-level
and high-level events. In Section 3, we present the architecture
of our multimodal interaction framework, called Mudra, and intro-
duce the features that enable Mudra to deal with data-level, feature-
level as well as decision-level fusion while retaining temporary fu-
sion information. We further introduce the declarative rule-based
language forming part of the Mudra core. A discussion and com-
parison of our unified multimodal interaction framework with ex-
isting multimodal engines as well as potential future directions are
provided in Section 4. Concluding remarks are given in Section 5.

2. BACKGROUND

The fusion of multimodal input data can take place at different
levels of abstraction. In this section, we first present these differ-
ent levels together with some classical use cases. We then discuss
existing solutions for the fusion of multimodal input at these ab-
straction levels and identify some of their limitations.

2.1 Multimodal Fusion Levels

As mentioned earlier, Sharma et al. [17] distinguish three levels
of abstraction to characterise multimodal input data fusion: data-
level fusion, feature-level fusion and decision-level fusion.

e Data-level fusion focuses on the fusion of identical or tightly
linked types of multimodal data. The classical illustration of
data-level fusion is the fusion of two video streams coming
from two cameras filming the same scene at different angles
in order to extract the depth map of the scene. Data-level fu-
sion rarely deals with the semantics of the data but tries to
enrich or correlate data that is potentially going to be pro-

cessed by higher-level fusion processes. As data-level fusion
works on the raw data, it has access to the detailed informa-
tion but is also highly sensitive to noise or failures. Data-
level fusion frequently entails some initial processing of raw
data including noise filtering or very basic recognition.

e Feature-level fusion is one step higher in abstraction than
data-level fusion. Typically, data has already been processed
by filters and fusion is applied on features extracted from the
data rather than on the raw data itself. Feature-level fusion
of modalities typically applies to closely coupled modalities
with possibly different representations. A classical exam-
ple is speech and lip movement integration [14], where data
comes from a microphone that is recording speech as well
as from a camera filming the lip movements. The two data
streams are synchronised and in this case the goal of the data
fusion is to improve speech recognition by combining infor-
mation from the two different modalities. Feature-level fu-
sion is less sensitive to noise or failures than data-level fusion
and conveys a moderate level of information detail. Typi-
cal feature-level fusion algorithms include statistical analysis
tools such as Hidden Markov Models (HMM), Neural Net-
works (NN) or Dynamic Time Warping (DTW).

e Decision-level fusion is centered around deriving interpreta-
tions based on semantic information. It is the most versa-
tile kind of multimodal fusion, as it can correlate informa-
tion coming from loosely coupled modalities, such as speech
and gestures. Decision-level fusion includes the merging of
high-level information obtained by data- and feature-level fu-
sion as well as the modelling of human-computer dialogues.
Additionally, partial semantic information originating from
the feature level can yield to mutual disambiguation [12].
Decision-level fusion is assumed to be highly resistant to
noise and failures as it relies on the quality of previous pro-
cessing steps. Therefore, the information that is available
for decision-level fusion algorithms may be incomplete or
distorted. Typical classes of decision-level fusion algorithms
are meaning frames, unification-based or symbolic-statistical
fusion algorithms.

Note that a single modality can be processed on all three fusion
levels. For example, speech can be processed at the signal (data)
level, phonemes (features) level or utterances (decision) level. In
the case of speech, the higher fusion levels might use results from
lower-level fusion. Surprisingly, existing multimodal interaction
frameworks often excel at one specific fusion level but encounter
major difficulties at other levels. We argue that the reason for these
limitations lies on the architecture level and in particular how the
initial data from different modalities is handled.

2.2 Data Stream-Oriented Architecture

One approach to build multimodal interaction architectures is to
assume a continuous stream of information coming from different
modalities and to process them via a number of chained filters. This
is typically done to efficiently process streams of high frequency
data and to perform fusion on the data and/or feature level. Repre-
sentatives of this strategy are Openlnterface [16] and Squidy [10],
employing a data stream-oriented architecture to process raw data
sources and fuse multiple sources on an event-per-event basis.

Although these data stream approaches advocate the use of com-
position boxes, they do not provide a fundamental solution to define
temporal relations between multiple input sources. All incoming
events are handled one by one and the programmer manually needs

to take care of the intermediate results. This leads to a difficult
management of complex semantic interpretations. Data stream-
oriented architectures show their limits when high-throughput in-
formation such as accelerometer data (i.e. more than 25 events
per second) should be linked with low-throughput semantic-level
information such as speech (i.e. less than one event per second).
When confronted with the fusion of information coming from dif-
ferent abstraction levels, these architectures tend to rely on a case-
by-case approach, thereby losing their genericity. Furthermore,
the decision-level fusion of semantic information between multiple
modalities requires classes of algorithms, such as meaning frames,
which address temporal relationships and therefore need some kind
of intermediate storage (e.g. registers). These algorithms are not in
line with the stream-oriented architecture and developers have to
rely on ad hoc solutions.

2.3 Semantic Inference-Based Approach

A second type of architecture for multimodal interaction focuses
on supporting fusion of high-level information on the decision level.
These approaches offer constructs to specify sets of required infor-
mation before an action is triggered. Information gathered from the
different input modalities is assumed to be classified correctly. Fur-
thermore, these approaches work best with relatively low frequency
data and highly abstracted modalities.

Four classes of fusion algorithms are used to perform decision-
level fusion:

e Meaning frame-based fusion [19] uses data structures called
frames for the representation of semantic-level data coming
from various sources or modalities. In these structures, ob-
jects are represented as attribute/value pairs.

e Unification-based fusion [9] is based on recursively merging
attribute/value structures to infer a high-level interpretation
of user input.

o Finite state machine-based approaches [8] model the flow of
input and output through a number states, resulting in a better
integration with strongly temporal modalities such as speech.

e Symbolic/statistical fusion, such as the Member-Team-Com-
mittee (MTC) algorithm used in Quickset [21] or the proba-
bilistic approach of Chai et al. [2], is an evolution of standard
symbolic unification-based approaches, which adds statisti-
cal processing techniques to the fusion techniques described
above. These hybrid fusion techniques have been demon-
strated to achieve robust and reliable results.

The presented approaches work well for the fusion of semantic-
level events. However, when confronted with lower level data, such
as streams of 2D/3D coordinates or data coming from accelerom-
eters, semantic inference-based approaches encounter difficulties
in managing the high frequency of input data. In order to show
their potential, these approaches assume that the different modal-
ities have already been processed and that we are dealing with
semantic-level information.

However, even when confronted with semantic-level data, sev-
eral issues can arise with existing approaches. First, they have to
fully rely on the results of the modality-level recognisers without
having the possibility to exploit the raw information at all. This
can lead to problems in interpretation, for example with continuous
gestures (e.g. pointing) in thin air.

Second, as decision-level fusion engines assume that the creation
of semantic events happens at a lower level, they have no or only
limited control over the refresh rate of these continuous gestures.

The typical solution for this scenario is to create a single pointing
event at the time the hand was steady. Unfortunately, this consid-
erably slows down the interaction and introduces some usability
issues. Another approach is to match the pointing gesture for every
time step on the discrete time axis; for example once per second.
However, this conflicts with the occupied meaning frame slot and
demands for ad hoc solutions.

A third issue that arises when employing meaning frames or sim-
ilar fusion algorithms is related to the previously discussed prob-
lem. Suppose that a user aborts and restarts their interaction with
the computer by reissuing their commands. Already recognised in-
formation from the first attempt, such as a “hello” speech utterance,
are already occupying the corresponding slot in the meaning frame.
A second triggering of “hello” will either be refused and possibly
result in a misclassification due to an unexpected time span when
matched with a newer pointing gesture, or it will overwrite the ex-
isting one which introduces problems for partially overlapping fu-
sion since meaningful scenarios might be dropped.

Finite state machine-based approaches such as [8], typically lack
the constructs to express advanced temporal conditions. The reason
is that a finite state machine (FSM) enforces the input of events in
predefined steps (i.e. event x triggers a transition from state a to b).
When fusing concurrent input, all possible combinations need to be
manually expressed.

The two major benefits are the flexible semantic and temporal
relations between edges and the inherent support for probabilistic
input. However, the manual construction of complex graphs be-
comes extremely difficult to cope with as the number of cases to
be taken into account is growing. When such systems have to be
trained, the obvious problem of collecting training sets arises and
once again increases with the number of considered cases. Addi-
tionally, these approaches require a strict segmentation of the in-
teraction. This implies a clear specification of the start and stop
conditions before the matching occurs. Hence, supporting overlap-
ping matches introduces some serious issues and also has an impact
on the support for multiple users and the possible collaborative in-
teraction between them.

2.4 TIrreconcilable Approaches?

Finally, other issues, such as multi-user support, are currently
problematic in both data stream-oriented and semantic inference-
based approaches. For instance, at the raw data level, potentially
available user information is frequently lost as data is treated at the
same level as other pieces of data and requires some ad hoc im-
plementations. When employing meaning frame-based fusion or
any other decision-level fusion, slots can be occupied by any user.
However, this means that events from one participant can be unde-
sirably composed with events from another user. Note that a major
additional effort is required from the programmer to support multi-
user scenarios, since every meaning frame has to be manually du-
plicated with a constant constraint on the user attribute, resulting
in an increased fusion description complexity.

In conclusion, data stream-oriented architectures are very effi-
cient when handling data streams and semantic inference-based ap-
proaches process semantic-level information with ease. However,
none of the presented approaches is efficient in handling both high
frequency data streams at a low abstraction level and low frequency
semantic pieces of information at a high abstraction level. Not to
mention the possibility to use data-level, feature-level and decision-
level information of the very same data stream at the same time. In
the next section, we present our unified multimodal interaction ar-
chitecture called Mudra, which reconciles the presented approaches
by supporting fusion across the different abstraction levels.

Mudra
Infrastructure Layer Core Layer Application
Layer
Input Bridge External Inference Engine
Vision Touch Ll Recognisen Data Feature Decision Application
NITE Midas - Level Level Level | PP
: . i Y —
Speech Motion L A | Fission
Sphinx SunSPOT] v v v Y Framework
| Fact Base

Figure 1: Mudra architecture

3. MUDRA

In order to build a fusion engine that is able to process informa-
tion on the data, feature and decision level in real-time, we believe
that a novel software architecture is needed. We present Mudra,
our multimodal fusion framework which aims to extract meaning-
ful information from raw data, fuse multiple feature streams and
infer semantic interpretation from high-level events.

The overall architecture of the Mudra framework is shown in
Figure 1. At the infrastructure level, we support the incorporation
of any arbitrary input modalities. Mudra currently supports mul-
tiple modalities including skeleton tracking via Microsoft’s Xbox
Kinect in combination with the NITE' package, cross-device multi-
touch information via TUIO and Midas [15], voice recognition via
CMU Sphinx? and accelerometer data via SunSPOTs>. These bind-
ings are implemented in the infrastructure layer. On arrival, event
information from these modalities is converted into a uniform rep-
resentation, called facts, and timestamped by the translator. A fact
is specified by a type (e.g. speech) and a list of attribute/value pairs,
called slots (e.g. word or confidence). For example, when a
user says "put", the fact shown in Listing 1 is inserted into a fact
base. Facts can address data coming from any level of abstraction
or even results from fusion processing. A fact base is a managed
collection of facts, similar to a traditional database.

Listing 1: "Put" event via Speech

1 (Speech (word "put") (confidence 0.81)
2 (user "Lode") (on 1305735400985))

However, instead of activating queries on demand, we use con-
tinuous rules to express conditions to which the interaction has to
adhere. A production rule consists of a number of prerequisites
(before the =-) and one or more actions that are executed when-
ever the rule is triggered. Such a prerequisite can either be a fact
match or a test function. A match is similar to an open slot in mean-
ing frames but with the possibility to add additional constraints and
boolean features, which leads to more flexible expressions. Test
functions are user defined and typically reason over time, space or
other constraints (e.g. t Sequence or tParallel for sequential
and parallel temporal constraints). Finally, when all prerequisites
are met, an action (after the =) is triggered. Typical behaviour for
an action is the assertion of a new, more meaningful fact in the fact
base while bundling relevant information.

'NITE and OpenNI: http://www.openni.org
cMU Sphinx: http://cmusphinx.sourceforge.net
3Sun SunSPOT: http://www.sunspotworld.com

The encapsulation of data enables the modularisation and com-
position while modelling complex interactions. This is inherently
supported by our approach and allows developers to easily encode
multimodal interaction. These constructs form the basis of our so-
lution and allow developers to match the complete range from low-
level to high-level events. The inference engine is based on CLIPS*
(C Language Integrated Production System), which is an expert
system tool developed by the Technology Branch of the NASA
Lyndon B. Johnson Space Center. We have substantially extended
this tool with an extensive infrastructure layer, the support for con-
tinuous evaluation, the inclusion of machine learning-based recog-
nisers (e.g. DTW and HMM) and a network-based communication
bus to the application layer. The application layer provides flexible
handlers for end-user applications or fission frameworks, with the
possibility to feed application-level entities back to the core layer.

3.1 Unified Multimodal Fusion

3.1.1 Data-Level processing

Data-level processing is primarily used for two purposes in the
Mudra framework: noise filtering and recognition. Kalman filter-
ing [20] typically allows for easier recognition of gestures in ac-
celerometer data. This processing is achieved at the infrastructure
layer since filtering is tightly coupled with specific modalities. Em-
ploying rules at the data level has already been shown to be effec-
tive for the recognition of complex multi-touch gestures [15]. The
use of production rules to encode gestures based on vision data-
level input has also been exploited by Sowa et al. [18] who used
the following declarative encoding for a pointing gesture: “If the
index finger is stretched, and if all other fingers are rolled (point-
ing hand- shape) and if the hand simultaneously is far away from
the body, then we have a pointing gesture”. A similar approach
is used in Mudra in the form of production rules to deal with the
correlation of information at the data level.

3.1.2 Feature-Level processing

To improve recognition rates, fusion at the feature level can be
used to disambiguate certain cases where a single modality falls
short. For example, in multi-touch technology, every finger gets
assigned a unique identifier. However this does not provide in-
formation whether these fingers originate from the same hand or
from different users. The fusion of existing techniques, for exam-
ple shadow images [6] or the use of small amounts of electrical cur-
rent to identify individual users [4], is possible at the feature level.

4CLIPS: http://clipsrules.sourceforge.net

http://www.openni.org
http://cmusphinx.sourceforge.net
http://www.sunspotworld.com
http://clipsrules.sourceforge.net

It is important to stress that we do not enforce a strict dataflow
from the data level to the feature level. This has the advantage that
data-level recognisers can benefit from information provided at the
feature level. If existing feature-level techniques are incorporated
in the framework, the data-level processing of multi-touch gestures
can, for example, immediately profit from their results.

3.1.3 Decision-Level processing

At the decision level, the advanced modelling of multimodal fu-
sion can be described in a very flexible manner, as developers have
access to events ranging from low to high level. External data-level,
feature-level or decision-level fusion algorithms can also be applied
to any facts available in the fact base. The underlying complexity
is hidden from developers, as illustrated in Listing 2 showing our
implementation of Bolt’s famous “put that there” example [1].

Listing 2: Bolt’s ""Put that there"

1 (defrule bolt

2 (declare (global —slot—constraint (user ?user)))
3 ?put <— (Voice (word "put") {> confidence 0.7})
4 ?that <— (Voice (word "that"))

5 thatp <— (Point)

6 (test (tParallel ?that ?thatp))

7 ?there <— (Voice (word "there"))

8 ?therep <— (Point)

9 (test (tParallel ?there ?therep))

10 (test (tSequence ?put ?that ?there))
11 =
12 (assert (BoltInteraction)))

In this fusion example, we assume some high-level events. For
example, line 3 and 4 show a pattern match on a voice fact con-
taining a “put” (see Listing 1) and a “that” string at the word slot.
Resulting fact matches are bound to variables, denoted by a ques-
tion mark (i.e. ?put and ?that). Line 5 specifies a point event,
which could be issued by a touch interaction or a hand pose. The
point fact also contains a modality type slot, but if the developer
does not constrain the attribute information to a single or multiple
modalities, the rule will trigger for all cases. This example illus-
trates the abstraction level of our declarative rules, where the un-
derlying complexity of the point event is hidden by one or multiple
rules or external recognisers.

Different temporal operators, such as tParallel (line 6) or
tSequence (line 10), are user defined rather than being fixed
and limited to engine-level constructs. Developers can introduce
their own operators at any time. It is important to note that the
voice events generated by recognisers in the infrastructure layer
are merged with point events extracted by data-level processing.
Although pointing is a continuous interaction which generates mul-
tiple events per second, our system is able to fuse both inputs. Fu-
sion algorithms at different fusion levels may find patterns in the
fact base. In the future we plan to further exploit this feature by
dynamically analysing speech in fusion-aware speech grammars.

3.2 Fundamental Features of Mudra

Attribute Constraints Additional constraints can be enforced
by developers before a matched fact type is bound to a variable. A
first constraint is realised by assigning a constant value on an at-
tribute. This is shown on line 3 of Listing 2 by stating the string
"put" for the word slot. A boolean OR operator supports alter-
native constant values in the case that this is required.

A second interesting constraint is available via inline function
calls (denoted by curly braces), which is outlined on line 3. This
construct not only supports boolean operators such as AND, OR
and NOT, but it can also be used to specify value ranges (e.g. for

sliders) or to call user-defined functions. In Listing 2, we applied
an inline function call to enforce a minimal probability for the cor-
rectness of the recognised word.

A third type of attribute constraint is to use variable bindings. In
production rules, a variable can only be bound once. Thus, if a sin-
gle variable is used at multiple locations, it indicates that all these
instances should contain the same value. This is very flexible as
developers are not enforced to provide a constant value. Typically,
this feature is applied in a multi-user context, where all matched
events should be produced by a user without referring to a par-
ticular username. In Listing 2, we applied this mechanism via a
macro (global-slot-constraint) which spans over all fact
matches that contain user information.

Negation of Events A powerful feature is the use of negation
to denote that an event should not happen during the defined sce-
nario. This construct can also be used to define priorities between
different modalities, for instance to express that pointing should be
active as long as there is no voice input. The rich expressiveness of
the negation feature is very handy when describing certain types of
multimodal interactions.

Local Integration of Probability Probability information orig-
inating from external recognisers (e.g. speech recognition) can be
integrated as attribute values. Due to the advanced attribute con-
straint mechanism, a threshold can be set locally and is not required
to be system wide. It is very interesting to exploit this feature to re-
duce false positives as one can enforce a higher threshold for key
components of the fusion. For instance, line 3 in Listing 2 requires
arecognition probability higher than 0.7 for the speech recognition
of “put”, which is higher than the default threshold of 0.5. When
extending the system with additional but similar fusion rules like
“clone that there”, the possibility to refine these probabilities on a
per-event basis is a clear advantage.

Overlapping Matches Support for overlapping matches is an
important benefit of our approach and enables to bridge the gap
between low-level and high-level fusion. New events that overlap
with partial matches are not thrown away but create new, additional
partial matches. The mechanism relates to an automated replication
strategy of meaning frames whenever a register is occupied. Devel-
opers do not have to decide between skipping new events or over-
writing existing partial matches. Overlapping matches are handled
very efficiently by the Rete algorithm [7]. Since we inherently sup-
port the bookkeeping of partial matches, we provide an additional
delay construct to control the frequency of the rule triggering.
The delayed triggering is important for data-level processing since
many low-level events correlate to similar conclusions and a reduc-
tion of events minimises the processing necessary by the inference
engine. Note that the delay construct can be applied to define the
refresh rate of continuous gestures (e.g. pointing). Decision-level
fusion greatly benefits from this control mechanism in our unified
multimodal framework.

Sliding Window The fact base only contains facts that have not
yet outlived their time span. This time span parameter is necessary
for performance and memory reasons. A time span is specified
per fact type, which allows developers to keep high-level semantic
events with a low throughput longer in the fact base than low-level
events generated with a higher refresh rate. The result is a flexi-
ble time-windowing strategy where developers can choose between
performance and accessibility of older data for fusion.

Multi-User Support Multi-user support is exploited by speci-
fying conditions on attributes. Whenever any user information is
available—either originating from hardware, extracted by a recog-
niser or fused from multiple modalities—it can be included as an
attribute in a fact. As mentioned earlier, the use of a single vari-
able binding in a rule can be used to enforce events generated by
the same user. However, specifying this attribute for every condi-
tional element introduces a lot of redundant program code resulting
in more complex rules. We therefore introduced a new language
construct to declare constraints on all matches whenever the spec-
ified attribute is present. This is illustrated on line 2 of Listing 2
which enforces all events to be issued by the same user. Due to the
inherent support for overlapping matches, Listing 2 supports the
concurrent interaction of multiple users in the multimodal “put that
there” scenario.

Collaborative User Support To go one step further, we show
how rules can be employed to support collaborative interaction.
Hoccer® is an example of a simple collaborative scenario where
users can share data by initiating a throw and catch gesture. The im-
plementation of this scenario, which matches a throw and a catch
fact, is shown by Listing 3. The rule declares that the throw and
catch fact should originate from two different users (nequal test
on line 4) and that the former should happen before the latter (tem-
poral constraint on line 5). Finally, the spatial constraint on line 6
tests whether the throw was performed in the direction of the catch.
Again, the recognition of multiple users concurrently throwing data
at each other is completely handled by the inference engine without
any additional programming effort.

Listing 3: Collaborative multimodal interaction

1 (defrule throwAndCatch

2 2throw <— (Throw (user ?userl))

3 ?catch <— (Catch (user ?user2))

4 (test (nequal ?userl ?user2))

5 (test (tSequence ?throw ?catch))

6 (test (sInDirectionOf ?throw ?catch))
7
8
9
0
1

>
(assert (ThrowAndCatch
(userl ?userl) (user2 ?user2)
(on:begin ?throw.on) (on:end ?catch.on)

1
1 (on ?catch.on))))

Compilation Rules are compiled to a Rete network to accommo-
date soft real-time performance. Rete is a very efficient mechanism
that compiles multiple rules to a dataflow graph and stores inter-
mediate results to speed up pattern finding problems. Note that the
engine itself will take care of storing intermediate results, which
usually puts an additional burden on application developers. It is
also important to mention that the temporal and other constraints
are handled at each node level. This means that we are open to
incorporate more advanced approximation (e.g. based on data ob-
tained by training) at runtime, without running into architectural or
performance issues. This compilation step is provided by CLIPS
and allows us to process an average of 9615 events per second with
the two code samples (i.e. Listing 2 and Listing 3) active on an Intel
Core 17 with 4GB of RAM. The data consisted of 80% Points, 10%
Voice and 10% Throw/Catch facts with a successful fusion rate of
20%. The assumed data input in a realistic environment is around
25 (Point) +1 (Voice) +2 (Throw/Catch) events per second which
implies that our engine definitely has no problems processing these
scenarios in real-time. Figure 2 shows an example of the compiled
Rete network for the rule defined in Listing 2. Note that the evalua-

SHoccer: http://hoccer.com

tion of depending matching is postponed whenever possible and the
system only spends very little time for newly arriving event. How-
ever, this also implies that the ordering of the declared constraint in
a rule can significantly influence the performance.

Point (1))

Point (2)°
. N
Bolt Trigger

Figure 2: Compiled directed acyclic graph of Bolt’s example

External Recognisers We also support the possibility to plug
external recognisers into Mudra, along the fusion algorithms. Such
external recognisers access data from the fact base and enrich it in
turn. Recognition algorithms such as Dynamic Time Warping and
Hidden Markov Models are examples of external recognisers. Flex-
ible publish/subscribe handlers are provided for these recognisers.
In future work, we would like to exploit this external recogniser
feature even further via our concept of smart activations. As de-
velopers have access to low-level information in high-level fusion
scenarios, it is easy to initiate additional low-level recognition tech-
niques when desired. This initiation can embody computational
intensive algorithms, which do not have to run continuously since
their information is only interesting in certain scenarios. Typical
applications are voice localisation using beam formation or the ap-
plication of image processing for user identification.

3.3 Current Limitations

Our main focus is directed towards (1) finding meaningful pat-
terns out of low- and high-level data, either via unimodal recogni-
tion or multimodal fusion, and (2) providing developers with high-
level domain-specific language constructs to express advanced mul-
timodal interaction with respect to the CARE properties [3]. Mudra
supports a wide range of recognition techniques (DTW, HMM, pro-
duction rules at the data-, feature- and decision-level), but it does
not provide abstractions to set up a chain of raw data filters. We em-
ploy noise filtering for input data at the infrastructure layer (e.g. via
a Kalman filter for accelerometer data), but we do not offer a com-
plete infrastructure to chain stream boxes as for example offered
by Openlnterface or Squidy. In case this is needed for future ap-
plications, it could be interesting to connect the output of these
frameworks to our infrastructure layer.

A second limitation of our current implementation is the lack of
advanced conflict resolution. A basic conflict resolution is offered
via a numeric salience indication per rule, which allows develop-
ers to prioritise rules. However, since this construct only works
when two rules trigger at the same time, we cannot always exploit
this functionality. We also argue that a numeric salience value is
insufficient to model all conflicting cases [15].

Dealing with probabilities at the attribute level permits a pow-
erful control mechanism using high-level constructs. Although we

http://hoccer.com

frequently exploit this explicit mechanism, we lack constructs to
automatically reason over the combination of multiple probabili-
ties, as implemented by fuzzy logic approaches. It is an open ques-
tion to see whether the increase of complexity at the performance
and programming level is worth the extra effort.

Developers using our unified multimodal framework have to be
aware of the ordering of their conditional elements. As mentioned
earlier, the order of conditions can significantly influence the per-
formance. An initial, automated reordering of conditions is pro-
vided by CLIPS; however it is limited to trivial situations. To im-
prove the performance, we propose a simple guideline: position
events with a higher throughput at a later position in the rule and
put conditions as close as possible to the matches, allowing the en-
gine to avoid unnecessary event processing.

4. DISCUSSION

In this section, we discuss how Mudra’s unified fusion relates
to other existing approaches. Frameworks positioned at the data
level, such as Openlnterface, Squidy and other data stream-based
approaches, rely on the linear chaining of processing components.
Although these boxes encapsulate the implementation complexity,
the internal implementation of such a box is far from trivial. Sup-
pose that a high throughput (vision) and a low throughput (speech)
input stream have to be fused. The composition of such a box,
which handles all events one by one, requires a lot of bookkeep-
ing. Key events have to be kept in local variables (state manage-
ment) and all combinations of matches have to be manually ex-
ploited (pattern matching). This ad hoc composition of boxes is of
course feasible but puts a burden on the application developer who
is only interested in expressing a simple correlation. This issue is
particularly present when other developers would like to extend the
internals of the box (e.g. to support multiple or collaborative users).

Most feature-level processing tools rely on preprocessed data,
such as noise filtering or multi-touch identification, before the fu-
sion occurs. However, this means that data-level processing can
typically not benefit from recognised features as existing architec-
tures enrol a one way propagation of events as illustrated in Fig-
ure 3. In Mudra, we benefit from a single fact base with a garbage
collector, from which recognisers can access all available informa-
tion at any time. Via this structure, data-level recognisers can in-
corporate optional feature data. It is worth mentioning that dealing
with “optional” data is fairly easy to accomplish via rules. For
instance, one rule is responsible for reasoning over raw data and
another rule augments this data whenever additional features are
found in the fact base. Due to the continuous evaluation of the in-
ference engine, the second rule will automatically be triggered as
soon as the feature information becomes available.

r ¥ r

Data Feature Decision
Level Level Level

Figure 3: Traditional chaining of fusion

Decision-level multimodal fusion assumes the existence of high-
level semantic data. This type of fusion is also known as late fusion
where all high level information is gathered and correlated. Despite
the introduced robustness, typical decision-level frameworks can-
not recover from the loss of information which might occur at lower
levels. A secondary limitation of these frameworks is the lack of
support for overlapping matches. A commonly used implementa-
tion technique for high-level fusion is the incorporation of meaning

frames. As already mentioned in Section 2.3, apparent issues arise
when dealing with overlapping matches and continuous informa-
tion. An important assumption of decision-level frameworks is the
atomic compilation of meaningful events by data- and feature-level
recognisers. However, for continuous gestures, such as pointing, it
is hard to control the frequency. The continuous pointing in Bolt’s
“put that there” scenario is a simple example to stress this issue.
The refresh rate of the pointing gesture is declared at the data-level
processing. A high refresh rate introduces the problem of occu-
pied slots in meaning frames, while a low refresh rate can lead
to skipped decision-level integration since they are invalidated by
the temporal constraints. It should be possible to circumvent these
problems with an ad hoc solution, however, for more complex sce-
narios such as a multi-user environment, existing meaning-frame
based solutions cannot be employed without inherent support for
overlapping matches.

We argue that current frameworks are bound to their implemen-
tation approach, which means they can only offer well-defined ab-
stractions either at the data-, feature- or decision-level. There is
typically a one-way chaining from the lower to the higher level as
shown in Figure 3. We have incorporated existing techniques in
our unified approach and offer developers powerful language con-
structs to express their multimodal fusion requirements. One of
the important benefits is that developers are freed from the manual
bookkeeping of events. The declarative rules support the definition
of multimodal fusion in terms of conditions on one or more prim-
itive events via composite high-level rules. All recognisers build
on top of each other, while they are still able to access low- or
high-level information to improve their recognition rates. We also
explicitly enforce every fact to be annotated with a timestamp for
fine-grained garbage collection.

Our unified approach solves a number of important issues. How-
ever, there is still a lot of room for improvements and future re-
search. For instance, we plan to evaluate the use of multiple recog-
nisers on the same data. A combination of rules with multiple ma-
chine learning techniques that reason over the same data could sig-
nificantly improve recognition rates.

Another issue that we are currently investigating is the incorpo-
ration of user feedback via supervised gesture learning. Since all
low-level and high-level information is available in the fact base,
rules could be used to manage user feedback intentions. When-
ever such a rule is triggered, we could delegate the training pro-
cess of gesture recognisers using knowledge of previous handling.
Additionally, a batch learning approach can be used, in which the
training of a gesture is only triggered with a threshold number of
positive and negative examples.

Finally, we would like to include the smart activation of input
modalities. For example, a low-level movement sensor could trig-
ger the activation of a 3D camera, which in turn could activate the
speech recognition module whenever a user is close to the micro-
phone to improve speech recognition rates. The same smart acti-
vation constructs could also be used to control the propagation of
information to machine learning techniques, as they are computa-
tionally too expensive for continuous evaluation.

5. CONCLUSION

Multimodal interfaces have become an important solution in the
domain of post-WIMP interfaces. However, significant challenges
still have to be overcome before multimodal interfaces can reveal
their true potential. We addressed the challenge of managing mul-
timodal input data coming from different levels of abstraction. Our
investigation of related work shows that existing multimodal fu-
sion approaches can be classified in two main categories: data

stream-oriented solutions and semantic inference-based solutions.
We further highlighted that there is a gap between these two cat-
egories and most approaches trying to bridge this gap introduce
some ad hoc solutions to overcome the limitations imposed by ini-
tial implementation choices. The fact that most multimodal interac-
tion tools have to introduce these ad hoc solutions at one point con-
firms that there is a need for a unified software architecture with
fundamental support for fusion across low-level data streams and
high-level semantic inferences.

We presented Mudra, a unified multimodal interaction frame-
work for the processing of low-level data streams as well as high-
level semantic inferences. Our approach is centered around a fact
base that is populated with multimodal input from various devices
and recognisers. Different recognition and multimodal fusion al-
gorithms can access the fact base and enrich it with their own in-
terpretations. A declarative rule-based language is used to derive
low-level as well as high-level interpretations of information stored
in the fact base. By presenting a number of low-level and high-
level input processing examples, we have demonstrated that Mudra
bridges the gap between data stream-oriented and semantic infer-
ence-based approaches and represents a promising direction for fu-
ture unified multimodal interaction processing frameworks.

Acknowledgements

The work of Lode Hoste is funded by an IWT doctoral scholarship.
Bruno Dumas is supported by MobiCraNT, a project forming part
of the Strategic Platforms programme by the Brussels Institute for
Research and Innovation (Innoviris).

6. REFERENCES

[1] R. A. Bolt. “Put-That-There”: Voice and Gesture at the
Graphics Interface. In Proc. of SIGGRAPH 1980, 7th Annual
Conference on Computer Graphics and Interactive
Techniques, pages 262-270, Seattle, USA, 1980.

[2] J. Chai, P. Hong, and M. Zhou. A Probabilistic Approach to
Reference Resolution in Multimodal User Interfaces. In
Proc. of IUI 2004, 9th International Conference on
Intelligent User Interfaces, pages 70-77, Funchal, Madeira,
Portugal, 2004.

[3] J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, and
R. Young. Four Easy Pieces for Assessing the Usability of
Multimodal Interaction: The CARE Properties. In Proc. of
Interact 1995, International Conference on
Human-Computer Interaction, pages 115-120, Lillehammer,
Norway, June 1995.

[4] P. Dietz and D. Leigh. DiamondTouch: A Multi-User Touch
Technology. In Proc. of UIST 2001, 14th Annual ACM
Symposium on User Interface Software and Technology,
pages 219-226, Orlando, USA, 2001.

[5] B. Dumas, D. Lalanne, and S. Oviatt. Multimodal Interfaces:
A Survey of Principles, Models and Frameworks. Human
Machine Interaction: Research Results of the MMI Program,
pages 3-26, March 2009.

[6] F. Echtler, M. Huber, and G. Klinker. Hand Tracking for
Enhanced Gesture Recognition on Interactive Multi-Touch
Surfaces. Technical Report TUM-10721, Technische
Universitdt Miinchen, Department of Computer Science,
November 2007.

[7] C.L. Forgy. Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence, 19(1):17-37, 1982.

[8] M. Johnston and S. Bangalore. Finite-State Methods for
Multimodal Parsing and Integration. In Proc. of ESSLLI
2001, 13th European Summer School in Logic, Language
and Information, Helsinki, Finland, August 2001.

[9] M. Johnston, P. Cohen, D. McGee, S. Oviatt, J. Pittman, and
L. Smith. Unification-Based Multimodal Integration. In Proc.
of ACL 1997, 35th Annual Meeting of the Association for
Computational Linguistics, pages 281-288, Madrid, Spain,
July 1997.

[10] W. Konig, R. Rédle, and H. Reiterer. Squidy: A Zoomable
Design Environment for Natural User Interfaces. In Proc. of
CHI 2009, ACM Conference on Human Factors in
Computing Systems, pages 4561-4566, Boston, USA, 2009.

[11] D. Lalanne, L. Nigay, P. Palanque, P. Robinson,

J. Vanderdonckt, and J. Ladry. Fusion Engines for
Multimodal Input: A Survey. In Proc. of ICMI-MLMI 2009,
International Conference on Multimodal Interfaces, pages
153-160, Cambridge, Massachusetts, USA, September 2009.

[12] S. Oviatt. Advances in Robust Multimodal Interface Design.
IEEE Computer Graphics and Applications, 23(5):62-68,
September 2003.

[13] S. Oviatt. Multimodal Interfaces. In The Human-Computer
Interaction Handbook: Fundamentals, Evolving
Technologies and Emerging Applications, Second Edition,
pages 286-304. Lawrence Erlbaum Associates, 2007.

[14] E. Petajan, B. Bischoff, D. Bodoff, and N. Brooke. An
Improved Automatic Lipreading System to Enhance Speech
Recognition. In Proc. of CHI 1988, ACM Conference on
Human Factors in Computing Systems, pages 19-25,
Washington, USA, June 1988.

[15] C. Scholliers, L. Hoste, B. Signer, and W. D. Meuter. Midas:
A Declarative Multi-Touch Interaction Framework. In Proc.
of TEI 2011, 5th International Conference on Tangible,
Embedded and Embodied Interaction, pages 49-56, Funchal,
Portugal, January 2011.

[16] M. Serrano, L. Nigay, J. Lawson, A. Ramsay,

R. Murray-Smith, and S. Denef. The OpenlInterface
Framework: A Tool for Multimodal Interaction. In Proc. of
CHI 2008, ACM Conference on Human Factors in
Computing Systems, Florence, Italy, April 2008.

[17] R. Sharma, V. Pavlovic, and T. Huang. Toward Multimodal
Human-Computer Interface. Proceedings of the IEEE,
86(5):853-869, 1998.

[18] T. Sowa, M. Frohlich, and M. Latoschik. Temporal Symbolic
Integration Applied to a Multimodal System Using Gestures
and Speech. In Proc. of GW 1999, International Gesture
Workshop on Gesture-Based Communication in
Human-Computer Interaction, pages 291-302,
Gif-sur-Yvette, France, March 1999.

[19] M. Vo and C. Wood. Building an Application Framework for
Speech and Pen Input Integration in Multimodal Learning
Interfaces. In Proc. of ICASSP 1996, IEEE International
Conference on Acoustics, Speech, and Signal Processing,
pages 3545-3548, Atlanta, USA, May 1996.

[20] G. Welch and G. Bishop. An Introduction to the Kalman
Filter. Technical Report TR 95-041, Department of
Computer Science, University of North Carolina at Chapel
Hill, 2000.

[21] L. Wu, S. Oviatt, and P. Cohen. From Members to Teams to
Committee - A Robust Approach to Gestural and
Multimodal Recognition. IEEE Transactions on Neural
Networks, 13(4):972-982, 2002.

	1 Introduction
	2 Background
	2.1 Multimodal Fusion Levels
	2.2 Data Stream-Oriented Architecture
	2.3 Semantic Inference-Based Approach
	2.4 Irreconcilable Approaches?

	3 Mudra
	3.1 Unified Multimodal Fusion
	3.1.1 Data-Level processing
	3.1.2 Feature-Level processing
	3.1.3 Decision-Level processing

	3.2 Fundamental Features of Mudra
	3.3 Current Limitations

	4 Discussion
	5 Conclusion
	6 References

